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Extended gravitoelectromagnetism. III. Mercury’s perihelion precession

G.O. Ludwig
National Institute for Space Research, 12227-010 São José dos Campos, SP, Brazil,

National Commission for Nuclear Energy, 22294-900 Rio de Janeiro, RJ, Brazil

(Dated: March, 2018 – June, 2020)

The motion of a test particle in planetary orbit around a central massive body is analyzed ac-
cording to a novel, extended formulation of gravitoelectromagnetism. In particular, this extended
form is used to calculate the correct anomalous precession of the perihelion of Mercury in Solar
orbit as predicted by general relativity. The perihelion shift results from a balance between the
gravitoelectric and gravitomagnetic forces.

I. INTRODUCTION

The perihelion precession of Mercury’s orbit is one of the classical tests of relativity proposed by Einstein. The
small observed deviation from the precession predicted by Newtonian theory, taking into account the interaction
between the Sun and all the planets in the solar system, can be explained only introducing the relativistic corrections
of general relativity [1–4].

In another aspect of the problem, the analogy between gravity and electromagnetism led to the development of
gravitoelectromagnetism (GEM), motivated in great part by the calculations performed by Thirring and Lense of
the gravitomagnetic (GM) effects produced by mass currents either in rotating spherical shells or rotating spherical
bodies [5–7]. These calculations were performed according to the weak formulation of general relativity, but for given
mass current profiles and neglecting terms of quadratic and higher orders in the test particle velocity components,
that is, including only terms which are linear in the velocity v. As pointed out by Lense and Thirring [6], this first
approximation to Einstein’s theory excludes the perihelion perturbation which is obtained in the second approximation
including terms quadratic in the velocity. The perturbations of the planetary motion considered by Lense and Thirring
are due only to the rotation of the central body, without completely taking into account the relativistic motion of the
test particle in the central field. If the central body is at rest, the relativistic correction to the perihelion precession
is due to terms of order β2 = (v/c)

2
in the planetary velocity v. In this case one must consider that, besides the

relativistic corrections to the Newtonian motion, there is a gravitomagnetic contribution due to the mass current
of the orbiting test particle, which is of the same order β2 and must also be taken into account to give the correct
result of general relativity, as will be shown in the present article. The Lense-Thirring effect corresponds to spin-orbit
coupling while the correction to the precession of the perihelion must take into account the full orbit-orbit coupling
effects. As also pointed out in the original work [6] it turns out that the Lense-Thirring effect in the solar system is
much smaller than the full relativistic orbit-orbit correction.

Unfortunately, the traditional formulation of gravitoelectromagnetism as reviewed by Mashoon [8] and the gravit-
omagnetic effects described, for example, in the textbook by Moore [9] are based on the non relativistic Newtonian
potential and on the first order gravitomagnetic Lorentz force, which depends linearly on the test particle velocity. As
commented in the previous paragraph, this formulation fails to give the correct result for the full perihelion precession.
The precession produced by the gravitomagnetic field due only to the rotation of a central body is very small and
has the opposite sense with respect to the observed value. In fact, the Lense-Thirring effect due to the inner planet
rotation was until recently too small to be measurable according to the review of Iorio et al. [10], but the final results
of the Gravity Probe B experiment [11] confirmed the effect due to Earth’s rotation at an accuracy of 19%. Despite
this positive result of gravitomagnetic effects, it is clear that the correct calculation of the perihelion precession taking
into account the full relativistic effects needs a revised formulation of gravitoelectromagnetism. This was recently
accomplished by the extended gravitoelectromagnetic or hydrogravitoelectromagnetic theory reported in the first and
second parts of a three parts work [12, 13]. The geodesic equation obtained through this theory is used in the present
article to calculate the relativistic precession shift of Mercury.

The article is organized as follows. Section II introduces the geodesic equation of motion according to the extended
gravitoelectromagnetic theory [13]. The gravitoelectromagnetic fields associated with the motion of an orbiting test
particle are determined. Then, in Section III the equation for stable planetary motion is solved, showing how the
balance between the gravitoelectric and gravitomagnetic fields defines the correct perihelion shift. The rate of change
of the angular momentum is analyzed in Section IV, and Section V gives the final comments and conclusions.
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II. GEODESIC EQUATION OF MOTION

Consider the planetary orbit of a mass m in the gravitational field φg produced by a central body of mass M .
The central body M is assumed non rotating but the mass current density jm due to the motion of the mass m
produces a gravitomagnetic vector potential Ag. The absence of intrinsic rotation (spin) excludes the Lense-Thirring
effect. In the quasi-static regime (low frequency regime) there is no production of gravitational waves since the
gravitoelectromagnetic force that drives the waves is negligible, that is, ∂Ag/∂t ∼= 0 [13]. Actually, the gravitational
waves are not excited because the retarded time effects are simply ignored. A simplified calculation of gravitational
radiation by orbiting binaries, without general relativity, can be found in a recent publication [14].

According to the extended gravitoelectromagnetic formulation, the geodesic equation for a test mass in the vacuum
region with negligible emission or absorption of gravitational waves is [13]

dv

dt
= −

(
1 +

v2

c2

)
∇φg + 4

v

c
· (∇φg)

v

c
+ 2v × (∇×Ag)− 2v

v

c
· (∇Ag) ·

v

c
. (1)

Now, in the quasi-static regime

∂φg/∂t ∼= 0 and ∂Ag/∂t ∼= 0, (2)

the scalar and vector potentials are given by the laws of Coulomb and Biot-Savart, respectively [12],

φg (r, t) = −G
∫
ρm (r′, t)

|r − r′|
d3r′,

Ag (r, t) = −G
c2

∫
jm (r′, t)

|r − r′|
d3r′,

(3)

where G is the gravitational constant, ρm designates the mass density, and jm = ρmvm the mass current density of a
generic body of rest mass m. Since the generation of gravitational waves is neglected, φg and Ag are given in terms
of the instantaneous mass density ρm and mass current density jm, disregarding time-lag effects. For a point mass,
ρm and jm can be taken as delta functions

ρm (r, t) = mγmδ
3 (r − rm (t)) ,

jm (r, t) = mγmvmδ
3 (r − rm (t)) ,

(4)

where γm = 1/
√

1− v2m/c2 is the Lorentz factor and vm = drm/dt. Performing the volume integrations the potentials
produced by the point mass are

φg,m (r, t) = −Gm γm
|r − rm (t)|

,

Ag,m (r, t) = −Gm
c2

γmvm
|r − rm (t)|

.
(5)

Thus the induction gravitoelectromagnetic fields produced by a moving point mass m are

Eg,m = −∇φg,m = −Gmγm

(
r − rm (t)

|r − rm (t)|3

)
,

Bg,m = ∇×Ag,m =
Gm

c2
γmvm ×∇

(
1

|r − rm (t)|

)
= −Gm

c2
γmvm ×

(
r − rm (t)

|r − rm (t)|3

)
=
vm ×Eg,m

c2
,

(6)

where the vector position r − rm (t) is directed from the point mass to the point where the fields are evaluated. For
a point mass m passing near the body M the fields produced at the center of M are evaluated taking r = 0 (rm
becomes the outward pointing radial distance). Thus

Eg,m =
Gmγm

|rm|3
rm,

Bg,m = −Eg,m × vm
c2

= − Gmγm

c2 |rm|3
rm × vm.

(7)
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Note that this is the gravitoelectromagnetic field produced by m at the position of M without taking into account
the gravitational pull of M . The central body M , which is assumed at rest, produces on its turn a gravitoelectric
field at the position of m which is given by

Eg,M = − GM

|rm|3
rm. (8)

Since the point mass m in orbital motion experiences an outward acceleration a = −Eg,M there is a Thomas precession
[15]

ωT =
γ2m

γm + 1

a× vm
c2

=
γ2m

γm + 1

GM

c2 |rm|3
rm × vm. (9)

This corresponds to the gravitomagnetic field produced by M at the position of m

Bg,M = fT
GM

c2 |rm|3
rm × vm. (10)

Here the factor fT = γ2m/ (γm + 1) ∼ 1/2 is the kinematic Thomas factor (“Thomas half” for non relativistic velocities)
arising from both a velocity change produced by the gravitational field and a rotation of the coordinates. This
precession modifies the gravitomagnetic field produced by m on the center of M

Bg,m = −fT
Gmγm

c2 |rm|3
rm × vm = −fT

G

c2 |rm|3
Lm

(GM field produced at central point r = 0 by the orbiting mass m),
(11)

where Lm = mγmrm × vm is the angular momentum of m. Replacing mγm by M and rm by −rm the same formula
above gives the field produced by the central mass M at the frame of reference of the orbiting mass m (the orbiting
velocity is the same)

Bg,M = fT
GM

c2 |rm|3
rm × vm = −fT

G

c2 |rm|3
LM

(GM field produced at orbit point rm by the central mass M).
(12)

Consider the induction gravitoelectromagnetic fields produced by the central mass M on the mass m orbiting with
a velocity v in the simplified notation (r̂ is the unit vector pointing outwards from the center of M)

Eg = −∇φg = −GM r̂

r2
,

Bg =
fT
c2
v ×Eg = −fT

GM

c2
v × r̂

r2
= fT

G

c2r3
M

mγ
L,

(13)

where L = mγr × v. The corresponding gravitoelectromagnetic potentials are

φg = −GM
r
,

Ag = fTφg
v

c2
= −fT

GM

c2r
v.

(14)

Defining the four-momentum muµ = mγ (−c,v) and the four-vector potential Aµ = (φg/c,Ag), the interaction energy
between the planetary mass m and the central mass M is given by

muµA
µ = −mγφg +mγv ·Ag =

GMmγ

r

(
1− fTβ2

)
= (2− γ)

GMmγ

r
. (15)

The term mγv · Ag corresponds to the direct gravitomagnetic interaction between m and M , given by the scalar
product of the mass current of m with the vector potential produced by M (orbit-orbit interaction). The spin-orbit
interaction due to intrinsic rotation of any of the two masses has been neglected. Accordingly, the Lense-Thirring effect
is ignored. Moreover, possible spin-spin interactions have been also ignored. Note that the total gravitoelectromagnetic
interaction energy changes sign for γ > 2 (actually this can not occur, as will be shown later). Note also that the
gravitomagnetic force is given by

v ×Bg = −fT
GM

r2
v2

c2
v̂ × (v̂ × r̂) = fT

GM

r2
v2

c2
[r̂ − (r̂ · v̂) v̂] , (16)
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which shows that the gravitomagnetic field opposes the gravitational attraction and has a braking effect on the
planetary motion.

On substituting

∇φg =
GM r̂

r2
and Ag = −fT

GMv

c2r
, (17)

the geodesic equation (1) for a test particle gives

dv

dt
= −GM

r2

[(
1 +

v2

c2

)
r̂ − 4

v2

c2
(r̂ · v̂) v̂

+2fT
v2

c2
v̂ × (v̂ × r̂) + 2fT

v4

c4
(r̂ · v̂) v̂

]
.

(18)

Using the vector relation

v̂ × (v̂ × r̂) = (r̂ · v̂) v̂ − r̂, (19)

the geodesic equation becomes

dv

dt
+
GM

r2
r̂ =

GM

r2
β2
[
(2fT − 1) r̂ + (r̂ · v̂)

(
4− 2fT

(
1 + β2

))
v̂
]
. (20)

This equation describes the three-dimensional motion of a test particle. Appendix VI defines a natural coordinate
system for analyzing the general motion. However, this natural system is not needed in the present case, since only
planar solutions will be considered in the next section.

III. PLANAR SOLUTION OF THE EQUATION OF MOTION

The scalar product of (r̂ × v̂) with the above equation of planetary motion gives

(r̂ × v̂) · dv
dt

= 0. (21)

This shows that stable planar motion in the plane formed by r̂ and v̂ is possible. Circular motion corresponds to
r̂ · v̂ = 0. This particular case is analyzed in Subsection III A, while the general elliptical orbit case is analyzed in
Subsection III B.

A. Circular orbit

For r̂ · v̂ = 0 the geodesic equation of motion (20) reduces to the equation for circular motion

dv

dt
+
GM

r2
r̂ =

GM

r2
β2 (2fT − 1) r̂. (22)

In general, the analysis of planar motion can be carried out in spherical coordinates (r, θ, ϕ), with the test particle
velocity given by

v =
dr

dt
r̂ + r

dθ

dt
θ̂ + r sin θ

dϕ

dt
ϕ̂ (23)

and its squared amplitude by

v2 =

(
dr

dt

)2

+ r2
(
dθ

dt

)2

+ r2 sin2 θ

(
dϕ

dt

)2

. (24)

The test particle acceleration becomes

dv

dt
=

[
d2r

dt2
− r

(
dθ

dt

)2

− r
(
dϕ

dt

)2

sin2 θ

]
r̂

+

[
r
d2θ

dt2
+ 2

dr

dt

dθ

dt
− r

(
dϕ

dt

)2

sin θ cos θ

]
θ̂

+

[
r
d2ϕ

dt2
sin θ + 2r

dθ

dt

dϕ

dt
cos θ + 2

dr

dt

dϕ

dt
sin θ

]
ϕ̂.

(25)
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Hence the three components of the planetary orbit equation for circular motion (22) are

d2r

dt2
− r

(
dθ

dt

)2

− r
(
dϕ

dt

)2

sin2 θ = −GM
r2

[
1− β2 (2fT − 1)

]
d

dt

(
r2
dθ

dt

)
− r2

(
dϕ

dt

)2

sin θ cos θ = 0

d

dt

(
r2 sin2 θ

dϕ

dt

)
= 0

(26)

where

β2 =
1

c2

[(
dr

dt

)2

+ r2
(
dθ

dt

)2

+ r2 sin2 θ

(
dϕ

dt

)2
]
,

γ =
1√

1− β2
and fT =

γ2

γ + 1
.

(27)

Assume a motion with the initial conditions θ = π/2 and dθ/dt = 0. At the initial time t = 0 the component equations
reduce to

t = 0



d2r

dt2
− r

(
dϕ

dt

)2

= −GM
r2

[
1− β2 (2fT − 1)

]
d

dt

(
r2
dθ

dt

)
= 0

d

dt

(
r2
dϕ

dt

)
= 0

(28)

Since this motion is stable, dθ/dt = 0 and θ = π/2 remain valid at all times (planar motion for r 6= 0). The spherical
coordinates reduce to polar coordinates for θ = π/2. The azimuthal component gives

dϕ

dt
=

`

r2
, (29)

where ` is a constant having the dimensions of a specific angular momentum (angular momentum per unit mass).
This result gives a vanishing acceleration in the azimuthal direction (perpendicular to r), so that the perihelion shift
is eliminated or at least is undetectable. This is obviously true for a circular motion with azimuthal symmetry and
conserved angular momentum. Now, consider the planetary orbit described by r = r (ϕ). Then

dr

dt
=
dr

dϕ

dϕ

dt
,
d2r

dt2
=
d2r

dϕ2

(
dϕ

dt

)2

+
dr

dϕ

d2ϕ

dt2
, (30)

so that the radial and azimuthal components of the equation of motion yield

dr

dϕ

d2ϕ

dt2
+

(
d2r

dϕ2
− r
)(

dϕ

dt

)2

+
GM

r2

=
GM

c2r2
(2fT − 1)

[(
dr

dϕ

)2

+ r2

](
dϕ

dt

)2

d2ϕ

dt2
= −2

r

dr

dϕ

(
dϕ

dt

)2

(31)

These two equations can be combined in the form[
d2r

dϕ2
− 2

r

(
1 +

GM

2c2r
(2fT − 1)

)(
dr

dϕ

)2

−GM
c2

(2fT − 1)− r
](

dϕ

dt

)2

+
GM

r2
= 0.

(32)

Substituting the solution dϕ/dt = `/r2 gives an autonomous nonlinear second-order differential equation for the orbit

d2r

dϕ2
− 2

r

(
1 +

GM

2c2r
(2fT − 1)

)(
dr

dϕ

)2

− GM

c2
(2fT − 1)− r +

GM

`2
r2 = 0. (33)



6

The time evolution along the orbit is determined by

t =
1

`

ϕ∫
0

r (ϕ′)
2
dϕ′. (34)

The radial and time coordinates can be normalized by a radial distance a and an angular frequency ω0 = `/a2 as
follows

ξ =
r

a
, τ =

`

a2
t = ω0t. (35)

Thus 
d2ξ

dϕ2
− 2

ξ

(
1 +

ε

2ξ
(2fT − 1)

)(
dξ

dϕ

)2

−ε (2fT − 1)− ξ + αξ2 = 0 orbit equation
dϕ

dτ
=

1

ξ2
time evolution

(36)

where the relativistic correction factor ε and the coefficient α are dimensionless parameters defined by

ε =
GM

c2a
, α =

GMa

`2
=
GM

ω2
0a

3
. (37)

The above equations should describe a circular orbit with ξ = 1, so that ε and α must satisfy the following consistency
condition

α = 1 + ε (2fT − 1) . (38)

Note that for ξ = 1 (r = a)

β2 =
1

c2

[(
dr

dϕ

)2

+ r2

](
dϕ

dt

)2

=
ω2
0a

2

c2

[(
dξ

dϕ

)2

+ ξ2

](
dϕ

dτ

)2

=
ω2
0a

2

c2
(39)

corresponds to the constant velocity of the test particle, and

T0 =
2πa2

`
=

2π

ω0
=

2πa

cβ
(40)

gives the period of the complete orbit. Hence, the consistency condition can be written as

ε

β2
= 1 + ε (2fT − 1) (41)

or in the equivalent form

γ2 − 1

2 (2− γ) γ2 − 1
= ε. (42)

This condition leads to a cubic equation relating γ to ε. The real value of γ is given by

γ =
1

6ε

[
2 |1− 4ε| cos

(
1

3
arccos

(
−1 + 2ε (6 + ε (3 + 5ε))

|1− 4ε|3

))
− 1 + 4ε

]
. (43)

Figure 1 shows the range of possible values of γ as a function of ε. The real value can be represented as a power
series for ε� 1

γ ∼= 1 +
ε

2
+

3ε2

8
− ε3

16
− 77ε4

128
− 163ε5

256
+

399ε6

1024
+

3991ε7

2048
+ . . . (44)
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1.6

1.8

2.0

ϵ=rS/2a
γ

FIG. 1. The thick line shows the value of γ as a function of ε for circular motion. The thin curved line shows the series
expansion for ε� 1 and the thin horizontal line indicates the asymptotic limit for ε→∞. The dark shaded area to the right
of ε = 1/2 is excluded since it corresponds to orbital radii a smaller than the Schwarzschild radius rS = 2GM/c2 of the central
mass.

Note that in the weakly relativistic limit the Thomas factor is fT ∼= 1/2 + 3ε/8. Conversely, the asymptotic limit for
ε� 1 is given by

lim γ
ε→∞

=
2

3

[
1 + 2 cos

(
1

3
arccos

(
5

32

))]
∼= 1.85464. (45)

This limit indicates that the critical value γ = 2 for which the total gravitoelectromagnetic interaction energy changes
sign cannot occur, as expected. Now, to first order in ε one has γ ∼= 1 + ε/2, and the orbiting velocity of the test
particle becomes

β =

√
1− 1

γ2
∼=
√
ε (46)

so that

v0 ∼= c
√
ε =

√
GM

a
and T0 =

2πa

cβ
∼= 2π

√
a3

GM
(47)

give, respectively, the orbit velocity and the period of the Kepler circular orbit in the non relativistic limit.
From the almost circular orbit of Venus listed in Table I one obtains an orbital period T0 = 224.7 × 24 ×

3600 = 1.9414 × 107 s. Using the Sun’s mass M = 1.9891 × 1030 kg and the gravitational constant G = 6.67408 ×
10−11 m3kg−1s−2 the non relativistic calculated orbital period is T0 = 2π

√
a3/ (GM) = 1.9411×107 s. The calculated

nearly circular orbit velocity is v0 =
√
GM/a = 3.5026×104 m s−1. With the speed of light c = 2.99792458×108 m s−1,

the relativistic correction factor is ε = GM/
(
c2a
)

= 1.36503× 10−8.
For a neutron star with a mass 2M and a 11000 m radius the relativistic correction factor at its surface is ε ∼= 0.269,

so that the consistency condition is well described by the power series expansions in the allowed region to the left of
the Schwarzschild limit ε ≤ 1/2. Of course, the neutron star rotation would introduce spin-orbit interaction in the
test particle motion (Lense-Thirring effect).

B. Elliptical orbit

The general equation of motion (20) is here repeated:

dv

dt
+
GM

r2
r̂ =

GM

r2
β2 [(2fT − 1) r̂

+ (r̂ · v̂)
(
4− 2fT

(
1 + β2

))
v̂
]
.

(48)
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Venus data
Semimajor orbit axis a 1.08209475×1011 m
Orbit eccentricity e 0.00677672
Mean orbit velocity v0 3.50206×104 m s−1

Volume V 9.28415345893×1020 m3

Mass m 4.867320×1024 kg
Length of year 224.7 Earth days

TABLE I. Values taken from NASA’s Solar System Exploration/Planets/Venus website.

The radial and azimuthal components of the planetary orbit equation are, respectively,



d2r

dt2
− r

(
dϕ

dt

)2

+
GM

r2

=
GM

c2r2

[(
3− 2fTβ

2
)(dr

dt

)2

− (1− 2fT ) r2
(
dϕ

dt

)2
]

d

dt

(
r2
dϕ

dt

)
=

4GM

c2

(
1− fT

2

(
1 + β2

)) dr

dt

dϕ

dt

(49)

For a planetary orbit described by r = r (ϕ) the two components of the equation of motion become



dr

dϕ

d2ϕ

dt2
+

(
d2r

dϕ2
− r
)(

dϕ

dt

)2

+
GM

r2

=
GM

c2r2

[(
3− 2fTβ

2
)( dr

dϕ

)2

− (1− 2fT ) r2

](
dϕ

dt

)2

radial component

d2ϕ

dt2
= −2

r

dr

dϕ

[
1− GM

c2r

[
2− fT

(
1 + β2

)]](dϕ
dt

)2

azimuthal component

(50)

These equations can be combined in the form

[
d2r

dϕ2
− 2

r

(
1− (1− 2fT )

GM

2c2r

)(
dr

dϕ

)2

−r
(

1− (1− 2fT )
GM

c2r

)](
dϕ

dt

)2

+
GM

r2
= 0.

(51)

In general, the azimuthal equation of motion can be written as

d2ϕ

dt2
= F

(
ϕ,
dϕ

dt

)(
dϕ

dt

)2

. (52)

Dividing by dϕ/dt and integrating, the solution can be written in implicit form

ln
dϕ

dt
= C1

ϕ(t)∫
ϕ(0)

F

(
ϕ1,

dϕ1

dt

)
dϕ1

=⇒ dϕ

dt
=

(
dϕ

dt

)
0

exp

[
ϕ(t)∫
ϕ(0)

F

(
ϕ1,

dϕ1

dt

)
dϕ1

]
.

(53)
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Hence

dϕ

dt
=

(
dϕ

dt

)
0

exp

(
−2

r[ϕ(t)]∫
r[ϕ(0)]

dr1
r1

)
exp

(
4GM

c2

r[ϕ(t)]∫
r[ϕ(0)]

dr1
r21

)

× exp

(
−2GM

c2

r[ϕ(t)]∫
r[ϕ(0)]

fT (r1)
[
1 + β2 (r1)

] dr1
r21

)
=

`

r2
exp

(
4GM

c2a

r − a
r

)
× exp

(
−2GM

c2

r[ϕ(t)]∫
r[ϕ(0)]

fT (r1)
[
1 + β2 (r1)

] dr1
r21

)
,

(54)

where a = r[ϕ (0)] is the semimajor axis (characteristic radius of the orbit) and ` = a2 (dϕ/dt)0 corresponds to
the conserved specific angular momentum in the non relativistic case. The last term in the right-hand side of the
azimuthal velocity involves an integral of factors which depend on fT = γ2/ (γ + 1) and on

β2 =
1

c2

[(
dr

dt

)2

+ r2
(
dϕ

dt

)2
]

=
1

c2

[(
dr

dϕ

)2

+ r2

](
dϕ

dt

)2

. (55)

The integral can be simplified taking into account that in planetary motion the squared relativistic velocity β2 = v2/c2

is very small so that

fT
(
1 + β2

)
=
(
2γ2 − 1

)
/ (γ + 1) ∼ 1/2 + 7β2/8 (56)

is essentially constant. Assuming constant fT ∼ 1/2 and neglecting the higher order terms in β2 (the β2 factor
multiplying fT corresponds to the O

(
β4
)

term in the geodesic equation) the azimuthal component of the equation of
motion gives

dϕ

dt
∼=

`

r2
exp

[
4GM

c2a

(
1− fT

2

)(
r − a
r

)]
. (57)

Note that the dominant factor in the azimuthal velocity corresponds to the conservation of angular momentum
multiplied by a small relativistic oscillation around the semimajor orbital axis. Since there is no azimuthal symmetry
the instantaneous angular momentum is not conserved in the relativistic case. Only the average value in a complete
orbit is conserved. This approximate solution can be replaced in the radial equation, resulting in an autonomous
nonlinear second-order differential equation for the orbit

d2r

dϕ2
− 2

r

(
1− (1− 2fT )

GM

2c2r

)(
dr

dϕ

)2

− r
(

1− (1− 2fT )
GM

c2r

)
+
GM

`2
r2 exp

[
−8GM

c2a

(
1− fT

2

)(
r − a
r

)]
∼= 0.

(58)

The time evolution along the orbit is determined by

t ∼=
1

`

ϕ∫
0

r (ϕ′)
2

exp

[
−4GM

c2a

(
1− fT

2

)(
r (ϕ′)− a
r (ϕ′)

)]
dϕ′. (59)

As shown in Subsection 3.1, the radial and time coordinates can be normalized by the radial distance a and an
angular frequency ω0 = (dϕ/dt)0 = `/a2

ξ =
r

a
, τ =

`

a2
t = ω0t. (60)

The orbit equation in normalized form becomes

d2ξ

dϕ2
− 2

ξ

(
1− (1− 2fT )

ε

2ξ

)(
dξ

dϕ

)2

− ξ
(

1− (1− 2fT )
ε

ξ

)
+αξ2 exp

[
−2 (4− 2fT )

(
ξ − 1

ξ

)
ε

]
∼= 0,

(61)



10

and the time evolution along the orbit is given by

τ ∼=
ϕ∫

0

ξ (ϕ′)
2

exp

[
− (4− 2fT )

(
ξ (ϕ′)− 1

ξ (ϕ′)

)
ε

]
dϕ′, (62)

where ε = GM/
(
c2a
)

is the previously defined relativistic correction factor, and the dimensionless parameter α =

GM/
(
ω2
0a

3
)

will be related below with both ε and the orbit eccentricity.
The differential orbit equation can be simplified introducing a change in the normalized radial coordinate

ξ =
1

η
,
dξ

dϕ
= − 1

η2
dη

dϕ
,
d2ξ

dϕ2
=

2

η3

(
dη

dϕ

)2

− 1

η2
d2η

dϕ2
, (63)

so that

d2η

dϕ2
+ (2fT − 1) ε

(
dη

dϕ

)2

∼= f (η) , (64)

where

f (η) = α exp [2 (4− 2fT ) (η − 1) ε]− η [1 + (2fT − 1) εη] . (65)

In the relativistic case the planetary orbit is governed by a Rayleigh equation for nonlinear oscillations. The loss of
kinetic energy during the revolution is compensated by a source of energy which is determined by the system itself.
With the substitution w (η) = (dη/dϕ)

2
the orbit equation reduces to the first-order nonlinear equation

dw

dη
+ 2 (2fT − 1) εw (η) ∼= 2f (η) , (66)

whose general solution is (C =constant)

w (η) ∼= 2e−2(2fT−1)εη

(
C +

∫ η

η(ϕ0)

e2(2fT−1)εη1f (η1) dη1

)
. (67)

Therefore, the solution of the original orbit equation can be written in implicit form

ϕ− ϕ0
∼= ±

∫ η(ϕ)

η(ϕ0)

dη2√
2e−2(2fT−1)εη2

(
C +

∫ η2
η(ϕ0)

e2(2fT−1)εη1f (η1) dη1

) . (68)

Imposing the initial conditions at the aphelion

η (ϕ0) = ηa,
dη

dϕ

∣∣∣∣
ϕ0

= 0, (69)

the integration constant vanishes (C = 0) so that

dη

dϕ
∼= ±

√
2e−2(2fT−1)εη

∫ η

ηa

e2(2fT−1)εη1f (η1) dη1. (70)

The position of the perihelion ηp with respect to the aphelion ηa is defined by a second solution of the condition
dη/dϕ = 0. This condition can be used to define the value of the constant coefficient α in terms of the positions ηa
and ηp of the aphelion and the perihelion, respectively,

α ∼=

∫ ηp

ηa

e2(2fT−1)εη1 [1 + (2fT − 1) εη1] η1dη1

e−2(4−2fT )ε

∫ ηp

ηa

e6εη1dη1

. (71)
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Thus

α ∼=
3ε
(
η2p − e2(1−2fT )ε(ηp−ηa)η2a

)
e−2(4−2fT )ε(ηp−1)

1− e−6ε(ηp−ηa)
∼=

ηp + ηa
2

− ε

2

[
(5− 4fT )

(
η2p + η2a

)
− 2 (4− 2fT ) (ηp − ηpηa + ηa)

]
+ O

(
ε2
)
.

(72)

The positions ηa and ηp are defined in terms of the orbit eccentricity e (recall that η = a/r):

ηa =
1

1 + e
, ηp =

1

1− e
. (73)

Hence

α ∼=
3ε

(1− e)2
exp

(
− 2(4−2fT )ε

1−e

)
1− exp

(
− 12eε

1−e2

) [1−
(

1− e
1 + e

)2

exp

(
−4 (2fT − 1) eε

1− e2

)]

∼=
1

1− e2
−

1 + 9e2 − 2fT
(
1 + 3e2

)
(1− e2)

2 ε+ O
(
ε2
)
.

(74)

Therefore, the specific angular momentum parameter ` is given by

` =

√
GMa

α

=
√
GMa (1− e2)

(
1 +

1 + 9e2 − 2fT
(
1 + 3e2

)
2 (1− e2)

ε+ O
(
ε2
))

.
(75)

In summary, the coefficient α is determined in terms of both the relativistic factor ε and the positions ηa and ηp of
the aphelion and the perihelion, respectively, by

α ∼=
3ε
(
η2p − e2(1−2fT )ε(ηp−ηa)η2a

)
e−2(4−2fT )ε(ηp−1)

1− e−6ε(ηp−ηa)
, (76)

or equivalently in terms of the orbit eccentricity e, and the relativistic factor ε, as listed previously. The orbit is
governed by the previously derived autonomous differential equation (64)

d2η

dϕ2
+ (2fT − 1) ε

(
dη

dϕ

)2

∼= α exp [2 (4− 2fT ) (η − 1) ε]− η [1 + (2fT − 1) εη] .

(77)

Figure 2 shows a numerical solution of the above equation. It illustrates the perihelion shift for a fictitious planet
with an elliptical orbit of eccentricity e = 1/2 and large orbital velocity corresponding to a relativistic correction
factor ε = 1/500. The oblique line indicates the final position of the aphelion predicted by general relativity to first
order in ε after 50 complete revolutions of the planet starting at the position indicated by the extreme point on the
right-hand side.

An approximate solution of the relativistic orbit differential equation can be obtained using a perturbation method.
A change of the independent angular variable

ϕ = ψ (1 + εψ1 + . . .) (78)

in the orbit equation yields

d2η

dψ2
+ (2fT − 1) ε

(
dη

dψ

)2

∼= (1 + εψ1 + . . .)
2 {α exp [2 (4− 2fT ) (η − 1) ε]

−η [1 + (2fT − 1) εη]} .
(79)

Replacing η by

η (ψ) = η0 (ψ) + εη1 (ψ) (80)
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FIG. 2. Illustration of the perihelion shift for a fictitious planet in elliptical orbit. The orbit is characterized by the semimajor
axis a = 1, eccentricity e = 1/2 and large relativistic correction factor ε = 1/500. The orbit starts at the aphelion a (1 + e),
lying at the extreme point on the right-hand side of the horizontal axis. A total of 50 revolutions is displayed resulting in a
145.751◦ shift. The oblique line indicates the approximate final position predicted by general relativity, which to first order in
ε corresponds to a 144◦ shift.

an expansion to first order in ε gives a system of equations for the leading terms of the series:
d2η0
dψ2

+ η0 = α

d2η1
dψ2

+ η1 = 2 (α− η0)ψ1 − (2fT − 1)

(
dη0
dψ

)2

+ [2 (4− 2fT )α− (2fT − 1) η0] η0 − 2 (4− 2fT )α

(81)

The zero order solution with initial conditions η0 (ψ0) = ηa and dη0/dψ| = 0 gives the Kepler orbit

η0 (ψ) = α− (α− ηa) cos (ψ − ψ0) . (82)

Substituting this solution in the first order differential equation gives

d2η1
dψ2

+ η1 ∼= −2 [4− 2fT − (5− 4fT )α]α+ (2fT − 1) (2α− ηa) ηa

−2 (α− ηa) [(5− 4fT )α− ψ1] cos (ψ − ψ0) .
(83)

The solution of the first order equation with homogeneous initial conditions is

η1 (ψ) ∼= 2 sin
(
ψ−ψ0

2

)
×
{

(α− ηa) [ψ1 − (5− 4fT )α] (ψ − ψ0) cos
(
ψ−ψ0

2

)
+ [2 (2fT − 4 + (5− 4fT )α)α

− (1− 2fT ) (2α− ηa) ηa] sin
(
ψ−ψ0

2

)}
.

(84)

Therefore, to eliminate the secular term one must set

ψ1 = (5− 4fT )α −→
fT→1/2

3α, (85)

and the full solution becomes

η (ψ) ∼= α− (α− ηa) cos (ψ − ψ0)
+ε [2 (2fT − 4 + (5− 4fT )α)α− (1− 2fT ) (2α− ηa) ηa]

× [1− cos (ψ − ψ0)] .
(86)
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The final conditions at the perihelion,

η (ψp) = ηp and
dη

dψ

∣∣∣∣
ψp

= 0, (87)

are satisfied provided that ψp = ψ0 + π and, to first order in ε,

α ∼=
ηp + ηa

2
− ε

2

[
(5− 4fT )

(
η2p + η2a

)
− 2 (4− 2fT ) (ηp − ηpηa + ηa)

]
. (88)

The solution in terms of the original variable

ϕ = ψ (1 + εψ1 + . . .)

is

η (ϕ) ∼= α− (α− ηa) cos

(
ϕ− ϕ0

1 + ε (5− 4fT )α

)
+ε [2 (2fT − 4 + (5− 4fT )α)α− (1− 2fT ) (2α− ηa) ηa]

×
[
1− cos

(
ϕ− ϕ0

1 + ε (5− 4fT )α

)]
.

(89)

The position of the perihelion after a half revolution is given in terms of the original variable by

ϕp = ϕ0 + (1 + εψ1)π,

so that the precession shift ∆ϕ of the perihelion (or aphelion) for a half revolution is

∆ϕ ∼= ε (5− 4fT )απ. (90)

To first order in ε the total precession per orbit, σ = 2∆ϕ, is

σ ∼=
2π (5− 4fT ) ε

1− e2
=

2π (5− 4fT )

1− e2
GM

c2a
. (91)

In terms of the non relativistic period T0 = 2π
√
a3/ (GM) the total precession per orbit becomes

σ ∼=
8π

3

(5− 4fT ) a2

c2 (1− e2)T 2
0

−→
fT→1/2

24π
3

a2

c2 (1− e2)T 2
0

. (92)

Introducing the “Thomas half” fT = 1/2 this expression gives the correct amplitude of the perihelion shift predicted
by general relativity as shown in Fig. 2. Putting fT = 0 the braking action of the gravitomagnetic field is lost and
the perihelion shift becomes larger by a factor of 5/3. Figure 3 illustrates this hypothetical situation.

From the Mercury data listed in Table II one obtains an orbital period T0 = 87.9691× 24× 3600 = 7.60053× 106 s.
Using the Sun’s mass M = 1.9891× 1030 kg and the gravitational constant G = 6.67408× 10−11 m3kg−1s−2 the non
relativistic calculated orbital period is

T0 = 2π
√
a3/ (GM) = 7.59937× 106 s. (93)

With the speed of light c = 2.99792458× 108 m s−1, the total precession per orbit is

σ = 6πGM/
[
c2a
(
1− e2

)]
= 5.202024× 10−7 rad. (94)

In one hundred Earth’s years the total precession of Mercury’s perihelion is

(100× 365.25636/87.9691)× (3600× 180/π)σ = 42.9949

seconds of arc per century.
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FIG. 3. Illustration of the perihelion shift for a fictitious planet in elliptical orbit in the hypothetical situation when the GM
field is switched off by taking fT = 0. The orbit is characterized by the same parameters shown in Fig. 2. After 50 revolutions
the total perihelion shift is 244.2◦, approximately 5/3 larger than the value predicted by general relativity.

Mercury data
Semimajor orbit axis a 5.7909227×1010 m
Orbit eccentricity e 0.20563593
Mean orbit velocity v0 4.7362×104 m s−1

Volume V 6.0827208742×1016 m3

Mass m 3.30104×1023 kg
Length of year 87.9691 Earth days

(365.25636 days/year)

TABLE II. Values taken from NASA’s Solar System Exploration/Planets/Mercury website.

IV. RATE OF CHANGE OF ANGULAR MOMENTUM

Consider the time variation of the mechanical angular momentum L = mγr × v:

dL

dt
= mr × v dγ

dt
+mγ

d

dt
(r × v) =

γ2

2c2
dv2

dt
L+mγr × dv

dt
. (95)

The equation of motion (20) is here repeated

dv

dt
+
GM

r2
r̂ =

GM

r2
β2
[
(2fT − 1) r̂ + (r̂ · v̂)

(
4− 2fT

(
1 + β2

))
v̂
]
. (96)

The scalar multiplication of this equation by v gives

γ2

2c2
dv2

dt
= −GM

c2r

v

r
(r̂ · v̂) γ2

[
1− β2

(
3− 2fTβ

2
)]
, (97)

and the vector multiplication by r gives

r × dv

dt
=
GM

c2r
v2 (r̂ · v̂)

[(
4− 2fT

(
1 + β2

))
(r̂ × v̂)

]
. (98)

Thus

dL

dt
=
GM

c2r

v

r
(r̂ · v̂)

[
1 + 2 (1− fT ) γ2

]
L. (99)
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For a circular orbit with r̂ · v̂ = 0 this equation gives conservation of mechanical angular momentum

dL

dt
= 0. (100)

In the general elliptical orbit case, when the planet moves toward the origin during part of the orbit, so that
v (r̂ · v̂) < 0, it follows that dL/dt ∝ −L, with decreasing mechanical angular momentum.

Now, consider the evolution of the azimuthal component:

dϕ

dt
∼=

`

r2
exp

[
4GM

c2a

(
1− fT

2

)(
r − a
r

)]
. (101)

While the circular orbit solution shows conservation of the instantaneous angular momentum due to symmetry, the
elliptical orbit shows small back and forth relativistic oscillations around the semimajor axis of the orbit. The above
equation shows the increase in the shift if the gravitomagnetic field is hypothetically switched off by taking fT = 0.

One must take into account that L corresponds to the mechanical angular momentum only, and there is a periodic
exchange of angular momentum between the mechanical and gravitomagnetic field contributions to the canonical
angular momentum during the orbital motion. The canonical momentum of the orbiting mass is given by

P = m (γv +Ag) =

(
1− fT

γ

GM

c2r

)
γmv, (102)

and the canonical angular momentum is defined by

J = r × P =

(
1− fT

γ

GM

c2r

)
L. (103)

Thus

dJ

dt
=

(
1− fT

γ

GM

c2r

)
dL

dt
+
fT
γ

GM

c2r

(
1

r

dr

dt
− fT

2c2
dv2

dt

)
L, (104)

where the rate of change of the mechanical angular momentum is given by equation (99) and the rate of change of the
squared velocity can be obtained from equation (97). Moreover, in the case of planar motion dr/dt = v (r̂ · v̂). Hence

dJ

dt
=

GM

c2r

v

r
(r̂ · v̂)

(
2γ2 + 1

){
1− fT

γ

2γ3 − 1

2γ2 + 1

−GM
c2r

fT
γ

[
1− fT

(
1−

(
3− 2fTβ

2
)
β2

2γ2 + 1

)]}
L

' GM

c2r

v

r
(r̂ · v̂)

(
2γ2 + 1

)(
1− fT

γ

2γ3 − 1

2γ2 + 1

)
L+O

(
G2
)
.

(105)

In the conditions of planar motion the vectors L, J , dL/dt and dJ/dt are perpendicular to the plane formed by r̂
and v̂. The above discussion shows that the instantaneous values of the mechanical and canonical angular momenta
of the orbiting test mass are not conserved in the conditions of elliptical planar motion, only the average values are
conserved.

The above discussion took into consideration only the rate of change of the test mass mechanical momentum.
According to the derivation in Section II, the angular momentum of the central mass M in the frame of reference of
the test mass m is related to the angular momentum of the orbiting mass m in the frame of reference of M by

LM = − M

mγm
Lm. (106)

It can be easily verified that the rate of change of LM is given by the same equation for the rate of change of Lm,
with the sign inverted (the vector position is inverted)

dLM
dt

= −dLm
dt

, (107)

so that the total angular momentum of the isolated system is conserved, as expected from the conservation theorem
of the angular momentum in integral form [12].
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FIG. 4. Natural angle coordinates which define the three-dimensional motion of a particle.

V. COMMENTS AND CONCLUSIONS

The geodesic motion of a test particle, which does not affect the curvature of spacetime, was determined in the
presence of a central body of significant mass. Of course, in the case of two significant masses, as in a binary system,
the calculation can be conveniently carried out in the center of mass of the system. In general the three-dimensional
motion is quite complex, depending on the initial conditions. In the present article only stable planar motions were
considered, neglecting the emission of gravitational waves or the interaction with external sources. The simplest
solution corresponds to circular orbits, which give a definite relation between the values of the orbital velocity and
radius. It is interesting to note that a radiationless microscopic ring system (at a→ 0 and ε→ 0) leads to a problem
similar to the classical electrodynamics problem of an electrified point like mass with an internal structure [16]. In
the weak relativistic case the classical Kepler solution is recovered.

Another class of planar, stable elliptical orbits, gives the exact results for the perihelion precession of Mercury
predicted by general relativity. In both cases of circular and elliptical orbits the braking action of the gravitomagnetic
field is present. The gravitomagnetic field reduces the gravitoelectric pull and opposes the test particle motion. The
perihelion shift is a result of the balance between gravitoelectric and gravitomagnetic forces. Since a binary system
radiates, it would be interesting to study the coalescence of the system towards the center of mass according to the
extended gravitoelectromagnetic theory. The motion of a binary system is a problem that can be, presumably, tackled
in the same form as the motion of the perihelion, using the Liénard-Wiechert potentials instead of the Coulomb and
Biot-Savart laws. It is also intriguing how the stable circular orbits are attained, if at all. But these questions require
further work.

In conclusion, the geodesic equation of motion of a test particle in the gravitational field of a massive central body
was analyzed, according to the extended gravitoelectromagnetic theory, looking for stable planar orbits. The most
relevant solution, which corresponds to elliptical orbits, leads to the perihelion shift predicted by general relativity.

VI. APPENDIX

In general, equation (20) describes the three-dimensional motion of a test particle. The unit vectors r̂, v̂ and ê
define a natural coordinates system. The direction ê is defined by the pair of angles χ, subtended by ê and v̂ = v/ |v|,
and ϑ, subtended by ê and r̂ = ∇φg/ |∇φg|, respectively (Figure 4). Using the angles χ and ϑ the unit vector ê can
be written in terms of r̂ and v̂ in the following form

ê = err̂ + evv̂ + e×r̂ × v̂, (108)
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where

er =
cosϑ− (r̂ · v̂) cosχ

1− (r̂ · v̂)
2 , ev =

cosχ− (r̂ · v̂) cosϑ

1− (r̂ · v̂)
2 , e× =

ê · r̂ × v̂
1− (r̂ · v̂)

2 , (109)

and

ê · r̂ × v̂ =

√
1− cos2 χ− cos2 ϑ+ 2 (r̂ · v̂) cosχ cosϑ− (r̂ · v̂)

2
. (110)

Since r̂ · v̂ 6= 0 in general, the system of coordinates formed by (r̂, v̂, r̂ × v̂) is not orthogonal. Note that (r̂ × v̂)
2

=

1− (r̂ · v̂)
2

and ê · r̂ × v̂ =
[
1− (r̂ · v̂)

2
]
e×. Furthermore, using the vector formula

A× (B ×C) = (A ·C)B − (A ·B)C (111)

it can be shown that the unit vectors satisfy the following useful relations:

ê · r̂ = cosϑ
ê · v̂ = cosχ
ê× r̂ = −e× (r̂ · v̂) r̂ + e×v̂ − ev (r̂ × v̂)
ê× v̂ = −e×r̂ + e× (r̂ · v̂) v̂ + er (r̂ × v̂)

ê× (ê× v̂) = (ê · v̂) ê− v̂ = er cosχr̂ + (ev cosχ− 1) v̂ + e× cosχ (r̂ × v̂)
r̂ · [ê× (ê× v̂)] = er cosχ+ (ev cosχ− 1) (r̂ · v̂)
r̂ × [ê× (ê× v̂)] = e× cosχ (r̂ · v̂) r̂ − e× cosχv̂ − (1− ev cosχ) (r̂ × v̂)

(112)

Also 
er + ev (r̂ · v̂) = cosϑ
er (r̂ · v̂) + ev = cosχ

e2r + e2× =
1− cos2 χ

1− (r̂ · v̂)
2

ê · ê = 1

(113)
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