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SUMARIO
Propoe-se uma aproximagdo para gerar um procedimento de busca
direta no qual os erros nos vinculos si3o inerentemente tratados.

Isto & feito adicionando-se ao algoritmo a caracteristica de mode

lar como variaveis aleatérias os erros com os quais os vinculos
sao aproximados. Faz-se uso da teoria de estimacao linear, resol
vendo-se a determinacdo do incremento de busca com um estimador

do tipo Gauss-Markov na forma de Kalman. F feita uma analise mos
trando as relacoes entre a versao estocastica proposta e o método
da projecao do gradiente deterministico.

SUMMARY
A stochastic approach is proposed to generate a direct

search procedure where errors in the constraints are inherently
treated.This is done by adding to;the numerical algorithm the
feature of modelling as random variables the errors with which the
constraints are approximated.Use is made of linear estimation
theory, solving the search increment determination problem with a
Gauss-Markov estimator in the Kalman form.An analysis is made
showing the relationships between the proposed stochastic version
and the gradient projection method.
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1. Introduction

In what follows a procedure is proposed for the numerical
solution of constrained nonlinear programming problems.Adopting a
first order, direct search scheme, the problem of determining the
search increment in each iteration is treated as one of optimal
linear estimation of parameters. This leads to a stochastic
approach where the relative accuracy in the satisfaction of the
constraints can be represented by random variables and thus
directly treated in the resulting numerical algorithm.

The procedure was developed with the purpose of using linear
estimation to have a direct search numerical scheme where the
accepted errors in the constraints could be treated along and as
part of the numerical procedure. What resulted, however, was soon
seen to be related to the well known projection of the gradient
method([8], {9] and [4}).The use of linear estimation theory (e.g.
(2]) or, more specifically, of the Gauss-Markov parameter
estimator in the Kalman form, resulted in a procedure(f6],[9] and
[1]) which can be viewed as a stochastic version of the projection
of the gradient method. In this paper, an updated version is
presented and an anlysis showing the relationships between the
proposed stochastic version and the existing deterministic method
1s made.

The procedure is intended to be applicable to deterministic
problems where one only wants to attain an approximate
satisfaction of the constraints. Thus, it is not in the class of
those procedures to solve stochastic nonlinear programming problems
for which one only has access to random realizations of the
objective function or of the constraints (e.g.[31,[5] and [10]).

In what follows, the paper is organized in six sections. In
Section 2, the optimization problem to be numerically solved is
formulated. The presentation and analysis of the proposed procedure
are made in Section 3. In Section 4, the comparison with the
deterministic projection of the gradient method is done. To
1llustrate aspects of implementation and basic characteristics, a
simple numerical example is considered in Section 5. Final comments

and conclusions are presented in Section 6.



2. Problem Formulation

The optimization problem for which a numerical solution is
sought is, if a minimization is considered:

Minimize : f(x) (1)
Subject to : &(E)E $ (2)
hix)= ¢ (3)

where X is the vector of parameters to be optimized; f(x), g(x) and
h(x) are fixed functions of x of dimensions 1, My and my,, which are
assumed to have the necessary regularity (e.g.[4]) to validate the

mathematical developments and assumptions that follow; & and g are

vectors of errors to represent the accuracy of constraints

satisfaction and defined as:

t

6.1 6, 1=1,2,...,mg, ]ail e, i=1,2,000,m (4)

where the fixed and given values GE and SE characterize the region
around zero within which errors are considered as tolerable. The
inclusion of error bounds in the satisfaction of the constraints
is a way of medelling the problem of what is to be the numerical
zero for each constraint. That is, a way of characterizing as

acceptable those errors which are within the error bounds.

3. Proposed Procedure

3.1 - General Scheme: Given a value x from an initial guess
or from an immediately previous iteration, a first order, direct
search approach 1s adopted in a typical iteration to determine
an approximate solution for the increment 4x in the problem:

Minimize : f(x + 4x) (5)

Subject to : h(X + 8x) = ¢« h(X)« e (6)

g; (X + 8x) = B g, (X) + 8, h



E, i=1,2,..., Ig represent the active constraints;

and 0 £ ¢ <1, 0 £ 8 < 1 are chosen close enough to one to lead to
increments Ax of a first order of magnitude.

8

1%

where g, (%)

Linearized approximations are taken for the left hand sides

of Equations (6} and (7) together with a stochastic interpretation
for the errors ¢ and §,, resulting in:

(a-1) h(i) = (d h(i)/dﬁ) AX + EI‘ (8)
(8-1) g;(X) = (dg; (X)/dx) ax + 6} (9)
T

. T
where i = 1,2,..., Ig; and & and Gi are now assumed to be zero

mean uniformly distributed random errors, modelled as:

Ele’ ¢7'} = diag [e?, 1=1,2,...,m1, e? =(¢H2/3

T T, _ .. 2 s 2, _ ety
E[6" ¢ "] = diag [di’ 1._1,2,...,Ig], di = (ﬁi) /3,

where E[.] indicates the expected value of its argument; and e§ and
GE are as defined in Iuation (4).

The condition of Iuation (5) is approximated by the
following a priori information

-p 9V £ (X):=8x +1n , (10$)
where p 2 0 is to be adjusted to guarantee a first order of
magnitude for the increment, that is, such that Ax 1s small enough
to permit the use of a linearized representation of f(§-+A§); and
n 1is taken as a zero mean uniformly distributed random vector,
modelling the a priori searching error in the direction of the
gradient vf(x), with:

Eln ET] D=

ot

as 1ts diagonal covariance matrix. The values of the variances in
P are to be chosen such as to characterize an adequate order of
magnitude for the dispersion of n as it will be made clear later.




The diagonal form adopted is to model the assumption that it is
not imposed any a priori correlation between the errors in the
gradient components.

The simultanecus consideration of conditions of Equations
(8)Y, (9) and (10) characterize a problem of parameter estimation,
which in a compact notation can be put as follows:

E:_}_{_+ﬂ N (11)
Y =M X+ V, (12)
where X g - P Vf (x) is the a priori information; X & Ax; 'YT
Al (e-1) h (x):(B-1) Ul(x) ..... :(B- 1)gI(x)] is the mx1 observatlon
vector; I A[(dh(x)/dx)T‘(dql(xj/dx) S de®an Ty VT
r g
A[(E) §. ... 1. =

Ig
Adoptlng a criterion of linear, minimum varinace estimation,

the optimal search increment can be determined using the classical
Gauss-Markov estimator, which in XKalman form (e.g. [2]) gives:

X =X+ K(Y-u%, (13)

P-=P- KMP , (14)

K = Py by gy (15)
where ﬁ is defined as before; R A E[VV 1 & diag [Rk,k 1,2,...,m};

and P has the meaning of being the covariance matrix of the errors
in the components estimates of X, i.e:

P-EBX-0 x-07. (16)

A formally equivalent way of obtaining the estimate of

Equations (13) to (15) is to solve the deterministic optimization
problem:

Minimize: 4 (B P X%+ (v-m TR yan)) (17)
(X}



This way of interpreting the solution shows that the
numerical procedure gives in each iteration an increment g“which:
(1) differs from g according to the bounds imposed by the
covariance matrix P; and (ii) controls the constraints components
deviation from zero, according to the relative priorities imposed
by the elements of the covariance matrix R. Tt also shows that E
is to be related to R such as to guarantee priority to the
constraints, in the sense that constraints satisfaction is to be

looked as a necessary condition, in the search for the minimum.

3.2 - Analysis of Convergence: To build a numerical algorithm

using the proposed procedure, the following types of iterations are
considered:

(1) initial phase of acquisition of constraints, when
starting from a feasible point that satisfies the
inequality constraints, the search is done to capture
the equality constraints, including those inequality
constraints that eventually became active along this
phase;

(ii) search of the minimum, when from a point that satisfies
the constraints in the limits of the tolerable errors
Y in Equation (12), the search is done to take the
objective function (Equation (5)) to get to the
minimum; this search is conducted relaxing the order
of magnitude of the c¢rror bounds around the
constraints;

(iii) restoration of the constraints, when from a point that
resulted from a type (ii)} iteration, the search is done
to restore constraints satisfaction, within the limits
imposed by the error V in Equation (12).

In the limiting situation of perfect constraints
satisfaction, a situation of convergence occurs when in a type (ii)
iteration no feasible direction of search can be found and the
search increment is zero. The geometrical interpretation of this
situation is that the objective function gradient vector is



orthogonal to the intersection of hyperplanes representing the
active constraints. For the proposed procedure, the correspondent
situation of convergence occurs when in a type (ii) iteration the
estimate X of the search increment results negligible, in spite
of using a first order of magnitude p in Equation (11), together
with a dispersion of n also of first order. What is to be
considered negligible can be evaluated by analysing the following
equation, in a situation of convergence (X = 0):

£x

X -X=(1-KMD & +KV, (18a)

it

X

m
n

(L - KM) X + kv (18b)

where Equation (12) and (13) were used, and eX A i-—&. It is then
seen that a negligible X occurs when the first term in the right
hand side of Equation (18b) is of the a order of magnitude less
than or equal to that corresponding to the dispersion of the
second error term, KV. Notice that for a type (ii) iteration the
result of Equation (18b) is also that given by Equation (13) when
Y is approximated by KV.

To verify convergence it is still necessary to check 1f,
together with a negligible increment as given by Equation (18), all
the ineguality constraints that are active have the tendency to
remain active. In the limiting situation of perfect satisfaction
of constraints, this corresponds to not having a feasible increment
in the direction of the objective function gradient which could
lead to a point inside the allowed constraint region.

Geometrically this means that the vector opposite to the objective
function gradient, which is orthogonal to the constraints, has no

tendency to penetrate the allowable constraint region, for any of

the active constraints.

In terms of the proposed procedure, this second condition
is verified if:

Ma

I =<

+Ea

IV

0, (19)

where Ma and V* are respectively the partitions of M and V in
Equation (12), in correspondence with the active inequality
constraints; and the inequality sign is meant to be valid for each



component of the left-hand side vector.

Another equivalent way of considering this condition results
if in Equation (18) one notices that the true increment X is
negligibly small and thus i obeys the relationship:

(- KM 8y + K7v® = X+ K*(v® - M X) (20)

where, in Equation (13), Y2 - Ma E + V" = V7; and thus:

| &t
n

Ku?

| <

+ (I - KM &y (21)

resulting from Equation (19) that:

I- KM 8y + ¥ =0, (22)

5.3 - Numerical Algorithm: The algorithm proposed is in

analogy with that used in [4] for the projection of the gradient
method. It can be summarized as follows:

1. Find the active constraints and form M in Equation (12).
At most in each iteration of this type, adjust the following:(i)
the parameters ¢ and g in Equation (12), when in an initial phase
of acquisition of constraints to guarantee the linear perturbation
hypotesis; if the iteration is one where constraint restoration is
being done take a = 8 = 1; (ii) the parameters necessary to get a
dispersion of n in Equation (11} of a first order of magnitude as
compared to the dispersion as compared to the dispersion of V in
Equation (12) (that is, such as to guarantee a higher priority to
the constraints satisfaction or, equivalently, such as to give
higher weight to the second term in the minimization of the cost
in Equation (17)); and (iii) the parameter p, in Equation (11),
with a value p. compatible with the hypotesis that (x + g(pc)) is
inside the region of validity of linear perturbation of the
constrainsts, that is,

p. = Max {p: X + g(p) is inside the region of validity of
the linear perturbation of the constraints}.



Perform constraint restoration iterations using the algorithm of
Equation (13) to (15), until:

[h; (X + X(p M) |5 €] , g5 (% + X(p )]s 53‘.‘ , (23)

where i = 1,2,...,mh and j = 1,2,..., Ig' Notice that in an
iteration of this type it may be convenient not to reject a point
which, in spite of not improving constraint satisfaction, resulted
inside the region of validity of linear perturbation and led to a
decrease in the objective function.

2. If necessary, recalculate the dispersion of n and the
parameter p.. With the algorithm of Equations (13) to (15)
calculate the expression for X(p) and the value of K. Evaluate the
estimate for p = Pe» i.e., calculate i(pc). Go to step 3, if it
happens that:

X -kY | = v [KE |, (24)

where 0 < y £ 1, to be adjusted depending upon the problem;
Eg A [af, ef,..., E;h’ 6?, 52,..., 6% }, and the errors sE and 6§
are as defined in Equation (4). If not, determine Py associated

with:
Min {£(X + X(p)): 0 = p = p.} (25)

set X to (X + X(pg)) and if constraint satisfation resulted
destroyed return to step 1; otherwise repeat this step.

3. With X(pc) calculate the vector @ag(pc) in Equation (19).
If it happens that:

M? g(pc) 2 - 85, i=1,2,...,1 (26)

then stop. Otherwise, delete as active the inequality constraints
corresponding to the most negative result in Equation (26) and
return to step 2.



Notice that after restoration of constraints in the first
step, following a search for the minimum in the second step, it may
occur that the objective function increases as compared to its
value at the beginning of this cycle of iterations. This can be
remedied by restarting the cycle with a smaller Py in the second
step.

Among the many possibilities certainly existing for the
determination of the parameters needed in the implementation of
the proposed algorithm, the following are suggested:

(i) choose a and 8 of Equation (12), in each step, as
suggested [6]:

(a-1) = (8-1) = -s (27)
i . . 2,2 . . _
5==M1n.{si,1=0,1,2...,m.so=1, Sj hj(£)= qj(SRj), j= 1,2...,mh,
2 v -
Sk_‘_mhgk(E) = qk(st"'mh)’ k = 132:"'! Ig}: (28)

where qj >> 1 and q; >> 1 are to be adjusted to guarantee a first
order of magnitude perturbation in the constraints.

(1ii) Determine the dispersion of n in Equation (11) to
produce a first order perturbation error in the constraints of
Equation (12), by considering thatq

Y=ME+n) +V=Y+Mn

orT

-3

(=

| m
~
1l

=

1=

resulting in:

n, 2 _ vy 2 .
_21 Mij ij E[(e)®), i =1,2,..,, m, (29)
J:



where it is assumed E[(e?)z] - qi(SRi), so that: . -

n
JoMioPo=q (3R, i=1,2..., m, (30)

which is a condition to be used for evalu?ting those ﬁjj that are
present in Equation (29) (that is, those P.. for which at least
one of the Mij =z 0). Noticing that i(p } is also to be taken as an
increment of first order, then for those X (p } = 0 another
condition that can be used is:

_ ~2

gliminating those ﬁjj that appear in Equation (30) and for whiEh
X.(pc) z 0, one gets a condition for determining P. and those ij
that eventually remained in Equation (30). Depending upon the
problemn, either redundancy or insufficiency of equations may
occur to determine the unknown variable of this condition. In the
first case, a least square fitting can be used. In the second,

an additional criterion has to be adopted to complete this
condition. After determining P.» the determination of the P.. can

13
be completed using again the Egquation (31).

4. Relationship with the Projection of the Gradient

A deterministic version of the projection of the gradient
method results if the f0110w1ng particularizing assumptions are
simultaneously considered.

(i) In Equation (15), one takes:

P=al ,a>0 (32)

(ii) In this same Equation (15), one takes the ratios Ry /o,

k=1,2,...,m, to zero in the limit, resulting in a correspondent
value K4» given by:

K= M MD)” (33)



Taking the result of Equation (33) in Equation (13), it
results:

K= (- KM X+ KgY =Pa X v Kg X (34)

where P, A (I - Ky M)is now the projection matrix, exactly as
defined for the deterministic version.

The first Kuhn - Tucker condition is obtained directly from
Equation (34), if constraint satisfaction is assumed (Y = 0) and
in Equation (10) one takes p > 0, resulting in:

(I, - K4 M) v£(X) = 0, (35)

which corresponds to the situation where the objective function
gradient vector is orthogonal to the active constraints.

The second Kuhn - Tucker conditien results from Equation(22),
with p > 0 and with Ea taken to the deterministic limit, X%:

2a-
,aT T =
- K3 v (x) 2 0. (36)
5. Numerical Example
As an example, for a preliminary testing of the algorithm
of section 3.3, the following problem was considered:
Minimize P f(x) = X, (37)

Subject to : hl(i)

1]
b

X1X2 + X3 = 03 h2(§)=x§4-x§/4—1= 0 (38)

This problem has as exact solutions:

X]_:ﬁ/Z, X2=i/? R X3=-1; X1=—-‘/§/2, X2=-!/§, X3 =-1.

Two cases were tested, with different tolerances for the

constraints errors:
case 1: |hilz. 001 , In,{s. 01

case 2: |hy|2. 01, |hyls. 001,



The numerical results obtained are shown in Tables 1 and 2,

respectively. The parameters needed in the implementation of the

algorithm were calibrated as follows:

case 1: vy=1; o =0; q1=1.+406, q2 =qy Ri/R, (see Equation
(29))
case 2: y=1; a=0; q; =1.+04, g2 =q1 Ry/R,
. |
TTERATTON | % %y %, hy h,
0 2.00000 + 00 | 2.00000+ 00| 2.00000+00 | 6.00000+00 | 4.00000 + 0O
1 1.28571+ 00 | 8.57147 - OL | -2.85705- 01 | 8.16334 - 01 | 8.36715 - 01
2 9.39497 - 01| 9.82138 - OL | -9.65990 - 01 | -4.32733 - 02 | 1.23804 - 01
3 8.01137 - 01} 1.25957+ 00| -1.04747+ 00 | -3.83863 ~ 02 | 3.84482 - 02
4 7.26776 - 01 | 1.38785+ 00 | -1.01819 + 00 | -9.54004 - 03 | 9.73368 - 03
5 7.08680 - 01 | 1.41187+ 00 | -1.00100+ 00 | -4.35726 - 04 | 5.71348 - 04
TABLE 1
FIRST CASE
1TERATION X Xy X, hy K,
0 2.00000 - 00 | 2.00000+00 | 2.00000 +00] 6.00000+ 00| 4.00000 + 00
1 1.28570+ 00 | B.571B7 - O1 | -2.85652 -~ 01| B8.16436 - 01 | 8.36725 - 01
2 9.39481 - 01 | 9.82138 - 01 | -9.65993 - 01 | -4.32927 - 02| 1.23773 - 01
3 8.01108 - 01 | 1.25954 +00 | -1.04751 + 00| ~3.84774 - 02 3.83863 - 02
4 7.26734 - 01 | 1.38781+00 | ~1.01821 + 00| -9.64230 - 03| 9.64517 - 03
5 7.08640 - 01 | 1.41181 + 00 | ~1.00100 + 00| =5.36044 - 04 | 4.72445 - 04
6 7.07283- 01 | 1.51387+00 | -1.00011 +00| -1.02879 - 04 { 3.89684 - 06
TABLE 2

SECOND CASE

To adjust the parameters which characterize the dispersion
of n (the values of ﬁ'j in Equation (30)), a criterion to give
equal opportunity of each ?.j contributing to the first order

perturbation was adopted (e.g. [7]). Following this criterion,

the determination of P,.

3 for a given j, resulted from solving



with a least square fitting equations of the type:

R i .
Mij ij = q; (3Ri)/ni, i=1,2,...,m, (39)

where n. is the number of Mij z 0 for a given value of the index i.
The analysis of the results shows a satisfactory performance
of the method for the problem tested. Convergence is reached with
a very reduced number of iterations. The criterion to check
convergence {Equation (24)) worked well in both cases. Other
numerical tests done have showed that there are occasions when this
criterion may be too restrictive. In all tests done it was found
that the parameters q; are important to the performance of the
algorithm, specially in terms of number of iterations necessary;
however 1t was verified that there is no excess of sensitivity to

their variation and that it is not difficult to adjust them to
obtain a good solution,

6. CONCLUSIONS

A stochastic version of the projection of the gradient method

was proposed. The stochastic approach led to a method which allows
the direct treatment of constraints errors along the numerical
solution. In this sense, the proposed method is certainly more
general than any existing projection of the gradient deterministic
version. However, as any numerical method, it is also problem
dependent, and being a more general method is not sufficient to
guarantee always a better performance. Its stochastic characteristic
adds complexity to the associated numerical algorithm and thus a
careful judgment of necessity has to be made to evaluate the
convenience of adopting the method for a given problem,

The algorithm suggested in Section 3.3 is a direct
consequence of the search strategy adopted in Section 3.2. It
should be considered a result still under analysis and testing.
Other strategies may be found which result more well-suited to the
method, leading to other alternatives in terms of the numerical
algorithm.

The numerical application presented in Section 5 was done
with the purpose of a preliminary numerical testing to assess the
general functioning characteristics of the method and to
illustrate how the direct treatment of the errors in the



constraints affects the final solution.

Aside from the need of investigating alternative algorithms,

there are many other aspects of the stochastic method which should

be

better investigated. Among these are included those relative to

the calibration of the parameter p and of the dispersion of n, in
Equation (10). Future investigations shall take advantage of the
vast and well-succeeded experience with the deterministic

projection of the gradient, This shall be combined with an effort

to

explore the possibility of using results already available in

linear estimation theory, specially in adaptive state estimation.
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