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In this paper we propose a criterion to select an optimal
state-space reconstruction of the dynamics of a physical sys-
tem from time series. The presented methodology is based
on the minimization of a cost function L which is readily
computable from the available observational data. Different
reconstructions, whether multivariate or time-delayed uni-
variate, regular or not, can be directly compared through L,
and thereby the suitability of different embedding settings
can be assessed. Optimal parameter values for the embed-
ding dimension and time lag can be therefore simultaneously
selected by a global optimization of the proposed cost func-
tion. An important advantage of the reported approach is
given by its fully automatic and objective character, in con-
trast to, for example, the subjective practitioner-dependent
choices on the location of the first local minimum of Mu-
tual Information or the value of a threshold characterizing a
negligible fraction of false nearest neighbours. In particular,
in this work we focus on univariate time-delay embeddings
and employ the proposed approach to explore the advantages
of considering irregular embeddings, as opposed to homoge-
neous ones, for the reconstruction of dynamical systems.

The proposed cost function L is a local property of the
reconstruction, which we then average over the attractor. On
Fig. 1 we illustrate the local behaviour ofL by plotting a two-
dimensional projection of the Mackey-Glass attractor [1] as
we reconstruct it in spaces of increasing dimension —from
m = 2 (panel (a)) to m = 4 (panel (c)). As we can see
in panel (a), L highlights regions of the attractor not yet un-
folded for m = 2, i.e. regions where orbits with different
dynamical evolutions overlap. These regions progressively
vanish in higher dimensional reconstructions, as reflected by
lower values of L in panels (b) and (c). As we detail below,
L is built upon the concept of noise amplification introduced
by Casdagli et al. [2].

Delay reconstruction is the fundamental first step of al-
most all nonlinear time series analysis methods such as the
determination of attractor dimensions, Lyapunov exponents,
and entropy, to name a few [3]. Takens regular delay-vector
definition [4] can be generalized to the irregular case by con-

Figure 1 – Color-coded local loss function in a two-dimensional
projection ofm-dimensional homogeneous time-lag reconstruc-
tions of the Mackey-Glass attractor. The time window tw = 30
is the same across panels —as the embedding dimension is in-
creased from 2 to 4, new coordinates are introduced between t
and t+ tw.

sidering different time delays between consecutive compo-
nents. The embedding vector is then written as

x̄(t) = (x(t), x(t− τ1), x(t− τ2), ..., x(t− τ(m−1))), (1)

where {m, τ1, τ2, ..., τ(m−1)} is a set of m parameters to be
determined by the practitioner.

The quality of a reconstruction has been quantified by
Casdagli et al. [2] in terms of its (observational) noise am-
plification effect when we want to estimate the state of the
system. They define the noise amplification σ to locally mea-
sure this effect, a statistics which can potentially be com-
puted from the observed time series. In principle, σ allows
for an absolute comparison among reconstructions, which in
turn enables an optimal embedding parameters selection. An
obstacle, however, is given by the hypothesis of a full knowl-
edge of the true generating dynamics. In [2] the Authors
suggest to estimate σ after performing a data-driven approx-
imation of the dynamical evolution law —a possibility that
remained unexplored in the literature and we explicitly pur-
sue in this work.

In this context, the definition of noise amplification (see
[2] for details) is given by:

σ(T, x̄) = lim
ε→0

1
ε

√
V ar(x(T )|Bε(x̄)) (2)

where Bε(x̄) is a ball of size ε centered at x̄.



On one hand, Bε(x̄) can be approximated by the set of
k-nearest neighbours of x̄, in such a way that the conditional
variance V ar(x(T )|Bε(x̄)) can be re-written as

V ark(x(T )|Uk(x̄)) =
1

k + 1

∑
x̄′∈Uk(x̄)

[x′(T )− uk(x̄, T )]2

(3)
where x̄′ is a near neighbour of x̄, x′(T ) denotes the future
value associated to it, and

uk(x̄, T ) =
1

k + 1

∑
x̄′∈Uk(x̄)

x′(T ). (4)

is the average image of the neighbours. On the other hand,
to achieve an estimation of σk(x̄) it is necessary to com-
pute a characteristic radius εk(x̄) of the set Uk(x̄), which
we chose as the mean pairwise distance between elements
in Uk(x̄). Finally, we introduce an additional normalization
factor which measures irrelevance. This factor is sensitive
to attractor stretching and allows, in particular, a direct com-
parison among possibly substantially different trial embed-
ding dimensions. It can also be computed from the nearest k
neighbours; however, space limitations prevent us from dis-
cussing further details in this short account.

We now report an exploration of the potential of this ap-
proach for the construction of irregular embeddings, i.e. the
case where consecutive delayed coordinates are not equidis-
tant. We briefly report a case study taken from Pecora et
al., who in [5] introduced an irregular embedding construc-
tion method and used it to analyse a time series of the
x-coordinate of a quasiperiodic, multiple time-scale two-
dimensional torus living in a three-dimensional space. Ap-
plying their greedy search algorithm, they arrived at a 4-
dimensional reconstruction with delay times τ1 = 8, τ2 =
67, and τ3 = 75. The first delay τ1 = 8 captures the fast
frequency, being exactly 1/4 of corresponding period (this
fraction is the null autocorrelation lag for harmonic signals).
However, τ2 = 67 slightly fails to capture the slow frequency
(it should be τ2 = 63). We searched over the complete space
of parameters {m, τ1, τ2, ..., τ(m−1)} for the minimum of L.
According to our methodology, the optimal irregular delay
embedding is attained for parameter values m = 4, τ1 = 8,
τ2 = 63, and τ3 = 71. In this solution τ1 captures the fast
and τ2 the slow frequency of this time series. In order to
have a clearer picture on how L captures the quality of the
reconstruction, in Fig. 2 we show the values of L for the
4-dimensional reconstructions with delays restricted to the
plane τ3 = τ1+τ2 (both the solution of Pecora et al. and ours
belong to this plane of time-symmetrical solutions). Fig. 2
gives a complete picture of all possible time-symmetrical so-
lutions. According to bootstrapping experiments performed
on our quality reconstruction measure L on independent sets
of random samples, the irregular embedding found by Pec-
ora et al. is (statistically) significantly better than the best
possible regular embedding. Furthermore, the irregular em-
bedding found by the approach here proposed is in turn sig-

Figure 2 – The loss function L (codified by colors) as a function
of the delays τ1 and τ2 of an irregular delay reconstruction of
the torus time series. The embedding dimension is 4 and τ3 =
τ1 + τ2 in order to have a time-symmetrical delay vector. The
white cross shows the solution found in [5], namely τ1 = 8, τ2 =
67, τ3 = 75. The green cross indicates the solution found by
our approach. Finally, the white straight lines indicate uniform
delay embeddings.

nificantly better, in a rigorous statistical sense, than the one
found by Pecora.

We have also considered chaotic time series such as the
Roessler and Lorenz systems, the Mackey-Glass equation,
and experimental data from Chua’s circuit. In all cases we
have obtained promissing results which, due to space con-
straints, cannot analyse here but will be communicated to the
Conference in the appropriate format.
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