
Does It Make Sense to Have Application-Specific Code
Conventions as a Complementary Approach to Code

Annotations?
Rodrigo Teixeira

National Institute for Space Research
(INPE)

São José dos Campos, São Paulo
Brazil

contato@rodrigomalk.com.br

Eduardo Guerra
National Institute for Space Research

(INPE)
São José dos Campos, São Paulo

Brazil
eduardo.guerra@inpe.br

Phyllipe Lima
National Institute for Space Research -

INPE
São José dos Campos, São Paulo

Brazil
phyllipe_slf@yahoo.com.br

Paulo Meirelles
Department of Health Informatics
Federal University of São Paulo

(UNIFESP)
São Paulo, São Paulo, Brazil
paulo.meirelles@unifesp.br

Fabio Kon
Department of Computer Science
University of São Paulo (USP)
São Paulo, São Paulo, Brazil

fabio.kon@ime.usp.br

Abstract
Code annotations are extensively used by Java developers,
especially in enterprise frameworks and APIs such as Spring
and Java EE. Different code elements that frequently share
some similarities, sometimes, repeat the annotations. The
goal of this paper is to evaluate whether a real-world system
could use code conventions as a means to avoid replicating
code annotations. We report on a study on the software used
for the EMBRACE Space Weather program at INPE to search
for similarities.

CCS Concepts • Software and its engineering → Ap-
plication specific development environments;

Keywords metadata, code annotation, code convention

ACM Reference Format:
Rodrigo Teixeira, Eduardo Guerra, Phyllipe Lima, Paulo Meirelles,
and Fabio Kon. 2018. Does It Make Sense to Have Application-
Specific Code Conventions as a Complementary Approach to Code
Annotations?. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Meta-Programming Techniques and Reflection (META
’18), November 5, 2018, Boston, MA, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3281074.3281078

ACM acknowledges that this contribution was authored or co-authored
by an employee, contractor or affiliate of a national government. As such,
the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes
only.
META ’18, November 5, 2018, Boston, MA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6068-5/18/11. . . $15.00
https://doi.org/10.1145/3281074.3281078

1 Introduction
A framework is an “incomplete application” that provides
functionality and extension points that developers use to cre-
ate their applications with reduced effort. Some frameworks
offer these features in the form of metadata configuration,
known as metadata-based frameworks [4]. In the Java lan-
guage, code annotations provide these features. Since the
introduction of annotations in Java version 5, they have
been extensively used in enterprise frameworks and APIs
to configure custom metadata [7]. For instance, the JAXB
API [8] uses annotations to map Java Beans to XML doc-
uments, and the JPA API [9] uses annotations to perform
an object-relational mapping. In a previous study [10], our
group showed that out of 25 real-world projects, the one
with the least amount of annotations had 10% of the classes
annotated and the project with higher annotation usage had
68%. On average, all projects contained 50% of their classes
with at least one annotation.

Frameworks based on metadata usually provide an an-
notation schema, which is a group of related annotations
that belongs to their APIs and represent the set of metadata
necessary for their usage. Each framework consumes these
annotations and executes routines accordingly. If different
locations in the application code require the same meta-
data configuration, the current approach is to repeat the
annotations on these code elements. These repetitions cause
several annotation duplications throughout the code, which
can harm code maintenance and readability. For instance,
we found a class with more than 700 annotations in its meth-
ods [10], most of them repeated. This clearly contradicts
the well-established idea in software development of avoid-
ing code repetitions, popularized with the DRY acronym,
meaning “Don’t Repeat Yourself”. An approach to reduce the

15

https://doi.org/10.1145/3281074.3281078
https://doi.org/10.1145/3281074.3281078

META ’18, November 5, 2018, Boston, MA, USA R. Teixeira, E. Guerra, P. Lima, P. Meirelles, F.Kon

number of annotations can be to identify common charac-
teristics in code elements that receive a single configuration
and adopt some code conventions to represent them.
Code conventions are a set of recommendations, usually

for a specific programming language, to aid developers in
programming style and good practices during the coding pro-
cess [1]. Conventions cover a wide range of aspects of coding,
such as naming, indentation, comments, declarations, and
overall structure. A team of developers may also have their
code conventions that best suit their needs. Following these
recommendations improve software maintenance, readabil-
ity, and evolution. For instance, the Java Beans standard
defines getters and setters naming convention for methods
that read and write class attributes, respectively.
A code convention can also be used by metadata-based

frameworks to represent a configuration [1]. These frame-
works are based on the “convention over configuration” de-
sign paradigm, which states that if developers follow the
conventions, they need less specific configurations through-
out the code. For instance, JUnit 3 uses the convention that
methods with the prefix “test” represented test methods. The
usage of conventions can potentially reduce the number of
annotations, especially repetitive ones. For instance, the JPA
API uses several code conventions, such as using the name
of the class and the fields, respectively for the names of ta-
bles and columns as a default. However, several frameworks
avoid the adoption of code conventions because they might
not be suitable for all applications that instantiate it.

This paper defines as a “framework convention” the code
conventions defined by the framework that applies to all
applications that instantiate it. Additionally, we also define
a new concept called “application-specific convention” that
is a convention defined by an application to define metadata
for a framework that it uses. A framework might provide
an extension point to enable the implementation of this ap-
proach that allows the definition of new conventions by the
application. For frameworks without this kind of support,
an application-specific convention might be implemented by
manipulating the classes bytecode at compile or load time
to introduce the corresponding annotations. However, to
the best of our knowledge, we do not know any concrete
implementation of this technique.

The focus of this paper is not on the implementation of the
support for application-specific conventions, but instead on
verifyingwhether these conventions do exist naturally in real
software. In the study presented in this paper we focus on
identifying conventions that appear on specific applications.
If they were explicit and appeared in every application using
a given framework, then it might indicate that the framework
itself should implement these conventions as a means to
configure metadata.
This paper presents a study that involved a set of Java

applications from the Brazilian EMBRACE Space Weather
program to investigate if a convention could define similar

annotation configurations based on their respective code
elements. We searched all annotations used throughout the
code to verify how many of them a convention could define.
After retrieving information from all annotations, we veri-
fied if annotations of the same type are used in code elements
that share similarities. The goal is to search for patterns in
annotated code and evaluate if application-specific code con-
ventions are a valid complementary approach for metadata
configuration.

2 Metadata Configuration
In the context of object-oriented programming, metadata is
data about code elements, such as classes, methods, and at-
tributes. For instance, a method’s metadata is composed of its
name, signature, parameters, and return type. Software appli-
cations such as tools and frameworks can consume metadata
to execute routines based on code elements structure. It can
be used for source code generation [2], compile-time ver-
ification [3, 12], class transformation [11], and framework
adaptation [4]. However, it may be necessary to configure
additional custom metadata to inform how code elements
structure a software that consumes metadata should inter-
pret.

2.1 Code Conventions
Some frameworks, such as Ruby on Rails [13] and CakePHP,
use code conventions to define custom metadata [1]. These
are specific guidelines that developers use when creating a
code such as naming pattern, return type, implementation
of an interface, and so forth. Some frameworks or tools are
capable of identifying these conventions and execute specific
behavior.

For instance, when using CakePHP, a controller class must
use camel case and end with the word Controller. The
framework recognizes, using this convention, the class as a
controller class without the need of additional configurations.
This technique can be very productive in some contexts.
However, it has limited expressiveness and cannot be used to
define more complex metadata. In the Java language, the Java
Beans standard defined getters and setters naming convention
for methods that read and write class attributes, respectively.

Although this choice can be very productive in some con-
texts, code conventions have limited expressiveness and can-
not be used to define more complex metadata. For instance,
a code convention could be used to define a method as a test
method as in JUnit 3. However, it could not be used to define
a valid range of a numeric property as in Bean Validation API.
Another drawback is that the metadata are actually implicit
in the source code, hidden behind the conventions. As such,
an unwary developer might alter a method’s name without
knowing that this actually is part of a convention, as well as,
some frameworks rely on this to execute a specific behavior.

16

Does It Make Sense to Have Application-Specific Code... META ’18, November 5, 2018, Boston, MA, USA

2.2 Code Annotations
The Java programming language allows custom metadata to
be configured directly on the source code, through the use
of code annotations [6]. This feature became available when
the Java version 5 was released and has since been used ex-
tensively by developers. It is also possible to define custom
metadata via external files, such as XML. However, using an-
notations has the advantage of not having to provide a path
to the code element, since the metadata is configured directly
on it. Some authors call this technique as attribute-oriented
programming [15], which is defined as a programming tech-
nique used to mark software elements with annotations to
indicate application-specific or domain-specific semantics
[16].

1 import javax.persistence.Entity;

2 import javax.persistence.Id;

3
4 @Entity

5 public class Table {

6 @Id

7 private Long id;

8 ...

9 //getters and setters omitted

10 }

Figure 1. Example of the usage of Code Annotation

Figure 1 contains an example of a code annotation: The
Table class is annotated with @Entity. The JPA API will
consume this annotation and will consider that this class
must be mapped into a table in the database, named “Table”.
Also the id member is annotated with @Id. Again, the JPA
API will consume this and map this member into a column
marked as primary key.

We cannot say which of these two approaches is the best
overall solution for custom metadata configuration. One
needs to analyze the trade-off between them. Using annota-
tions allows more complex metadata to be configured, since
through the Java Reflection API they can be easily recov-
ered at runtime. On the other hand, using code conventions
requires the framework to implement algorithms capable
of reading these conventions, thus limiting the amount of
metadata that can be configured.

Using code conventions frees the developers to manually
configuring the metadata as it is implicitly configured amid
the code. This also can be a problem, since failing to use the
convention will not cause any compile-time errors but will
break the code as the framework will not be able to correctly
read the metadata.

2.3 Application Specific Code Conventions
Consider that all classes in packages ended with *.domain
should have the same annotation @Entity. A definition of
an application-specific convention could avoid several an-
notation configurations, as shown in Figure 2. Since this
convention relies on the package name, it cannot be gen-
eralized by the framework, because it does not apply to all
applications.

1 package com.myapp.module.domain;

2
3 import javax.persistence.Entity;

4 import javax.persistence.Id;

5
6 //does not need to configure @Entity

7 //this class is covered by the convention

8 public class Table {

9 @Id

10 private Long id;

11 ...

12 //getters and setters omitted

13 }

Figure 2. Example of an Application-Specific
Code Annotation

As another example, consider an application using the
Bean Validation API [5] that has several fields for defining
percentage values that should be between 0 and 100. The an-
notation @Range(min=0,max=100) must be used explicitly
on each of these fields. Since they share some similarities,
such as being of type Integer and having the Percentage suf-
fix, a code convention could be used to avoid repeating this
configuration in this application. However, if the convention
does not match, it is always possible to use the annotation
as before. Figure 3 presents an example of this scenario.

1 public class Candidate {

2
3 //validation configured based on convention

4 //no need to add an annotation

5 private Integer votesPercentage;

6
7 //since the convention does not match

8 //the metadata should be explicitly defined

9 @Range(min=0,max=100)

10 private Long rejectionRate;

11 }

Figure 3. Application-Specific Code Annotation for
Validation Metadata

17

META ’18, November 5, 2018, Boston, MA, USA R. Teixeira, E. Guerra, P. Lima, P. Meirelles, F.Kon

3 Target Application
To perform our analysis, we used the web applications source
code developed for EMBRACE (Brazilian Studies and Moni-
toring of Space Weather), a program maintained by Brazil’s
National Institute for Space Research since 2008. Its goal is
to become an information and forecasting center for space
weather. With specialized sensors and instruments, EM-
BRACE performs real-time monitoring and generates data
publicly available on its website. Most of the information is
available in a graphical format that can also be downloaded.

Developed using the Java language, EMBRACE has to cope
with a vast amount of data received, process it, and make it
available. It is composed of several products that follow the
same reference architecture [14] based on Java Enterprise
APIs. The source code is divided into 94 components archived
in independent deployment units.

We used the EMBRACE program software as a case study
since we were investigating application-specific code con-
ventions used by our internal development team, which is
related to the software architecture as well as the team guide-
line. Using multiple applications for this study would span
several application-specific code convention, thus making
diverting from any concrete conclusion at this stage of the
research.

4 Annotation Analysis
This section presents the study performed in the EMBRACE
source code to search for patterns in annotation config-
uration that could be replaced by an application-specific
code convention. We do not aim to judge if a convention
found should be generalized by the framework or should be
application-specific, and we considered any pattern found
as a potential convention.

4.1 Research Question
We argue that developing Java software using code conven-
tions specific for applications could reduce the number of
annotations repeated throughout the source code. In other
words, we might find useful to use a hybrid approach to con-
figure metadata. We can manually insert annotations where
complex metadata configuration is required, and in other
parts of the code we use conventions. We also consider this
convention to be specific to the application since it might not
be possible for a metadata-based framework to generalize
such conventions for all applications. To guide this study,
we propose the following research question:

RQ: Does It Make Sense to have Application-specific
Code Conventions as a Complementary Approach to
Code Annotations?

To answer this question, we looked into the source code
of a set of Java applications from the EMBRACE project,
searching for annotations. We then related the information

of the code elements that shared similar annotation config-
uration looking for similarities. Guided by the results, we
performed a qualitative analysis trying to find possible code
conventions that raised naturally in the applications. For this
analysis, we also took into consideration the context and
meaning of the annotation type in its API.

4.2 Methodology
This section describes the steps performed to answer the
research questions.

Step 1 - Obtaining the dataset
We obtained and accessed to the EMBRACE program
Java source code.

Step 2 - Extracting code elements metadata
With the source code available for analysis, we devel-
oped a tool, named Annotation Localizer (ALocalizer)1,
which extracts each code element and reports all of
its metadata. For instance, for a field code element,
the tool reports its name, access modifier, type, class
and package it belongs to, as well as every annotation
along with its attributes.

Step 3 - Creating a database
With the report available from the ALocalizer, the next
step was to create a database to organize the collected
annotation data.

Step 4 - Executing and analyzing queries
We used the database to execute queries that relate
and group annotations based on their code elements
information. For classes, we considered its interfaces,
packages, and superclasses; for methods, we consid-
ered its return type and name; for fields, we considered
its type and name.

Step 5 - Identifying potential code convention usage
We performed a qualitative analysis in the query re-
sults considering the annotation type context and
meaning inside its API. We searched for scenarios
where a code convention could be used to replace a
group of annotations.

4.3 Data Extraction
EMBRACE software spans across several web applications,
which in turn make up a total of 94 components. Since this
is proprietary software, the source code cannot be made
publicly available. Table 1 contains additional information
about the analyzed source code.

Table 1. Analyzed Source Code Information

Number of Classes 1314
Number of Annotated Classes 837
Total Number of Annotations 5206
Number of Unparsed Classes 5

1http://github.com/phillima/alocalizer

18

http://github.com/phillima/alocalizer

Does It Make Sense to Have Application-Specific Code... META ’18, November 5, 2018, Boston, MA, USA

To collect annotation information from the source code,
we developed an open source tool named Annotation Lo-
calizer (ALocalizer). It scans Java projects and outputs an
XML file with metadata of code elements in the source code.
For instance, for a method code element, the report gives
its name, class it belongs to, package, signature, return type,
annotations present, and their attributes. We executed the
ALocalizer for all 94 components, and the outputted XML
files were persisted in a database.

4.4 Data Analysis
We analyzed the source code of 94 software components
and organized the dataset in a MySQL database. The study
took into consideration the similarities on code elements
that shared the same annotation type.

There were 91 annotation types, and several code elements
use most of them throughout the projects. Table 2 presents
the annotation types that have the most number of occur-
rences. Despite some annotations from the Java core API,
such as @Override and @SupressWarnings, one can find
annotations from Java Persistence API (JPA), Enterprise Java
Beans (EJB), and Java Server Faces (JSF).
The chart in Figure 4 presents the number of annotation

occurrences that have values below 150 occurrences. We
organized this information in decreasing order from left to
right. It is possible to see that a considerable number of
annotation types occur more than 40 times in the analyzed
projects.

After capturing this data, we performed queries that com-
bine the annotation types with other element characteristics
to identify potential code conventions. The results of such
queries were submitted to a qualitative analysis that also
considered the annotation type context. For instance, the
annotation @Column is the second in the number of oc-
currences, but it receives attributes that make it hard to be
generalized in a convention2.

After the qualitative analysis, the following characteristics
end up being more relevant for the code conventions: imple-
mented interfaces, naming patterns, package names, return
types, and field types. Table 3 describes some of the code con-
ventions we identified. For that, it presents the annotation
itself, the element type, and the number of occurrences (#).
Based on our analysis, we found a total of 908 annotations
(21.42% of the total) that could be replaced by 17 conventions.
In some cases, we found that the same annotation could be
replaced by multiple code conventions, or by a stronger con-
vention that englobed them all.

5 Discussion
With this analysis, we concluded that it is valid to comple-
ment annotations with application-specific code conventions

2The relation between attribute values and the code elements names were
not considered.

as a strategy for metadata configuration. As shown, a signifi-
cant amount of code elements that share the same annotation
type often are added in the same package, implement the
same interface, or have naming similarities. Hence, a hybrid
approach with annotations and code-conventions might be
used to reduce the burden of the development team of man-
ually writing code annotations. This approach is presented
not as the solution but as an evidence of the existence of
application-specific code convention for metadata configu-
ration.
It is important to highlight that these conventions were

naturally present in the source code due to team practices,
thus reinforcing that these are application-specific code con-
ventions, and might not apply to other applications or even
other development teams. If there were previously defined
code conventions, the number could be even higher.
We did not evaluate whether these conventions should

belong to the application or generalized directly into the
framework. Generally, conventions related to packages and
application types are more suitable as application-specific
conventions. However, based on standard conventions used
by applications, the framework development team might
consider adding such convention as a framework convention.

6 Threats to Validity
The tool used to fetch annotations, ALocalizer, had no other
equivalent found to perform a comparison. As such, we
checked its accuracy manually. We performed this evalu-
ation through a manual comparative analysis, taking into
consideration the code annotation and the similarities be-
tween them and their target code elements.
The analysis focused on the applications from the EM-

BRACE program only. Further studies using other projects
from other environments should be performed to confirm
the generalization of our findings. n

7 Conclusion
This study aimed at identifying patterns in annotated code
and evaluating whether it would be a valid approach to use
application-specific code conventions as a complementary
alternative to code annotations. In other words, the code
style adopted in the context of a software project could also
be used for metadata configuration. To the best of our knowl-
edge, no work proposing application-specific conventions
exists in the literature; therefore this research introduces
a novel idea and can be further explored by the software
engineering community.
Our analysis showed the existence of specific patterns

between annotations and their target code elements. For
instance, it is common to keep similarly annotated methods
and classes in the same package. Classes implementing the
same interface often contain the same annotations, as well

19

META ’18, November 5, 2018, Boston, MA, USA R. Teixeira, E. Guerra, P. Lima, P. Meirelles, F.Kon

Table 2. Top 15 Annotation Types with Most Occurrences

Annotation Annotation schema Number of occurrences
@Override JVM 1575
@Column JPA 633
@Basic JPA 348
@SupressWarnings JVM 227
@Remote EJB 139
@Entity JPA 101
@Table JPA 101
@NamedQueries JPA 100
@Id JPA 99
@ManagedBean EJB 99
@Stateless EJB 99
@JoinColunm JPA 97
@NotNull JVM 97
@PersistenceContext JPA 94

Figure 4. Number of Occurrences per Annotation Type

as inherited class members tend to use the same annotations
among child classes.

With these results, we answer our research question, show-
ing that it does make sense to use code conventions for meta-
data configuration, reducing the manual insertion of code

annotations significantly. Additionally, the usage of conven-
tions has the potential of reducing bugs derived from missed
annotations, which might be hard to debug, and provides
more structure to the code. As a result, this requires writ-
ing less source code, keeping it more readable, cleaner, and
maintainable.

20

Does It Make Sense to Have Application-Specific Code... META ’18, November 5, 2018, Boston, MA, USA

Table 3. Possible code conventions found

Annotation Type # Convention
@Id Field 96 Fields where the name is "id"
@GeneratedValue Field 93 Fields where the name is "id"
@PersistenceContext Field 89 Fields where the name is "em"
@Temporal Field 25 Fields where the name contains "*.date.*"
@MessageDriven Class 7 Classes with the interface MessageListener
@GET Method 43 Methods with the return type "Response"
@Produces Method 37 Methods with the return type "Response"
@Type Field 48 Fields type "DateTime"
@Temporal Field 31 Fields type "Date"
@Lob Field 27 Fields type "byte[]"
@EJB Field 44 Fields type that the name has the "FacadeLocal" suffix
@Entity Class 101 Classes in packages that the path matches "*.data"
@NamedQuerries Class 100 Classes in packages that the path matches "*.data"

@SessionScoped Class 90 Classes in packages that the path matches "*.viewer.*" and where the
name contains "*.Controller.*"

@ManagedBean Class 92 Classes in packages that the path matches "*.viewer.*" and where the
name contains "*.Controller.*"

@Remote Class 96
Classes with an interface that the name has the "Remote" suffix and in a
package which the path matches "*.facade" and where the name contains
"*.Facade.*"

@Stateless Class 96
Classes with an interface that the name has the "Remote" suffix and in a
package which the path matches "*.facade" and where the name contains
"*.Facade.*"

Finally, as future work, we intend to implement tools
and frameworks that allow the introduction of application-
specific code conventions. As an alternative for existing
frameworks and APIs, it is possible to create a tool that
processes the source code introducing the annotations at
compile or load time. Following this approach, the bytecode
would be searched for code elements that match the con-
vention introducing the respective annotation there before
being loaded by the application.

Another possible approach for new frameworks is to cre-
ate an API for consuming code annotations that provide
extension points to introduce new code convention defini-
tions. When the framework searches for an annotation, it
would also verify if there is an object configured by the ap-
plication to verify if the code convention exists. When this
object is present, it can verify if the target element matches
the convention and return a metadata that is equivalent to
the annotation configuration. With this alternative, the an-
notation itself does not need to be introduced in the element
and it is an extensible metadata reading mechanism that
identifies and interprets the convention.

References
[1] N. Chen. 2006. Convention over configuration. http://

softwareengineering.vazexqi.com/files/pattern.html

[2] Ivo Damyanov and Nick Holmes. 2004. Metadata Driven Code Gener-
ation Using .NET Framework. In Proceedings of the 5th international
conference on Computer systems and technologies. ACM, 1–6.

[3] Michael D Ernst. 2008. Type annotations specification (JSR 308).
[4] EduardoM. Guerra, Jerffeson T. de Souza, and Clovis T. Fernandes. 2010.

A Pattern Language for Metadata-based Frameworks. In Proceedings
of the 16th Conference on Pattern Languages of Programs (PLoP ’09).
ACM, New York, NY, USA, Article 3, 29 pages. https://doi.org/10.1145/
1943226.1943230

[5] Red Hat. 2009. JSR 303: Bean Validation. http://beanvalidation.org/1.
0/spec/

[6] JSR. 2004. JSR 175: A Metadata Facility for the Java Programming
Language. http://www.jcp.org/en/jsr/detail?id=175

[7] JSR. 2007. JSR 220: Enterprise JavaBeans 3.0. http://jcp.org/en/jsr/
detail?id=220

[8] JSR. 2017. JSR 222: Java Architecture for XML Binding (JAXB) 2.0.
https://jcp.org/en/jsr/detail?id=222

[9] JSR. 2017. JSR 338: Java Persistence 2.2. https://jcp.org/en/jsr/detail?
id=338

[10] Phyllipe Lima, Eduardo Guerra, Paulo Meirelles, Lucas Kanashiro,
Hélio Silva, and Fábio Silveira. 2018. A Metrics Suite for code annota-
tion assessment. Journal of Systems and Software 137 (2018), 163 – 183.
https://doi.org/10.1016/j.jss.2017.11.024

[11] Project Lombok. 2016. http://projectlombok.org/.
[12] Jaime Quinonez, Matthew Tschantz, and Michael Ernst. 2008. In-

ference of reference immutability. ECOOP 2008–Object-Oriented
Programming (2008), 616–641. http://www.springerlink.com/index/
6M5U5M330T81763T.pdf

[13] Sam Ruby, Dave Thomas, and David Hansson. 2009. Agile Web Devel-
opment with Rails, Third Edition (3rd ed.). Pragmatic Bookshelf.

21

http://softwareengineering.vazexqi.com/files/pattern.html
http://softwareengineering.vazexqi.com/files/pattern.html
https://doi.org/10.1145/1943226.1943230
https://doi.org/10.1145/1943226.1943230
http://beanvalidation.org/1.0/spec/
http://beanvalidation.org/1.0/spec/
http://www.jcp.org/en/jsr/detail?id=175
http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=220
https://jcp.org/en/jsr/detail?id=222
https://jcp.org/en/jsr/detail?id=338
https://jcp.org/en/jsr/detail?id=338
https://doi.org/10.1016/j.jss.2017.11.024
http://www.springerlink.com/index/6M5U5M330T81763T.pdf
http://www.springerlink.com/index/6M5U5M330T81763T.pdf

META ’18, November 5, 2018, Boston, MA, USA R. Teixeira, E. Guerra, P. Lima, P. Meirelles, F.Kon

[14] Nilson SantÁnna, Eduardo Guerra, André Ivo, Fernando Pereira, Mar-
cos Moraes, Vitor Gomes, and Luiz Gustavo Veras. 2014. Modelo Ar-
quitetural para Coleta, Processamento e Visualização de Informações
de Clima Espacial. Simpósio Brasileiro de Sistemas de Informação (2014),
125 – 136. http://www.lbd.dcc.ufmg.br/colecoes/sbsi/2014/0010.pdf

[15] Don Schwarz. 2004. Peeking Inside the Box: Attribute-Oriented Pro-
gramming with Java 1.5, Part. http://archive.oreilly.com/pub/a/onjava/

2004/06/30/insidebox1.html
[16] Hiroshi Wada and Junichi Suzuki. 2005. Modeling turnpike frontend

system: A model-driven development framework leveraging UML
metamodeling and attribute-oriented programming. Model Driven
Engineering Languages and Systems (2005), 584–600. http://www.
springerlink.com/index/l166363337837142.pdf

22

http://www.lbd.dcc.ufmg.br/colecoes/sbsi/2014/0010.pdf
http://archive.oreilly.com/pub/a/onjava/2004/06/30/insidebox1.html
http://archive.oreilly.com/pub/a/onjava/2004/06/30/insidebox1.html
http://www.springerlink.com/index/l166363337837142.pdf
http://www.springerlink.com/index/l166363337837142.pdf

	Abstract
	1 Introduction
	2 Metadata Configuration
	2.1 Code Conventions
	2.2 Code Annotations
	2.3 Application Specific Code Conventions

	3 Target Application
	4 Annotation Analysis
	4.1 Research Question
	4.2 Methodology
	4.3 Data Extraction
	4.4 Data Analysis

	5 Discussion
	6 Threats to Validity
	7 Conclusion
	References

