
sid.inpe.br/mtc-m19/2011/11.07.23.30-TDI

SOLIMVA: A METHODOLOGY FOR GENERATING

MODEL-BASED TEST CASES FROM NATURAL

LANGUAGE REQUIREMENTS AND DETECTING

INCOMPLETENESS IN SOFTWARE SPECIFICATIONS

Valdivino Alexandre de Santiago Júnior

Doctorate Thesis at Post Gradu-

ation Course in Applied Comput-

ing, advised by Dr. Nandamudi

Lankalapalli Vijaykumar, approved

in December 12, 2011.

URL of the original document:

<http://urlib.net/8JMKD3MGP7W/3AP764B>

INPE

São José dos Campos

2011

http://urlib.net/8JMKD3MGP7W/3AP764B

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE

Gabinete do Diretor (GB)

Serviço de Informação e Documentação (SID)

Caixa Postal 515 - CEP 12.245-970

São José dos Campos - SP - Brasil

Tel.:(012) 3208-6923/6921

Fax: (012) 3208-6919

E-mail: pubtc@sid.inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE INTEL-

LECTUAL PRODUCTION (RE/DIR-204):

Chairperson:

Dr. Gerald Jean Francis Banon - Coordenação Observação da Terra (OBT)

Members:

Dra Inez Staciarini Batista - Coordenação Ciências Espaciais e Atmosféricas (CEA)

Dra Maria do Carmo de Andrade Nono - Conselho de Pós-Graduação

Dra Regina Célia dos Santos Alvalá - Centro de Ciência do Sistema Terrestre (CST)

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Dr. Ralf Gielow - Centro de Previsão de Tempo e Estudos Climáticos (CPT)

Dr. Wilson Yamaguti - Coordenação Engenharia e Tecnologia Espacial (ETE)

Dr. Horácio Hideki Yanasse - Centro de Tecnologias Especiais (CTE)

DIGITAL LIBRARY:

Dr. Gerald Jean Francis Banon - Coordenação de Observação da Terra (OBT)

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Deicy Farabello - Centro de Previsão de Tempo e Estudos Climáticos (CPT)

DOCUMENT REVIEW:

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Yolanda Ribeiro da Silva Souza - Serviço de Informação e Documentação (SID)

ELECTRONIC EDITING:

Vivéca Sant´Ana Lemos - Serviço de Informação e Documentação (SID)

sid.inpe.br/mtc-m19/2011/11.07.23.30-TDI

SOLIMVA: A METHODOLOGY FOR GENERATING

MODEL-BASED TEST CASES FROM NATURAL

LANGUAGE REQUIREMENTS AND DETECTING

INCOMPLETENESS IN SOFTWARE SPECIFICATIONS

Valdivino Alexandre de Santiago Júnior

Doctorate Thesis at Post Gradu-

ation Course in Applied Comput-

ing, advised by Dr. Nandamudi

Lankalapalli Vijaykumar, approved

in December 12, 2011.

URL of the original document:

<http://urlib.net/8JMKD3MGP7W/3AP764B>

INPE

São José dos Campos

2011

http://urlib.net/8JMKD3MGP7W/3AP764B

Cataloging in Publication Data

Santiago Júnior, Valdivino Alexandre de.

Sa59s SOLIMVA: a methodology for generating model-based test
cases from natural language requirements and detecting incom-
pleteness in software specifications / Valdivino Alexandre de San-
tiago Júnior. – São José dos Campos : INPE, 2011.

xxvi + 238 p. ; (sid.inpe.br/mtc-m19/2011/11.07.23.30-TDI)

Doctorate Thesis (Doctorate Thesis in Applied Computing) –
Instituto Nacional de Pesquisas Espaciais, São José dos Campos,
2011.

Adviser : Dr. Nandamudi Lankalapalli Vijaykumar.

1. Model-based testing. 2. Natural language requirements.
3. Combinatorial designs. 4. Part of speech tagging. 5. Word sense
disambiguation. 6. Statecharts. 7. Incompleteness. 8. Model check-
ing. 9. Specification patterns I.T́ıtulo.

CDU 004.415.5

Copyright c© 2011 do MCT/INPE. Nenhuma parte desta publicação pode ser reproduzida, ar-
mazenada em um sistema de recuperação, ou transmitida sob qualquer forma ou por qualquer
meio, eletrônico, mecânico, fotográfico, reprográfico, de microfilmagem ou outros, sem a permissão
escrita do INPE, com exceção de qualquer material fornecido especificamente com o propósito de
ser entrado e executado num sistema computacional, para o uso exclusivo do leitor da obra.

Copyright c© 2011 by MCT/INPE. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, microfilming, or otherwise, without written permission from INPE, with the exception
of any material supplied specifically for the purpose of being entered and executed on a computer
system, for exclusive use of the reader of the work.

ii

“Have faith and trust in God especially in the hardest times of your
life.”

J. S. Nobre
in “Comece o Dia Feliz (Reflexões)”, 1994

v

To my wife Maria, my daughters Sofia and Ĺıvia, my father Valdivino (in
memoriam), my mother Nair, and my sister Stela

vii

ACKNOWLEDGEMENTS

First, I would like to thank God. I could not have been successful in developing this

PhD thesis if I did not have faith in God and in Jesus Christ, and if I did not believe

in Their love for me.

I would like to thank and dedicate this work to my wife Maria, and my daughters

Sofia and Ĺıvia. Their patience, love, understanding during the time I devoted to

this PhD thesis were crucial so I could have the strength to go on. God, the Virgin

Mary, my wife Maria, and my daughters Sofia and Ĺıvia are the reasons of my life.

I would like to thank and dedicate this work to my father Valdivino (in memoriam),

my mother Nair, and my sister Stela, for all the love and support especially at

the beginning of my career. I also thank my grandmother Stela (in memoriam),

my grandmother Ana (in memoriam), my uncle Hemetério, my aunt Inez, my uncle

Edvaldo, my aunt Maria José, my cousins Stela Maria, Regina (in memoriam), Célia,

Waleska, Angelita, my sister-in-law Doralice and her family, and other relatives who

somehow contributed to my growth as a human being.

I would like to thank my advisor Dr. Vijaykumar, for his friendship and advice which

were important so that I could develop this PhD thesis.

I would like to thank Dr. Demı́sio (in memoriam), a friend who positively influ-

enced me personally and professionally. I consider Dr. Demı́sio (in memoriam) as a

contributor of this work.

I would like to thank the Instituto Nacional de Pesquisas Espaciais (INPE - National

Institute for Space Research) for allowing me to dedicate part of my working day to

develop this PhD thesis.

Finally, I would like to thank other professors of the Curso de Pós-Graduação em

Computação Aplicada (CAP - Post Graduation Course in Applied Computing)

which helped to improve my qualifications as a researcher.

ix

ABSTRACT

In greater or lesser extent, Natural Language (NL) is still widely used to develop
software requirements specifications or other artifacts created for documenting re-
quirements. However, NL deliverables suffer from ambiguity, inconsistency, and in-
completeness. This PhD thesis presents a methodology, SOLIMVA, which achieves
two objectives. The primary objective is to generate model-based system and ac-
ceptance test cases considering NL requirements deliverables. For this purpose,
a tool, also called SOLIMVA, was designed and implemented and such a tool
makes it possible to automatically translate NL requirements into Statechart models.
Once the Statecharts are created, another tool, GTSC, is used to generate Ab-
stract Test Cases which are later translated into Executable Test Cases. Among
other features, a Word Sense Disambiguation method which helps in the translation
process was implemented in the SOLIMVA tool, and combinatorial designs are
used to identify scenarios for model-based system and acceptance testing. The
SOLIMVA methodology was applied to a main case study, a space application
software product related to the Space Segment, and the methodology was com-
pared with a previous manual approach developed by an expert under two aspects:
coverage of test objectives and characteristics of Executable Test Cases. In both
aspects, the SOLIMVA methodology presented benefits such as a better strategy
with test objectives clearly separated according to the directives of combinatorial
designs, and the generation of Executable Test Cases which predicted behaviors
that did not exist in the expert’s approach. In addition, guidelines to apply the
SOLIMVA methodology to a second case study of the space domain related to
the Ground Segment are also presented. The key advantages from applying the
SOLIMVA methodology in the context of a Verification and Validation process are
the ease of use and the support of a formal method, making it potentially suitable
for use in complex software projects. The secondary objective is the detection of
incompleteness in software specifications. The SOLIMVA methodology was then
extended to achieve this secondary objective. Model Checking combined with k-
permutations of n values of variables and specification patterns were used to address
this goal. The SOLIMVA methodology has proved its efficiency by the detection of
21 incompleteness defects when applied to the same main case study mentioned
earlier.

xi

SOLIMVA: UMA METODOLOGIA PARA GERAÇÃO DE CASOS DE
TESTES BASEADOS EM MODELOS A PARTIR DE REQUISITOS

EM LINGUAGEM NATURAL E DETECÇÃO DE NÃO
COMPLETUDE EM ESPECIFICAÇÕES DE SOFTWARE

RESUMO

Em maior ou menor extensão, a Linguagem Natural (LN) é ainda amplamente
usada para elaborar especificações de requisitos de software ou outros artefatos
criados para a documentação de requisitos. Entretanto, fornecimentos elaborados
em LN apresentam ambiguidade, inconsistência e não completude. Esta tese de
doutorado apresenta uma metodologia, SOLIMVA, a qual alcança dois objetivos.
O objetivo primário é a geração de casos de teste de sistema e aceitação baseados em
modelos a partir de artefatos de requisitos elaborados em LN. Para esse propósito,
uma ferramenta, também denominada SOLIMVA, foi projetada e implementada, e
tal ferramenta traduz automaticamente requisitos elaborados em LN em modelos
Statecharts. Uma vez gerados os Statecharts, outra ferramenta, GTSC, é usada
para gerar Casos de Teste Abstratos os quais depois são transformados em Casos de
Teste Executáveis. Entre outras caracteŕısticas, um método para Desambiguidade
de Sentido de Palavras, o qual ajuda no processo de tradução, foi implementado
na ferramenta SOLIMVA, e designs combinatoriais são usados para identificar ce-
nários para testes de sistema e aceitação baseados em modelos. A metodologia
SOLIMVA foi aplicada a um estudo de caso principal, um produto de software
da área espacial relacionado ao Segmento Espacial, e a metodologia foi comparada
com uma abordagem manual desenvolvida anteriormente por um especialista sob
dois aspectos: cobertura de objetivos de teste e caracteŕısticas dos Casos de Teste
Executáveis. Em ambos os aspectos, a metodologia SOLIMVA mostrou benef́ıcios
tais como uma melhor estratégia com os objetivos de teste claramente separados
de acordo com as diretivas dos designs combinatoriais, e a geração de Casos de
Teste Executáveis que previram comportamentos que não existiam na abordagem
do especialista. Além disso, diretivas para aplicar a metodologia SOLIMVA a um
segundo estudo de caso do domı́nio espacial, relacionado ao Segmento Solo, são
também apresentadas. As principais vantagens em aplicar a metodologia SOLIMVA
no contexto de um processo de Verificação e Validação são a facilidade de uso e o
suporte de um método formal, fazendo com que a metodologia seja potencialmente
adequada para ser usada em projetos de software complexos. O objetivo secundário
é a detecção de não completude em especificações de software. A SOLIMVA foi então
estendida para alcançar esse objetivo secundário. Model Checking combinado com
arranjos simples de valores de variáveis e padrões de especificação foram usados para
alcançar essa meta. A metodologia SOLIMVA demonstrou a sua eficiência pelo fato
de detectar 21 defeitos de não completude, ao ser aplicada ao mesmo estudo de caso
principal mencionado anteriormente.

xiii

LIST OF FIGURES

Pág.

2.1 Inclusion relation among the SCCF test criteria considering resettable

models . 21

3.1 Functional architecture defined for QSEE project. Caption: ADC =

Analog-to-Digital Converter; DAQ = Data Acquisition Board; RS-232

= Recommended Standard 232; USB = Universal Serial Bus 48

3.2 QSEE project: software development lifecycle processes, formal technical

reviews, and main deliverables. Caption: SRR = System Requirements

Review; PDR = Preliminary Design Review; DDR = Detailed Design Re-

view; CDR = Critical Design Review; QR = Qualification Review; AR =

Acceptance Review; RB = Requirements Baseline; POCP = PDC-OBDH

Communication Protocol Specification; PECP = PDC-EPPs Commu-

nication Protocol Specification; SwDevPlan = Software Development

Plan; IVVPlan = Independent Verification and Validation Plan; SRS

= Software Requirements Specification; SwDesign = Software Design

Document; SwTSP = Software Test Specification and Plan; SwTR =

Software Test Report; SWPDCCode = SWPDC’s Source Code; UsrMan

= User Manual; SwAccPlan = Software Acceptance Test Plan; SwAcc-

Spec = Software Acceptance Test Specification; SwAccReport = Software

Acceptance Test Report . 50

3.3 Version 1.0 of the SOLIMVA methodology 51

3.4 The Define Scenarios activity of the SOLIMVA methodology: activity

diagram . 54

3.5 The Define Scenarios activity of the SOLIMVA methodology: procedure 55

3.6 Piece of the entire Statechart model related to a scenario: correct model 62

3.7 Piece of the entire Statechart model related to a scenario: incorrect model 62

3.8 The GTSC architecture. Caption: PcML = PerformCharts Markup Lan-

guage, XML = Extensible Markup Language 63

3.9 Main algorithm for generating BSAO tuples: activity diagram 66

3.10 Main algorithm for generating BSAO tuples: procedure 68

3.11 Main algorithm for the translation of BSAO tuples into models: activity

diagram . 73

3.12 Main algorithm for the translation of BSAO tuples into models: procedure 75

3.13 Refinement based on domain information: activity diagram 77

xv

3.14 Refinement based on domain information algorithm: procedure 78

3.15 Main WSD refinement algorithm: activity diagram 83

3.16 Main WSD refinement algorithm: procedure 84

3.17 A small part of the entire sense dependency graph due to requirements

SRS001 and SRS002 . 85

3.18 The algorithm to add hierarchy into the model: activity diagram 87

3.19 The algorithm to add hierarchy into the model: procedure 88

4.1 Organization of PDC’s Data Memory. Caption: Pg = Page 96

4.2 The main Statechart model derived from NL requirements that charac-

terize normal scenario 71 . 100

4.3 Normal scenario 71: COMPOSITE state Nominal Operation Mode 101

4.4 Normal scenario 71: COMPOSITE state Safety Operation Mode 2 101

4.5 Normal scenario 71: COMPOSITE state Safety Operation Mode 102

4.6 Expert’s scenario 4: main Statechart model 112

4.7 SOLIMVA’s normal scenario 50: main Statechart model 113

4.8 SOLIMVA’s normal scenario 50: Safety Operation Mode 113

4.9 SOLIMVA’s normal scenario 17: main Statechart model 114

4.10 SOLIMVA’s normal scenario 17: Safety Operation Mode 115

4.11 SOLIMVA’s normal scenario 17: Safety Operation Mode 2 116

4.12 Expert’s scenario 8: NomM HkData . 117

4.13 SOLIMVA’s normal scenario 72: Nominal Operation Mode 119

4.14 SOLIMVA’s normal scenario 142: Nominal Operation Mode 120

4.15 SOLIMVA’s unfolded scenario 109.3: Nominal Operation Mode 123

4.16 Expert’s scenario 12: main Statechart model 125

4.17 Expert’s scenario 12: NomM DmpPg0 126

4.18 SOLIMVA’s unfolded scenario 73.2: Nominal Operation Mode (Part 1) . 131

4.19 SOLIMVA’s unfolded scenario 73.2: Nominal Operation Mode (Part 2) . 132

4.20 SOLIMVA’s normal scenario 143: a piece of the COMPOSITE state

Nominal Operation Mode . 134

4.21 Expert’s scenario 5: main Statechart model 136

4.22 Functional architecture of SATCS . 145

5.1 Version 2.0 of the SOLIMVA methodology. Caption: incomp = incom-

pleteness defect . 164

5.2 Sub-activities of the Analyze Incompleteness activity 167

5.3 More detailed and sequential view of the Analyze Incompleteness activity:

activity diagram . 168

5.4 More detailed and sequential view of the Analyze Incompleteness activity:

procedure . 169

xvi

5.5 A small part of the finite-state model for valprim3 = nominal 175

B.1 Graphical User Interface of the SOLIMVA tool 232

B.2 SWPDC case study: the Dictionary tab 233

B.3 The Scenarios tab . 234

B.4 The Requirements tab . 235

B.5 The Requirements tab already filled with the set of NL requirements that

characterize SOLIMVA’s normal scenario 71 236

B.6 The Model Generation tab . 237

B.7 Class Hierarchy of version 1.0 of the SOLIMVA tool 238

xvii

LIST OF TABLES

Pág.

2.1 Adaptation of Mathur’s definition for the classifier source of test gener-

ation. Caption: Cat = Category . 16

2.2 Adaptation of Mathur’s definition for the classifier lifecycle phase in

which testing takes place . 16

2.3 CTL’s path quantifiers and temporal modalities 24

2.4 Subset of the Statecharts language supported by PerformCharts/GTSC.

Features marked with X are supported 32

3.1 Simplified choice of factors and levels for the SWPDC case study 57

3.2 Normal scenarios due to the factors and levels of Table 3.1. Caption:

#Scn = Scenario number . 58

3.3 Unfolding normal scenario 8: simplified choice of factors and levels 59

3.4 Generation of a BSAO tuple. Caption: Cat = Category 70

3.5 BSAO tuples obtained from requirements SRS001 and SRS002 76

3.6 Piece of the model set obtained from the BSAO tuples in Table 3.5.

Caption: #Tr = Transition number . 76

3.7 Piece of the model set after the refinement based on domain information.

Caption: #Tr = Transition number . 80

3.8 Piece of the model set after the WSD refinement. Caption: #Tr = Tran-

sition number . 86

4.1 Sample of the Name set and the Reactiveness function for the SWPDC

case study . 93

4.2 Sample of the Semantic Translation Model for the SWPDC case study . 94

4.3 Factors and levels for the SWPDC case study 95

4.4 Unfolding normal scenarios 73 and 94 . 97

4.5 Factor combinations for creating unfolded scenarios from normal sce-

narios 73 and 94. Caption: Min/Max = Minimum/Maximum allowed

memory address; LessMin/GreatMax = Less/Greater than Minimum/-

Maximum allowed memory address; InRng = Address between Min and

Max (In Range) . 98

4.6 Total number of scenarios for the SWPDC case study 98

4.7 Set of NL requirements that characterize normal scenario 71. Caption:

Req = Requirement; Id = Identification 99

4.8 Abstract Test Suites for normal scenario 71 103

xix

4.9 Examples of the translation from the Abstract Test Suite into the Exe-

cutable Test Suite. Caption: Abs = Abstract 104

4.10 More examples of the translation from the Abstract Test Suite into the

Executable Test Suite. Caption: Abs = Abstract 105

4.11 Executable Test Suites translated from the Abstract Test Suites for

normal scenario 71 . 106

4.12 Scenarios 1 to 10 of the expert: a comparison between the expert’s

approach and SOLIMVA from the perspective of coverage of test objectives109

4.13 Scenarios 11 to 20 of the expert: a comparison between the expert’s

approach and SOLIMVA from the perspective of coverage of test objectives110

4.14 Unfolding normal scenario 109. Caption: Min/Max = Minimum/Maxi-

mum allowed memory address; LessMin/GreatMax = Less/Greater than

Minimum/Maximum allowed memory address; InRng = Address between

Min and Max (In Range); LessPrev = Less than the last memory address

previously loaded with executable code 120

4.15 Set of NL requirements that characterize unfolded scenario 109.3. Cap-

tion: Req = Requirement; Id = Identification 122

4.16 Set of NL requirements that characterize unfolded scenario 73.2. Caption:

Req = Requirement; Id = Identification 128

4.17 Sample of the set of NL requirements that characterize normal scenario

143. Caption: Req = Requirement; Id = Identification 133

4.18 A comparison between expert’s and SOLIMVA’s Executable Test Suites:

expert’s scenario 5 and SOLIMVA’s normal scenario 71. Caption: #ETC-

E/-S = number of Executable Test Case within the Executable Test Suite

obtained from expert’s (E) and SOLIMVA’s (S) approaches 137

4.19 Executable Test Suites due to expert’s scenario 4, SOLIMVA’s normal

scenarios 50 and 17, and the all-transitions test criterion 140

4.20 A comparison between expert’s and SOLIMVA’s Executable Test Suites:

expert’s scenario 4 and SOLIMVA’s normal scenarios 50 and 17. Caption:

#ETC-E/-S = number of Executable Test Case within the Executable

Test Suite obtained from expert’s (E) and SOLIMVA’s (S) approaches . 141

4.21 Factors and levels for the CMD/SATCS case study 147

4.22 CMD/SATCS case study: normal scenarios due to the factors and levels

of Table 4.21. Caption: #Scn = Scenario number 148

4.23 Mapping between the documents’ titles in English and Portuguese 159

5.1 Characteristics and values for developing the finite-state model for

valprim3 = nominal . 173

xx

5.2 Incompleteness defects due to the Absence Pattern and Globally Scope.

Caption: Exp = Expected; Install = Installability; Docum = Documen-

tation; R = set of reachable states . 176

5.3 Details of the clusters of selected valsec2k for sec2 = cmd. Caption:

#Cl = Cluster number; Det = Determinant factor; TtPerm = Total of

Permutations; Sci = Scientific; Load = Loading; Hk = Housekeeping;

Dmp = Dump . 177

5.4 First 8 incompleteness defects due to the Soft Response Pattern and

Globally Scope/Precedence Pattern and Globally Scope. Caption: Usab

= Usability; Install = Installability; cmd = command 179

5.5 Last 8 incompleteness defects due to the Soft Response Pattern and

Globally Scope/Precedence Pattern and Globally Scope. Caption: Usab

= Usability; Install = Installability; cmd = command 181

5.6 Summary of the application of the SOLIMVA methodology to address

incompleteness in software specifications: SWPDC case study 183

A.1 Profile of the collected requirements: SWPDC case study 220

xxi

LIST OF ABBREVIATIONS

BSAO – Behavior-Subject-Action-Object
CTL – Computation Tree Logic
DNF – Disjunctive Normal Form
ECSS – European Cooperation for Space Standardization
EFSM – Extended Finite State Machine
EPP – Event Pre-Processor
FSM – Finite State Machine
GTSC – Geração Automática de Casos de Teste Baseada em Statecharts
IEEE – The Institute of Electrical and Electronics Engineers
INPE – Instituto Nacional de Pesquisas Espaciais
IUT – Implementation Under Test
LTL – Linear Temporal Logic
NASA – National Aeronautics and Space Administration
NL – Natural Language
NLP – Natural Language Processing
OBDH – On-Board Data Handling
PBR – Perspective-Based Reading
PDC – Payload Data Handling Computer
PhD – Philosophiae Doctor (Doctor of Philosophy)
POS – Part Of Speech
PUS – Packet Utilization Standard
QSEE – Qualidade do Software Embarcado em Aplicações Espaciais
RE – Software Systems Requirements Engineering
SAO – Subject-Action-Object
SATCS – Satellite Control System
SCCF – Statechart Coverage Criteria Family
SMV – Symbolic Model Verifier
SWPDC – Software for the Payload Data Handling Computer
UML – Unified Modeling Language
WSD – Word Sense Disambiguation

xxiii

CONTENTS

Pág.

1 INTRODUCTION . 1

1.1 Motivation . 2

1.1.1 Requirements: importance and documentation 4

1.2 Objectives . 9

1.2.1 Primary Objective . 9

1.2.2 Secondary Objective . 10

1.3 A proposal to achieve the objectives . 10

1.4 Organization of this PhD thesis . 11

2 THEORETICAL BASIS . 13

2.1 Verification and Validation . 13

2.1.1 Software Testing and test case generation 14

2.1.1.1 Model-Based Testing . 17

2.1.1.2 The Statechart Coverage Criteria Family 19

2.1.1.3 Combinatorial designs . 21

2.1.2 Formal Verification . 22

2.1.2.1 Model Checking . 23

2.2 Natural Language Processing . 25

2.2.1 Word Sense Disambiguation . 25

2.3 Related work . 28

2.3.1 Model-Based Testing . 28

2.3.2 Software Testing based on Natural Language requirements 34

2.3.3 Analysis of defects in Natural Language requirements 34

2.3.4 Translation of requirements . 40

2.3.5 Formal methods and requirements specifications 42

2.4 Final remarks about this chapter . 46

3 THE SOLIMVA METHODOLOGY 47

3.1 Main case study: software embedded in satellite payload 47

3.2 Description of version 1.0 of the SOLIMVA methodology 50

3.3 Model generation . 64

3.3.1 Generation of tuples . 64

3.3.1.1 Relation with typed dependencies . 72

xxv

3.3.2 Translation from BSAO tuples into behavioral model 72

3.3.2.1 Refinement based on domain information 77

3.3.2.2 Word Sense Disambiguation refinement 79

3.3.2.3 Refinement for adding hierarchy . 86

3.4 Final remarks about this chapter . 91

4 APPLICATION OF THE SOLIMVA METHODOLOGY 93

4.1 Comparing the SOLIMVA methodology with an expert’s approach 108

4.1.1 Coverage of test objectives . 108

4.1.2 Characteristics of Executable Test Cases 135

4.2 A second case study: Satellite Control System 143

4.3 Final remarks about this chapter . 147

5 AN APPROACH TO DETECT INCOMPLETENESS IN SOFT-

WARE SPECIFICATIONS . 161

5.1 Description of version 2.0 of the SOLIMVA methodology 163

5.1.1 The Analyze Incompleteness activity 166

5.2 Case study: SWPDC software product 172

5.3 Final remarks about this chapter . 182

6 CONCLUSIONS . 187

6.1 Solution to achieve the primary objective 187

6.2 Solution to achieve the secondary objective 190

6.3 Future work . 191

6.4 Final remarks about this PhD thesis . 195

REFERENCES . 199

APPENDIX A - SWPDC SOFTWARE PRODUCT: NATURAL

LANGUAGE REQUIREMENTS . 219

A.1 Requirements collected from the Requirements Baseline 220

A.2 Requirements collected from the Software Requirements Specification . . 221

A.3 Requirements collected from the PDC-OBDH Communication Protocol

Specification . 228

A.4 Requirement collected from the PDC-EPPs Communication Protocol

Specification . 230

APPENDIX B - THE SOLIMVA TOOL 231

xxvi

1 INTRODUCTION

The various reports of serious problems in systems that have occurred due to defects

in software have drawn attention, for some time already, from academicians and

industry professionals. These researchers and practitioners have thus insisted on the

use of standards, methodologies, techniques for developing software to try to ensure

that, in the end, a high-quality software is produced. The Therac-25 medical electron

accelerator (1985-1987) (LEVESON; TURNER, 1993), the Ariane-5 rocket (1996) (ESA,

1997), and the Mars Climate Orbiter (1999) (NASA JET PROPULSION LABORATORY,

2011) are classic examples in which defects in the software were the main cause of

failure of such systems resulting in large financial losses and, in the case of the

Therac-25 device, in losses of human lives.

Quality is therefore a desirable attribute for any kind of product including software.

However, quality is very difficult to define. Specialists provide different perspectives

regarding this broad concept. However, it is possible to identify elements of quality

definitions, such as defect level, defect origins, product complexity, conformance

to requirements, user satisfaction, and robustness (GODBOLE, 2006). Regardless of

perspective, practitioners agree that quality is a major business factor and to acquire

it requires a huge effort from the organizations.

The term Software Assurance has a very wide connotation according to the Na-

tional Aeronautics and Space Administration (NASA). NASA states that Software

Assurance includes several disciplines, among others: Software Quality Assurance,

Software Quality Control, Software Reliability, Software Verification and Valida-

tion, and Software Independent Verification and Validation (NASA, 2009). It

is clear therefore that Verification and Validation (IEEE, 1990) is one of the pillars

to ensure that software products have high quality, and this discipline is particularly

important if critical systems are considered.

Verification and Validation encompass a wide array of activities including formal

technical reviews, inspection (requirements, design, code), and all sorts of testing.

Thus, testing a software product is only a facet to get quality. However, the role of

testing is undoubtedly important and it has received attention from both industry

and academia.

1

1.1 Motivation

Model-Based Testing has drawn attention in both industrial and academic areas

in which several different types of software models have been used in order to guide

test case generation (EL-FAR; WHITTAKER, 2001). Although more related to test

case generation, Model-Based Testing also influences other activities of the testing

process such as test results evaluation (EL-FAR; WHITTAKER, 2001; SANTIAGO et al.,

2008b). As with many other fields of Software Engineering, Model-Based Testing has

different interpretations depending on the author or group of researchers. Definitions

of Model-Based Testing and related work are presented in Chapter 2.

One problem is that test process activities require a huge effort, within the scope of

the software development lifecycle, to be performed and this effort is even greater

if software products developed for critical systems are considered. Thus, Software

Testing automation appeared as an attempt to reduce the costs of testing, increase

fault (defect) detection and shorten testing cycles. Although Software Testing au-

tomation is not a silver bullet to solve all testing problems, if properly planned and

implemented, it can help to achieve cost and effectiveness of test process activities

during the software development lifecycle (SANTIAGO et al., 2008a).

However, it is important to emphasize that in any initiative related to Software

Testing automation, human aspect is still very relevant. Even though there are lots

of commercial and open source tools and frameworks available for this purpose,

in almost all cases human interventions are still necessary to analyze test cases

created by a tool, to evaluate coverage of test cases, to provide expected results of

the test cases, to verify whether a verdict was correctly asserted by an automated

oracle, to generate models in a model-based approach, and so on (SANTIAGO JÚNIOR;

VIJAYKUMAR, 2012).

In order to confirm the importance of the professional (need for manual intervention)

in Software Testing automation, a recent survey was published with the purpose

of characterizing Model-Based Testing techniques (approaches) usually employed

in software development projects described in the technical literature (DIAS NETO

et al., 2007; DIAS NETO, 2009). In the first part of this systematic review (DIAS

NETO et al., 2007), 202 articles were found which dealt with Model-Based Testing

techniques. Considering 78 out of the 202 articles, analysis was conducted in two

levels: qualitative and quantitative. One attribute of the quantitative analysis was

the level of automation of the approaches. The authors concluded that all analyzed

Model-Based Testing approaches have at least one non automated step: the initial

2

modeling of software behavior. Besides, in some approaches the initial modeling is

a hard task, involving translation between models, data modeling, etc. They found

other types of non automated steps such as manual modeling of intermediate model

or test data definition (DIAS NETO et al., 2007).

In system and acceptance testing, test cases/sequences are derived considering the

entire software product. In this case, black box testing techniques (MATHUR, 2008)

are usually adopted. Besides, a scenario-based approach is also recommended for

system and acceptance test case generation where distinct interactions with the

system are addressed.

In order to generate model-based system and acceptance test cases, a test designer

usually breaks down the entire system based on functionalities it must provide (or

interactions with the system in case of scenario-based approaches), and then models

are derived to address each functionality. Based on such models, test cases can

be obtained. However, identification of scenarios that consequently leads to test

case generation is not an easy task and it is time consuming. Test designers try

to identify scenarios based on the very first deliverables (artifacts) created within

the software development lifecycle1, such as software requirements specifications.

Even though a development team might produce software requirements specifications

using scenario-based methods, like Unified Modeling Language (UML) use case

models (OMG, 2007), a test designer must not rely only on the “perspective” of

the developers because, in doing so, he/she will not have the independent point of

view that is crucial in test case generation.

Dynamic analysis is the process of evaluating a system or component based on

its behavior during execution (IEEE, 1990). Therefore, Software Testing can be

considered a type of dynamic analysis technique. There are many other dynamic

analysis techniques such as: Ernst et al. (2001) used dynamic techniques for discov-

ering invariants from execution traces to support software evolution; Ammons et al.

(2002) proposed a technique to produce specifications based on program execution

and also enable such artifacts to be used by Formal Verification tools to find faults

(defects); and Lorenzoli et al. (2008) addressed the generation of models of relations

between data values and component interactions based on GK-tail, a technique to

automatically generate Extended Finite State Machines (EFSMs) from interaction

traces.

1In this PhD thesis, software development lifecycle models refer to the more traditional models
such as the Waterfall model and V-model. Moreover, the nomenclature of the phases of these models
can vary depending on the author who describes the model and also the models themselves.

3

On the other hand, static analysis is the process of evaluating a system or compo-

nent based on its form, structure, content, or documentation (IEEE, 1990). Hence,

program execution is not required in static analysis. Inspection is an example of

a classic static analysis technique that relies on visual examination of development

products to detect defects2, violations of development standards, and other problems

(IEEE, 1990). Although most commonly applied to code and design (TRAVASSOS et

al., 1999), Inspections have also been used for identifying defects in requirements.

Software Reading Techniques attempt to increase the effectiveness of Inspections

by providing procedural guidelines that can be used by individual reviewers to

examine a given software artifact and identify defects. They can be performed on

all documents related to the software development process and also during the very

earlier phases of the software lifecycle, attempting to avoid propagation of problems

to other stages of development. There are families of Software Reading Techniques

that focus on defect detection in requirements such as Defect-Based Reading (DBR)

(PORTER et al., 1995) and Perspective-Based Reading (PBR) (BASILI et al., 1996).

1.1.1 Requirements: importance and documentation

There are several publications in the literature that show that problems in re-

quirements are serious factors that affect the quality of software products. Some

studies revealed that more than 50% of software defects are attributed to problems

in requirements and more than 80% of rework effort is spent on requirements-related

defects (FERGUSON; LAMI, 2005). Lamsweerde (2000) quoted that in “a survey over

8000 projects undertaken by 350 US companies revealed that one third of the projects

were never completed and one half succeeded only partially, that is, with partial

functionalities, major cost overruns, and significant delays”. Managers identified

requirements as the main cause of failures in accordance with the following problems:

the lack of user involvement (13%), requirements incompleteness (12%), changing

requirements (11%), unrealistic expectations (6%), and unclear objectives (5%).

Emam and Koru (2008) questioned arguments that there is still a software crisis

triggered by the Standish Group by publishing its CHAOS report in 1994. This

report indicated a high cancellation rate for software projects. They conducted a

replicated international web survey of Information Technology (IT) departments in

2005 and 2007. Among the goals of this survey are the estimation of IT projects’ ac-

tual cancellation rates and the determination of what factors have the biggest impact

2Although the IEEE Standard Glossary of Software Engineering Terminology (IEEE, 1990) uses
the term “errors”, this PhD thesis will prefer the term “defects” to mean any non-correctness in the
artifacts of the software product. Chapter 2 has additional comments on this topic.

4

on cancellation. Considering IT software projects only, they asserted that talking

about a software crisis is perhaps exaggerated: their measurements showed that the

IT project cancellation rate ranged from 11.5% to 15.5% and, since 1994, there

has been a clear trend of decreasing cancellation rates across all studies. However,

changes in requirements and scope were primary reasons for project cancellation.

Again, this survey demonstrates the importance of the requirements in the success

or failure of software projects.

Other study was conducted to investigate the current state of Software Systems

Requirements Engineering (RE) problems and practices amongst the software devel-

opment companies in Malaysia (SOLEMON et al., 2009). The authors concluded that

organizational and technical factors were major obstacles to obtaining appropriate

software requirements by the software companies involved in the study.

By defining software quality, Pressman (2001) emphasizes, among other things, that

software requirements are the basis from which quality is measured. Lack of confor-

mance to requirements is lack of quality. However, one problem arises when software

requirements specifications are poorly developed and, therefore, good requirements

specifications are a valuable starting point towards high-quality software.

Based on these arguments, it is clear that RE also contributes to software quality.

RE is the process of discovering the purpose of a software system. Nuseibeh and

Easterbrook (2000) define 5 core RE activities: elicitation, modeling and analysis3,

communication, agreement, and evolution. Elicitation is the process of gathering

requirements information, and it is closely related to other RE activities. Modeling

refers to the development of abstract descriptions that are amenable to interpreta-

tion. Several analysis techniques exist once requirements are modeled. Requirements

shall be effectively communicated among the diferent stakeholders, and the way

in which requirements are documented plays an important role regarding this. As

the name implies, agreement refers to the fact that stakeholders get consensus

about the requirements. Software systems are dynamic, i.e. they evolve. Stakeholders

requirements also change. Thus, evolution is a natural characteristic of requirements.

Requirements may be elicited according to several techniques. Traditional techniques

include the use of questionnaires and surveys, interviews, and analysis of existing

3There are different activities within requirements analysis such as state-mode analysis, use-
case analysis, trade-off analysis, negotiation (KO et al., 2007), and quality analysis. In this work,
requirements analysis refers to the latter, which focuses on improving the quality of requirements
specifications by detecting and removing defects like inconsistency, incompleteness, and ambiguity.

5

documentation. Model-driven techniques can also be used in the elicitation process

and among these techniques are scenario-based methods, such as UML use case mod-

els (OMG, 2007), and goal-oriented methods, such as Tropos (BRESCIANI et al., 2004).

Models can then be used to represent a whole range of products of the RE activities.

In addition, as mentioned, many modeling techniques are used as elicitation tools.

It is crucial that the requirements are communicated to different stakeholders in an

appropriate way for a proper understanding of such requirements. Requirements can

be documented in artifacts like software requirements specifications by using several

different approaches such as formal methods, semi-formal and informal (natural)

languages (NUSEIBEH; EASTERBROOK, 2000).

The academic community has been advocating the use of formal methods (lan-

guages/models) for the development of hardware and software systems for quite

some time (HALL, 1990; BOWEN; HINCHEY, 1995). According to their supporters,

formal methods are very helpful at finding defects early within the development,

they compel professionals to think very hard about the system they propose to

build, they can reduce development costs and improve product quality (HALL, 1990).

Mathematical rigor enables customers, developers, validators, verifiers to analyze the

system at any phase of the software development lifecycle.

Woodcock et al. (2009) undertook a survey to gather information in a consistent

format from 62 industrial projects known to have employed formal methods. They

collected data between November/2007 and December/2008 and the projects sur-

veyed came (in decreasing order) from Europe, Northern America, South America,

Australia, and Asia. The application domain which had the largest number of

projects was transport, followed by the financial sector. In general, respondents

have been positive about the successful use of formal methods in their projects.

For 35% of the individuals, time was reduced due to application of formal methods

while 12% said that time increased. However, several noted increased time in the

specification phase, which may or may not have been compensated for by decreasing

time later. Cost was reported to be decreased in 37% of the projects while only

7% of the projects had increased costs. The use of formal methods is believed by

professionals to have improved quality, with 92% of all cases reporting an increase in

quality compared to other techniques, and no cases reporting a decrease in quality.

The numbers shown in the survey of Woodcock et al. (2009) are very favorable for the

adoption of formal methods for systems development in industry. Model Checking

(CLARKE; EMERSON, 2008; QUEILLE; SIFAKIS, 2008; BAIER; KATOEN, 2008) and

6

proof technology continue to be used by leading hardware companies. In software,

the use of formal methods has provided some evidence of the potential for certain

applications, including code verification. However, Woodcock et al. (2009) claimed

that “In spite of their successes, verification technology and formal methods have

not seen widespread adoption as a routine part of systems development practice,

except, arguably, in the development of critical systems in certain domains”. This

statement confirms what has long been said about formal methods: despite all the

benefits, formal methods have not yet been a widely adopted practice in systems

development, and particularly in software. One justification for this fact is that

the cost of introducing formal methods seems to be extremely high for software

project managers. This view is also shared by Abrial (2006) who asseverated that

formal methods are difficult to integrate with the ordinary software development

process adopted in industry and, consequently, managers usually avoid the inclusion

of formal methods in their established processes.

It is almost inconceivable to think about an industrial project that can proceed with-

out tools. In accordance with several studies previously presented in the literature

and also with this new survey (WOODCOCK et al., 2009), the lack of commercially

supported tools is an impediment to take-up of formal methods. Woodcock et al.

(2009) also remark that some comments in their survey indicate that tools are still

not usable, in the words of one respondent, “by mere mortals”. They identified some

challenges for the development of tools to support formal methods such as support

for automated deduction, and common formats for the interchange of models and

analysis. Besides, they point out practical issues to be addressed such as providing

multi-language support, porting to a variety of platforms, and version control.

Some authors assert that UML is currently the de facto standard for modeling

(object-oriented) software, and its use is increasing in the aerospace industry

(ZOUGHBI et al., 2011). Mich et al. (2004) presented an online market research

conducted in 1999 in which 142 software companies were involved. The principal

goal of this survey was to assess if there is a market for Natural Language Processing

(NLP)-enabled Computer-Aided Software Engineering (CASE) tools. Although

conducted some time ago, this survey has pointed to the considerable use of UML

in the companies surveyed (77%) and this shows that UML is a standard that has

been keeping its acceptance in the industrial context for some time. But specifically

with regard to the documentation of requirements, they found that “The majority

of the documents available for requirements analysis are in natural language and

are either furnished by the customer or obtained by means of interviews”. Precisely,

7

79% of requirements documents were developed in common Natural Language

(NL), 16% in structured NL (e.g. templates, forms), and only 5% used some sort

of formal language. By merging the two first classes, 95% of the requirements

documents were written in NL.

The key point is that NL is straightforward and, of course, stakeholders are familiar

with such language. Mich et al. (2004) also mention some advantages of using NLP

tools to support the development of software systems in general and requirements

analysis in particular. Among others, these NLP tools may help the analyst to

concentrate on the problem rather than on the modeling, achieve traceability as

from the very first documents produced, and manage more efficiently the problem of

changes in requirements. Moreover, NL may be associated with requirements mod-

eling methods, like UML use case models where a textual description exists in order

to narrate the behavior by means of a sequence of actor-system interactions (SINHA

et al., 2007; FANTECHI et al., 2003). So even in use case requirements specificatons NL

is present to describe the UML use case models. The conclusion is that in greater

or lesser extent, due to its simplicity, NL is still widely used to develop software

requirements specifications or other artifacts created for documenting requirements.

Unfortunately, there are serious problems if NL is selected for the creation of software

requirements specifications. Most notably, ambiguity (BERRY et al., 2003; FANTECHI

et al., 2003), poor understandability, incompleteness and inconsistency (GNESI et al.,

2005) make software requirements specifications unclear, and since they are created

early within the software development lifecycle, their defects affect the next software

artifacts, including source code, to be developed. Furthermore, poorly developed

requirements specifications can give rise to risks such as acceptance, availability,

performance, reliability, reproducibility, supportability, utility, cost, and schedule

risks (WILSON et al., 1997).

On the other hand, Nuseibeh and Easterbrook (2000) argue that “The idea that the

attempt to build consistent and complete requirements models is futile, and that

RE has to take seriously the need to analyse and resolve conflicting requirements,

to support stakeholder negotiation, and to reason with models that contain incon-

sistencies”. However, in order to follow these guidelines, the aforementioned issues

(inconsistency, incompleteness, etc.) must be first properly detected. For instance,

if an inconsistency defect is detected in a software requirements specification, such

inconsistency may be tolerated, and resolved at a later stage. This is known as

the tolerating inconsistency approach (BALZER, 1991). Requirements can continue

8

evolving, and inconsistency is nonblocking in this proposal (GERVASI; ZOWGHI,

2005). But to adopt the tolerating inconsistency approach, the inconsistency defect

itself must be first detected.

1.2 Objectives

Summarizing the various observations that have been previously emphasized and

that, in fact, were the reasons that motivated the development of this PhD thesis,

it can be stated:

a) In model-based system and acceptance test case generation, and partic-

ularly taking into account NL requirements documents, identification of

scenarios, their respective models and test case generation are arduous

and time-consuming tasks, especially for real complex applications such

as software embedded in on-board computers of satellites. Moreover, it

is interesting to think about a solution based on mathematical methods

to define the total number of scenarios to stimulate the Implementation

Under Test (IUT), i.e. the software that is the target of testing, with test

cases;

b) Despite the many benefits related to formal methods, such approaches are

not largely adopted for software development in general. On the other hand,

NL is still widely used to develop software requirements specifications,

either alone or making part of UML use case models;

c) Defects in software requirements specifications like inconsistency and in-

completeness are propagated to other artifacts created during the software

development lifecycle. Thus, several undesirable situations may occur such

as the customer does not accept the delivered product, a significant increase

in costs for developing the software product, and poor performance.

This PhD thesis has therefore two objectives as defined in the sequence.

1.2.1 Primary Objective

The primary objective of this PhD thesis is to generate model-based sys-

tem and acceptance test cases considering NL requirements deliverables

(artifacts).

This is really a challenging objective to be achieved due to the various problems

9

previously mentioned in NL software requirements specifications and also due to the

complexity of deriving a model that is appropriate for generating test cases from NL

requirements.

1.2.2 Secondary Objective

The secondary objective of this PhD thesis is the detection of incom-

pleteness in software specifications.

This goal therefore relates to improving the quality of the software specifications

and in the end, it will almost certainly improve the quality of the software product

as a whole.

1.3 A proposal to achieve the objectives

In order to reach the goals set for this PhD thesis, a methodology named

SOLIMVA4 was then developed. The first version of the SOLIMVA methodology,

version 1.0, was developed to achieve the primary objective of this PhD thesis. For

this purpose, a tool, also called SOLIMVA, was designed and implemented and such

a tool makes it possible to automatically translate NL requirements into Statechart

models (HAREL, 1987). Once the Statecharts are created, another tool, the Geração

Automática de Casos de Teste Baseada em Statecharts (GTSC - Automated Test

Case Generation based on Statecharts) environment (SANTIAGO et al., 2008b), is

used to generate Abstract Test Cases which are later translated into Executable

Test Cases. Version 1.0 of the SOLIMVA methodology relies on combinatorial

designs (MATHUR, 2008) to identify scenarios for system and acceptance testing.

The SOLIMVA tool uses computational linguistics techniques (Part Of Speech

Tagging (TOUTANOVA et al., 2003), Word Sense Disambiguation (NAVIGLI, 2009))

in order to reason about some behavioral and semantic aspects of the model to be

generated.

The SOLIMVA methodology was applied to a main case study, a space application

software product (SANTIAGO et al., 2007) related to the Space Segment, and the

methodology was compared with a previous manual approach developed by an expert

under two aspects: coverage of test objectives and characteristics of Executable Test

Cases. This case study has almost all the functions of software for data handler

computers for space applications, and thus its characteristics are representative of

an important class of complex software in the Space Segment. In addition, guidelines

4The term “SOLIMVA” is a tribute to the family of the author of this PhD thesis.

10

to apply the SOLIMVA methodology to a second case study of the space domain

related to the Ground Segment (CARDOSO et al., 2008) are also presented.

The SOLIMVA methodology was then extended to achieve the secondary objective

of this PhD thesis. Model Checking (CLARKE; EMERSON, 2008; QUEILLE; SIFAKIS,

2008; BAIER; KATOEN, 2008) combined with k-permutations of n values of variables

and specification patterns (DWYER et al., 1999) were used to address this goal. Thus,

this extension generated version 2.0 of the SOLIMVA methodology. The new and

most important activity of version 2.0 of SOLIMVA was applied to the same case

study of the Space Segment (SANTIAGO et al., 2007) in which version 1.0 of the

SOLIMVA methodology was used.

With respect to Verification and Validation, version 1.0 of the SOLIMVA method-

ology is related to Software Testing (type of dynamic analysis technique) while the

new activities of version 2.0 of the methodology are related to Software Inspection

(type of static analysis technique). In the perspective of RE, the new activities of

version 2.0 of the SOLIMVA methodology fall within the activity of modeling and

analysis.

Some observations should be made about the meaning of the term “SOLIMVA”

used in the text of this PhD thesis. As explained earlier in this section, SOLIMVA

is a methodology that has two versions. The terms “SOLIMVA methodology” and

“SOLIMVA” both refer to the methodology itself. Depending on the context and if

they are used alone (without explicit indication of the version number), these terms

can represent either version 1.0 or version 2.0 of the methodology. In addition, version

1.0 of the SOLIMVA methodology is supported by two main tools: the SOLIMVA

tool and the GTSC environment. In the context of this work, the most relevant of

these two tools is the SOLIMVA tool. When referring to the SOLIMVA tool in the

text of this PhD thesis, the term “SOLIMVA tool” will be explicitly written to avoid

confusion with the SOLIMVA methodology.

1.4 Organization of this PhD thesis

This introductory chapter presented the context, the motivations that led to the

development of this PhD thesis as well as the objectives of this work and a general

description of the proposal to achieve the goals. The organization of the remaining

text of this PhD thesis is as follows:

11

∙ Chapter 2 presents the theoretical basis for developing this PhD thesis and

related work. The theories discussed in this chapter are, among others,

Model-Based Testing, combinatorial designs, Formal Verification (Model

Checking), and Natural Language Processing;

∙ Chapter 3 presents version 1.0 of the SOLIMVA methodology which ad-

dresses the primary objective of this work. First, a brief description of the

main case study is made. The methodology was applied to this main case

study. This description is important because, by detailing version 1.0 of

the SOLIMVA methodology, simple examples are considered and most of

these examples are taken from this case study;

∙ Chapter 4 shows in detail the application of version 1.0 of the SOLIMVA

methodology and supporting tools (SOLIMVA tool and GTSC environ-

ment) to the main case study. The comparison between the SOLIMVA

methodology and the expert’s (manual) approach under the aspects of

coverage of test objectives and characteristics of Executable Test Cases

are also detailed in this chapter. Moreover, guidelines to apply SOLIMVA

to a second case study are also presented;

∙ Chapter 5 presents version 2.0 of the SOLIMVA methodology to address

the secondary objective of this work. The results obtained by applying the

new and most important activity of version 2.0 of SOLIMVA to the main

case study are also shown;

∙ Chapter 6 shows the conclusions of this work as well as future directions

to follow;

∙ Appendix A presents all NL requirements collected from the deliverables

(documents) prepared for the main case study, and which were used by

the SOLIMVA methodology and by the SOLIMVA tool to generate model-

based system and acceptance test cases;

∙ Appendix B shows an overview of the most relevant tool that supports

the SOLIMVA methodology, i.e. the SOLIMVA tool, in order to generate

model-based system and acceptance test cases considering NL requirements

deliverables.

12

2 THEORETICAL BASIS

This chapter presents the theoretical basis for developing this PhD thesis and related

work. The chapter is divided into four major sections. Sections 2.1 and 2.2 and their

respective sections describe the theoretical background. Section 2.3 and its sections

present some of the research literature related to this PhD thesis. Section 2.4 has

concluding remarks on this chapter.

2.1 Verification and Validation

As mentioned in Chapter 1, Verification and Validation is a discipline related to

Software Assurance. In this PhD thesis, these terms are defined in accordance with

the IEEE Standard Glossary of Software Engineering Terminology (IEEE, 1990) as

follows:

a) Verification: the process of evaluating a system or component to determine

whether the products of a given development phase satisfy the conditions

imposed at the beginning of that phase;

b) Validation: the process of evaluating a system or component during or

at the end of the development process to determine whether it satisfies

specified requirements.

There is some confusion about the meaning of Verification and Validation in the Soft-

ware Engineering community. However, by the definitions given above, Validation

relates to checking that the software product will achieve what customers actually

need, while Verification refers to whether the software is well-engineered and that

it has the fewest number of defects. Verification will help to determine whether a

high-quality software has been produced, but it will not ensure that the software is

indeed useful (EASTERBROOK, 2010). Nevertheless, there is another definition for

Verification which will be discussed in Section 2.1.2.

Three important concepts are related to Verification and Validation: fault, error, and

failure. Dependability researchers consider them the impairments to dependability

(LAPRIE; KANOUN, 1996). In this work, fault and error are defined according to the

IEEE Standard Glossary of Software Engineering Terminology (IEEE, 1990), and

failure in accordance with Laprie and Kanoun (1996) as follows:

a) Fault: an incorrect step, process, or data definition. For example, an incor-

rect instruction in a computer program;

13

b) Error: the difference between a computed, observed, or measured value or

condition and the true, specified, or theoretically correct value or condition.

For example, a difference of 30 meters between a computed result and the

correct result;

c) Failure: when an error passes through the system-user interface and affects

the service delivered by the system.

Defect is another term used as a synonym of fault. By reasoning about the above

definitions, one can assert that a fault may or may not lead to an error which

in turn may or may not lead to a failure. Hence, not always a fault provokes an

error because it is likely that a certain part of the source code has never been went

through neither during the testing activities nor after the product was delivered

to the customer. Likewise, an error may occur but the user may not perceive the

problem and then a failure is not identified.

Despite the fact that the above definition given for defect (fault) seems to be

more related to the artifact source code, in this work the term defect is used to

represent any non-correctness in several other artifacts created during the software

development. For example, a defect may be a wrong instruction in the source code

but it can also be incompleteness in requirements documents.

2.1.1 Software Testing and test case generation

The simplest definition of Software Testing was given by Myers (2004): “Testing

is the process of executing a program with the intent of finding errors”.1 Thus, a

good test strategy is one that finds defects in the IUT. Myers (2004) presented a

very interesting perspective regarding the psychology of testing and enunciated ten

vital Software Testing principles. For instance, he argues that “a programmer should

avoid attempting to test his or her own program”. The idea is that a programmer

knows exactly what his/her program is supposed to do and may not realize that

some defects exist. Moreover, in general, no one wants to find defects in one’s own

product. It is a destructive feeling.

Software Testing is a process/method related to Verification and Validation. A

Software Testing process is composed of a set of activities and organizations can

adopt different solutions. Typical activities include Plan Test (IEEE, 1998), Gener-

1However, in accordance with the definition given earlier and also with this perspective of Myers
(2004), it is more adequate to use the term “defect” because the main intention of Software Testing
would be to find non-correctness in the source code.

14

ate/Select Test Cases (MATHUR, 2008), Execute Test Cases (SANTIAGO et al., 2008a),

Evaluate Test Results (the oracle problem) (WEYUKER, 1982; BINDER, 1999), and

Select Test Cases for Regression Testing (MATHUR, 2008). In the sequence, only

the Generate/Select Test Cases activity will be discussed because it is the one most

associated with this PhD thesis.

Applying exhaustive testing is not feasible. Thus, one must find a way to select a

set of inputs from the input domain of a program P so that this set can find the

maximum number of defects (faults). The Generate/Select Test Cases activity aims

to deal with this issue. Some important definitions are provided below.

Definition 2.1. A test case consists of a set of test input data and the corresponding

expected result. The expected result is the outcome that is expected to occur when

the IUT is stimulated by a certain test input data.

Definition 2.2. A set of test cases is a test suite.

Generating test cases is probably the most studied testing activity by academia and

industry. A very brief discussion of the types of existing testing techniques related

to this activity follows. This discussion is based on the book of Mathur (MATHUR,

2008) who defines five classifiers each of which maps from a set of features to a set of

testing techniques. Two of such classifiers will be discussed: source of test generation

and lifecycle phase in which testing takes place.

Table 2.1 adapts with some slight modifications Mathur’s proposal for the classifier

source of test generation. Table 2.2 adapts the classifier lifecycle phase in which

testing takes place.

Table 2.1 shows that test cases can be generated from informally or formally specified

requirements and without the aid of the source code. This approach is known as black

box testing. Category 1 in this table shows examples of black box testing techniques

based on informal requirements, among others, ad hoc testing and some heuristics

like equivalence partitioning, boundary-value analysis, and the Category-Partition

method (OSTRAND; BALCER, 1988).

Categories 2 and 3 in Table 2.1 will be discussed in Section 2.1.1.1. Test cases derived

from the source code are known as white box testing as shown in category 4 in this

table. According to Mathur (2008), code can be used directly or indirectly for test

case generation. In the former case, a tool, or a test designer, examines the code

15

Table 2.1 - Adaptation of Mathur’s definition for the classifier source of test generation.
Caption: Cat = Category

Cat Source Approach Example

1 Requirements
(Informal)

Black Box - Ad hoc testing
- Boundary-value analysis
- Equivalence partitioning
- Category-Partition method
- Classification trees
- Random testing

2 Requirements
(Formal)

Model-based
Specification

- Statechart testing
- Finite State Machine testing
- B testing
- Z testing
- Pairwise testing

3 UML UML-based
Document

- UML-based testing (state machine,
class, sequence, etc. diagrams)

4 Source Code White Box - Control Flow testing
- Data Flow testing
- Mutation testing

Table 2.2 - Adaptation of Mathur’s definition for the classifier lifecycle phase in which
testing takes place

Phase Testing Level

Coding Unit testing

Integration Integration testing

System Integration System testing

Prerelease Acceptance testing

Maintenance Regression testing

and focuses on a given path to be traversed. A test case is generated to cover this

path. In the indirect case, test cases generated using a black box testing technique

are assessed against white box test coverage criterion. Additional test cases can then

be derived to cover the uncovered portions of the source code. Control flow, data

flow and mutation testing can be used for both direct and indirect white box test

case generation. White box and black box testing techniques have both benefits and

disadvantages and they can be seen as complementary approaches within a Software

Testing process.

Table 2.2 takes into account the fact that testing activities occur throughout the

16

software development lifecycle. When developers are coding, unit testing can be

applied. As a system is usually decomposed into several units, integration testing

takes place when such units starts to be integrated. System testing occurs consid-

ering that the entire system has been developed. A customer can generate his/her

own test suites in order to accept the product developed by a supplier. Actually,

an independent organization may be in charge to create such tests and to apply

them. Thus, acceptance testing comes into picture. Regression testing is useful, and

mandatory, whenever a new version of a product is created by modifying an existing

version. It is important to mention that black box testing techniques can be used

for all phases of the software development lifecycle. However, white box testing is

suitable for unit, integration and regression testing but not for system and acceptance

testing, because it is difficult in practice to derive tests cases based on the source

code when the entire system is considered.

2.1.1.1 Model-Based Testing

As highlighted in Chapter 1, Model-Based Testing has different interpretations

depending on the researchers. According to Mathur (2008), “Model-based or

specification-based testing occurs when the requirements are formally specified,

as for example, using one or more mathematical or graphical notations such as

Z, statecharts, and an event sequence graph, and tests are generated using the

formal specification.” In this sense, Model-Based Testing is also a form of black box

testing. Therefore, the category 2 of Table 2.1 is the one that fits the definition

of Mathur (2008). Among the formal methods used for system and acceptance

model-based test case generation are Statecharts (HAREL, 1987; HAREL et al., 1987;

SANTIAGO et al., 2008b), Finite State Machines (FSMs) (SIDHU; LEUNG, 1989; LEE;

YANNAKAKIS, 1996), and Z (HIERONS, 1997; CRISTIÁ et al., 2010).

On the other hand, El-Far and Whittaker (2001) state that Model-Based Testing

is an approach that bases common activities of the Software Testing process such

as test case generation (Generate/Select Test Cases) and test results evaluation

(Evaluate Test Results) on a software model of the IUT. Such a definition considers

test cases being generated based on formal specifications and other non-formal

notations, like UML models (OMG, 2007). Therefore, categories 2 and 3 of Table 2.1

are encompassed in this definition.

According to Utting and Legeard (2007), Model-Based Testing consists of a test

strategy in which test cases are derived entirely or partly from a model that de-

scribes some aspect (e.g. functionality, safety, performance, etc.) of a software. The

17

application of Model-Based Testing requires that the behavior or structure of the

software (or part thereof) has been formalized by means of models with well-defined

rules (such as formal methods, UML diagrams, etc.). They also say that a Model-

Based Testing technique can be applied to any type of testing (functional, structural,

etc.). Since a Model-Based Testing technique can be applied to structural (white box)

testing then Model-Based Testing can be regarded as a form of white box testing

too. Thus, categories 2, 3 and 4 of Table 2.1 are in accordance with their definition.

In the survey presented by Dias Neto and his partners (DIAS NETO et al., 2007;

DIAS NETO, 2009), they divided the obtained articles into five categories. Two

categories were defined taking into account articles which describe Model-Based

Testing techniques where models were extracted from the internal structure of

software which includes, for instance, the source code. So, test cases derived from

Control Flow Graphs and Def/Use Graphs which represent the source code of the

IUT were also considered. Therefore, their approach follows the definition given by

Utting and Legeard (2007).

It makes sense to consider Model-Based Testing a form of white box testing. After

all, a graph (Control Flow Graph, Def/Use Graph) is nonetheless a model in which,

in this case, models the source code. However, this perspective to consider Model-

Based Testing a form of white box testing is not accepted by the entire testing

community, as seen in the definition proposed by Mathur (2008).

It is important to formally define what is an FSM in the context of this work.

Different authors have distinct definitions about FSM and in many cases the term

“FSM” is used as a class of models which encompasses many other state-transition

models. In this work, an FSM is a deterministic Mealy machine which can be

formally defined as follows (PETRENKO; YEVTUSHENKO, 2005).

Definition 2.3. An FSM M is a 7-tuple (S, s0, X, Y,DA, �, �), where:

∙ S is a finite set of states with the initial state s0,

∙ X is a finite set of inputs,

∙ Y is a finite set of outputs,

∙ DA ⊆ S x X is a specification domain,

∙ � is a transition function � : DA → S, and

∙ � is an output function � : DA → Y .

18

Note that there is no set of final states in the above definition. Thus, a Deterministic

Finite State Automaton (DFA) basically differs from an FSM because a DFA has

a set of final states but it has neither a finite set of outputs (Y) nor an output

function (�). A DFA is used as a regular language acceptor. An FSM is desired

when it is necessary to model the dynamics of input/output of a system, although it

is possible to use an FSM as an acceptor too. Hopcroft and Ullman (1979) define a

Determininistic Mealy machine, like the one described above, as a DFA with output.

However, there are also Finite State Transducers (FSTs) which have not only a set

of final states but also a finite set of outputs and a relation which encompasses the

roles of both the transition and output functions.

Complex software products usually present features like parallel activities and hi-

erarchy. These features are very difficult to represent using FSMs, so this leads to

considering higher-level techniques as Statecharts. The formal definition of State-

charts is more elaborate than that of FSMs. The detailed definition of the formal

syntax and semantics of the Statecharts language can be seen in Harel et al. (1987).

For information purposes, the syntax of Statecharts is defined over the following

basic sets of elements: states, primitive events, primitive conditions, and variables.

Using these basic sets of elements, extended sets are defined: expressions, conditions,

events, actions, labels, and transitions. Table 2.4 (see later in this chapter) gives a

good idea of the formal syntax of the Statecharts language.

2.1.1.2 The Statechart Coverage Criteria Family

This section presents a brief description of the Statechart Coverage Criteria Family

(SCCF) (SOUZA, 2000). SCCF is a family of testing coverage criteria for Statechart

models. Test requirements established by the SCCF criteria are obtained from the

Statechart reachability tree (MASIERO et al., 1994). A reachability tree is only a

behavioral representation of Statecharts showing the possible configurations and

paths that the system can reach. SCCF requires a reachability tree in order to

generate, at the end of the process, test cases. SCCF will be discussed only to

the extent that it relates to this PhD thesis. Some concepts that are essential for

understanding the test criteria of SCCF are defined as follows.

Definition 2.4. A configuration Ci is a set of states that are active in a step of

computation, and C0 is the initial configuration. At each step is supposed that

the events which are associated with the current configuration are valid and they

fire the related transitions, so that it is possible to model the space of possible

19

configurations of the system.

Definition 2.5. A path is a finite sequence of configurations (C0, Ci, Cj, . . . , Cm, Ck),

k ≥ 1, so that the first configuration is the initial configuration of the reachability

tree (C0), and there is a transition from Ci to Cj, ∀Ci, Cj ∣ 0 ≤ i < k and j = i+ 1.

Definition 2.6. A simple path is a path P such that all the configurations that

compose this path, except possibly the first and the last, are different.

Definition 2.7. A resettable path is a path P in which the first and last

configuration of the path correspond to the initial configuration C0, i.e. they are

the paths that make the model returns to its initial configuration.

Figure 2.1 shows the inclusion (hierarchical) relation among the SCCF test criteria

considering resettable models. The essential point of the inclusion relation is to define

which test criteria include other test criteria. Criterion c1 includes criterion c2 if for

any set of paths P that satisfies c1 then P also satisfies c2 for any model/specification.

Criterion c1 strictly includes criterion c2, denoted c1 −→ c2, provided that c1

includes c2 but c2 does not include c1. Note that this is a transitive relation.

Criteria c1 and c2 are incomparable if neither c1 −→ c2 nor c2 −→ c1 (RAPPS;

WEYUKER, 1985). Thus, the all-paths test criterion strictly includes all-paths-k-

configurations, all-one-loop-paths, all-simple-paths, etc. as well as the all-paths-k-

C0-configuration test criterion. The all-simple-paths test crietrion stricly includes

both all-loop-free-paths and all-configurations. However, all-simple-paths and all-

transitions test criteria are incomparable.

Definitions of some test criteria of SCCF are provided below.

Definition 2.8. all-transitions: this test criterion requires that all transitions are

traversed at least once by a test suite T .

Definition 2.9. all-simple-paths: this test criterion requires that all simple paths

are traversed at least once by a test suite T .

Definition 2.10. all-paths-k-C0-configuration: this test criterion requires that all

paths containing k repetitions of the initial configuration C0 are traversed at least

once by a test suite T . For k = 2, each path restarts the model once and for k > 2

20

all-paths

all-paths-k-configurations all-paths-k-C0-configuration

all-one-loop-paths

all-loop-free-paths

all-simple-paths

all-configurations

all-transitions

all-broadcastingall-history-configurations

Figure 2.1 - Inclusion relation among the SCCF test criteria considering resettable models

SOURCE: Adapted from Souza (2000)

each path restarts the model k − 1 times.

Definition 2.11. all-paths-k-configurations: this test criterion requires that all

paths containing at most k repetitions of each configuration are traversed at least

once by a test suite T .

2.1.1.3 Combinatorial designs

Combinatorial designs are a set of techniques for test case generation which allow

the selection of a small set of test cases even when the input domain, and the

number of subdomains in its partition, is large and complex (MATHUR, 2008). These

techniques have been found to be effective in the discovery of faults (defects) due to

the interaction of various input variables. Depending on the context, several other

names may be found in the literature such as orthogonal designs and pairwise testing.

Some basic definitions follow. Consider a program P that takes k inputs correspond-

ing to variablesX1, X2, ..., Xk. These input variables are known as factors. Each value

assignable to a factor is known as a level. A set of levels, one for each factor, is a

factor combination or run.

21

The first technique described is Orthogonal Arrays. An Orthogonal Array (OA) is

an N × k matrix in which the entries are from a finite set L of l levels such that

any N× t subarray contains each t-tuple exactly the same number of times. Such an

array is denoted by OA(N, k, l, t), where N is the number of runs, k is the number

of factors, l is the number of levels, and t is the strength of the OA. Pairwise design

occurs when t = 2.

Orthogonal Arrays assume that each factor, fi, will be assigned a value from the

same set of l levels. This is not realistic and thus Mixed-Level Orthogonal Arrays

(MOAs) come into picture for situations where factors may be assigned values from

different sets. Such an array is denoted by MOA(N, l1
k1 l2

k2 ... lp
kp , t), indicating N

runs where k1 factors are at l1 levels, ..., kp factors are at lp levels. As before, t is

the strength.

Both OA and MOA are examples of balanced designs, i.e. any N × t subarray

contains each t-tuple exactly the same number of times. In Software Testing, the

balance requirement is not always essential. Mathur (2008) mentions that if an IUT

has been tested once for a given pair of levels, there is usually no need for testing it

again for the same pair unless the IUT is known to behave nondeterministically. For

deterministic applications, the balance requirement may be relaxed and unbalanced

designs are adequate choices.

A Covering Array (CA) is an example of unbalanced design. A Covering Array

CA(N, k, l, t) is an N × k matrix in which the entries are from a finite set L of l

levels such that each N×t subarray contains each possible t-tuple at least a certain

number of times. In other words, the number of times the different t-tuples occur in

the N × t subarrays may vary. This difference often leads to combinatorial designs

smaller in size than Orthogonal Arrays.

A Mixed-Level Covering Array, MCA(N, l1
k1 l2

k2 ...lp
kp , t), is analogous to an MOA in

that both allow factors to assume levels from different sets. MCA is also an instance

of unbalanced designs. MCAs seem to be the most popular choice of combinatorial

designs among software testers because they are generally smaller than MOAs and

more adequate for testing.

2.1.2 Formal Verification

As mentioned earlier, there is another definition for Verification given in the IEEE

Standard Glossary of Software Engineering Terminology (IEEE, 1990): formal proof

22

of program correctness. This definition, although it seems to be more associated

with software (program), is what is called Formal Verification.

Formal Verification refers to mathematical analysis of proving or disproving the

correctness of a hardware or software system with respect to a certain specification or

property (GANAI; GUPTA, 2007). By the extensive use of mathematical logic, Formal

Verification has strong connections with theoretical computer science. The methods

for analysis are known as Formal Verification Methods and they can be broadly

classified into: Theorem Proving and Model Checking. Theorem Provers use

mathematical reasoning and logical inference to prove the correctness of systems,

and often require a specialist with substantial understanding of the system under

verification. Model Checking will be briefly described in the next section.

2.1.2.1 Model Checking

Model Checking (CLARKE; EMERSON, 2008; QUEILLE; SIFAKIS, 2008; CLARKE;

LERDA, 2007; BAIER; KATOEN, 2008) is probably the most popular Formal

Verification Method in the academic community. According to Baier and Katoen

(2008), “Model checking is an automated technique that, given a finite-state model

of a system and a formal property, systematically checks whether this property

holds for (a given state in) that model”. In the traditional approach, properties

are generated based on requirements documents and they are formalized using

some sort of temporal logic such as Linear Temporal Logic (LTL), Computation

Tree Logic (CTL). Thus, a property specifies the desired behavior of the system

under consideration. If the finite-state model (transition system) does not satisfy

a property, a counterexample is generated showing a trace that indicates the

violation. On the other hand, the finite-state model describes the behavior of the

system.

Dwyer et al. (1999) proposed a system of property specification patterns for finite-

state verification. They proposed 8 patterns and 5 pattern scopes. Hence, based on

a requirement, one identifies a pattern and the scope within the pattern that mostly

characterize such requirement. Having decided which is the pattern and scope, they

proposed a template to generate the properties in LTL, CTL, and Quantified Reg-

ular Expressions. Some descriptions of pattern/pattern scope are presented below

with the corresponding CTL state formulae (in order to understand CTL formulae,

Table 2.3 shows the path quantifiers and temporal modalities (operators) of CTL):

∙ Absence Pattern and Globally Scope: a given state/event p does not

23

occur within the entire program/model execution. CTL formula: ∀□¬p;

∙ Response Pattern and Globally Scope: a state/event p must always

be followed by a state/event q within the entire program/model execution.

CTL formula: ∀□(p→ ∀♢q);

∙ Precedence Pattern and Globally Scope: a state/event p must always

be preceded by a state/event q within the entire program/model execution.

CTL formula: ¬∃[¬q ∪ (p ∧ ¬q)].

The Absence Pattern and Globally Scope is indeed a safety property which is often

characterized as “nothing bad should happen”. In the above descriptions, for brevity,

the phrase “a given state/event occurs” means “a state in which the given state

formula is true, or an event from the given disjunction of events occurs” (DWYER et

al., 1999).

Table 2.3 - CTL’s path quantifiers and temporal modalities

Path quantifier Temporal modality

Notation Meaning Notation Meaning

∀ for all paths □ always (globally)

∃ for some path ♢ eventually

⃝ next

∪ until

State explosion is one limitation of Model Checking. If the system to be verified is too

large or the specification is too complex, Model Checking might not terminate due

to insufficient resources, e.g. execution time and/or available memory. Techniques

have been proposed to tackle the state explosion problem such as Symbolic Model

Checking, a technique that uses Binary Decision Diagrams (BDDs) to represent sets

of states and transitions (BRYANT, 1986). However, BDD-based Symbolic Model

Checking still presents some problems when trying to solve the state explosion

problem (CLARKE; LERDA, 2007). Model Checking was originally conceived for

verifying finite-state systems such as sequential circuit designs and communication

protocols and, despite its limitations, it has been used by semiconductor manufac-

turers for hardware design and also to formally verify software products. There are

plenty of available tools (Model Checkers) for applying Model Checking such as

SPIN (HOLZMANN, 2003; BEN-ARI, 2008), NuSMV (FONDAZIONE BRUNO KESSLER

/ CARNEGIE MELLON UNIVERSITY / UNIVERSITY OF GENOVA / UNIVERSITY OF

24

TRENTO, 2011), UPPAAL (BEHRMANN et al., 2004), and Java Pathfinder (NASA

AMES RESEARCH CENTER, 2011).

2.2 Natural Language Processing

NLP is a field of computer science and linguistics dealing with the problem of

computers to process and understand human languages. NLP has significant overlap

with the field of computational linguistics, and some authors consider it a sub-field of

Artificial Intelligence (RUSSELL; NORVIG, 1995). There are several domains in which

NLP may be applied such as spelling correction, grammar checking, search engines,

information extraction, information retrieval, speech recognition, and so on.

Jurafsky and Martin (2000) distinguish into six categories the knowledge of language

needed to engage in complex language behavior: Phonetics and Phonology, Mor-

phology, Syntax, Semantics, Pragmatics, and Discourse. The field of NLP is vastly

supported by several concepts like finite automata, N-grams, Hidden Markov Models,

Part Of Speech (POS) tagging, Word Sense Disambiguation (WSD), lexicalized

and probabilistic parsing, Chomsky hierarchy, pumping lemma, first order predicate

calculus, and many others. In the sequence, topics related to this work are briefly

discussed.

Lexical category or POS is a linguistic category of words (or more precisely lexical

items), which is generally defined by the syntactic or morphological behavior of the

lexical item in question. Common linguistic categories include noun and verb, among

others. POS can be used to inform how a word is pronounced, in stemming for infor-

mation retrieval, and they are very often used for“partial parsing” texts, for example

for quickly finding names or other phrases for information extraction applications

(JURAFSKY; MARTIN, 2000). POS tagging or word category disambiguation is then

the process of assigning POS to the words in a text based on both its definition as

well as its context. The point is that a word can have different lexical categories, e.g.

“bank” can be a verb or a noun. Thus, it is the task of POS tagging to determine

the correct one.

2.2.1 Word Sense Disambiguation

According to Navigli (2009), “Word Sense Disambiguation (WSD) is the ability to

identify the meaning of words in context in a computational manner”. In the field

of NLP, WSD has been studied for a long time. Even in the same lexical category

a word can have different meanings (senses). For instance, the noun “bank” can be

25

a depository financial institution, the building of the financial institution, or a long

pile, just to name a few. Thus, WSD is used to identify the correct sense in a certain

context.

WordNet is an electronic lexical database created and maintained at Princeton Uni-

versity (MILLER, 1998). The basic building block of WordNet is a synset consisting

of all the words that express a given concept. Alternatively, one may say that

WordNet encodes concepts in terms of sets of synonyms (the synsets) (NAVIGLI,

2009). Therefore, the design of WordNet resembles a thesaurus but in some ways it

also resembles a traditional dictionary, providing definitions and sample sentences

for their synsets. Consider the word “test”. In version 2.1 of WordNet, “test” can be

a verb or a noun. Examples of two synsets of the noun “test” are shown below:

∙ test#2, trial#2, run#2 – (the act of testing something; “in the experimen-

tal trials the amount of carbon was measured separately”; “he called each

flip of the coin a new trial”);

∙ trial#5, trial run#1, test#4, tryout#1 – (trying something to find out

about it; “a sample for ten days free trial”; “a trial of progesterone failed

to relieve the pain”).

The sense number of each word in each synset is shown immediately after the word,

and is preceded by #. Thus, the first synset says that sense number 2 of the words

“test”, “trial”, and “run” have the same meaning, i.e. “the act of testing something”.

Likewise, the second synset says that sense numbers 5 of “trial”, 1 of “trial run”,

4 of “test”, and 1 of “tryout” have the same meanings. Examples of two synsets of

the verb “test” are shown below. The same remarks related to the meaning of the

synsets made for the noun apply to the verb:

∙ test#1, prove#5, try#2, try out#1, examine#5, essay#2 – (put to the

test, as for its quality, or give experimental use to; “This approach has

been tried with good results”; “Test this recipe”);

∙ quiz#1, test#3 – (examine someone’s knowledge of something; “The

teacher tests us every week”; “We got quizzed on French irregular verbs”).

In WordNet, there are lexical relations, such as Antonymy and Pertainymy, which

connect word senses included in the respective synsets, and semantic relations,

26

such as Hypernymy (is-a relation), Hyponymy (inverse relation of Hypernymy),

and Meronymy (part-of relation), which connect synsets. Thus, WordNet is also a

semantic network.

Among the numerous approaches to address WSD, one in particular is highly rel-

evant to this PhD thesis and a brief description of such a proposal is given below.

A graph-based algorithm for WSD was proposed by Sinha and Mihalcea (2007).

In their approach, they constructed a sense (label) dependency graph based on

measures of word semantic similarity like the Leacock and Chodorow (LEACOCK;

CHODOROW, 1998), Jiang and Conrath (JIANG; CONRATH, 1997), and Lesk (LESK,

1986) measures. These measures work well in the WordNet hierarchy. For example,

consider the Jiang and Conrath (JIANG; CONRATH, 1997) measure which is defined

as

jcn(c1, c2) =
1

IC(c1) + IC(c2)− 2 ∗ res(c1, c2)

where:

∙ c1, c2 = concepts (synsets);

∙ IC(c) = −logP (c) (Information Content);

∙ res(c1, c2) = IC(LCS(c1, c2)) (Resnick measure);

∙ LCS = Least Common Subsumer.

The Jiang and Conrath measure is based on Information Content (IC) which is a

measure of specificity for a concept (synset in WordNet). Higher values of IC are

associated with more specific concepts, while lower values of IC are related to more

general ones. IC is calculated based on frequency counts of concepts as found in a

corpus of text. The frequency associated with a concept is incremented in WordNet

each time that concept is observed, as are the counts of the ancestor concepts in the

WordNet hierarchy (for nouns and verbs). Also note the importance of the Least

Common Subsumer (LCS), the most specific concept that is a shared ancestor of

the two concepts.

A weighted, undirected, not fully connected sense dependencies graph is derived

by adding a vertex for each admissible sense of the words in a text, and an edge

for each pair of senses of distinct words for which a dependency is identified. A

window, wn, is defined so that no edges will be drawn between senses corresponding

to words that are more than wn words apart, counting all running words, i.e.

27

nouns, verbs, adjectives, and adverbs. After the graph construction, the scores of

senses are determined using some graph-based centrality algorithms like indegree

and an adaptation of the PageRank algorithm. For instance, consider the indegree

algorithm. For an undirected weighted graph G = (V,E) where V is the set of

vertices and E is the set of edges, the indegree is defined as

indegree(Va) =
∑
Vb∈V

wgab

where wgab is the weight on the edge between Va and Vb. In other words, the indegree

of a vertex Va is obtained taking into account the weights on the edges, and adding

them together into a score. Finally, the approach proposed by Sinha and Mihalcea

(2007) determines the most likely set of senses by identifying the sense with the

highest score for each word.

2.3 Related work

The following sections present some of the research literature related to this PhD

thesis.

2.3.1 Model-Based Testing

This section presents some important approaches related to Model-Based Testing.

Briand and Labiche (2002) presented the Testing Object-orienTed systEms with the

unified Modeling language (TOTEM) approach based on UML diagrams addressing

functional system testing. Test requirements are derived from use case diagrams,

use case descriptions, interaction diagrams (sequence or collaboration) associated

with each use case, and class diagrams (composed of application domain classes and

their contracts). In TOTEM, activity diagrams can be used to capture sequential

dependencies among use cases with the aid of application domain experts. Based

on these sequential dependencies, legal sequences of use cases are built for test case

generation.

An approach to system testing based on UML activity diagrams was proposed by

Hartmann et al. (2005). The approach is based on the transformation of existing

textual use case specifications into UML activity diagrams. Test generation is accom-

plished using the Category-Partition method (OSTRAND; BALCER, 1988). Despite

the automated features, the test designer must manually annotate with stereotypes

the resulting UML activity diagrams in order to indicate whether an activity pertains

28

to a user or to the system.

FSMs (SIDHU; LEUNG, 1989; LEE; YANNAKAKIS, 1996) have been commonly used

for testing. Simplicity is one of the key advantages in using FSM and this technique

has been adopted for modeling reactive systems and protocol implementations for

a long time. Once an IUT is modeled as a state-transition diagram representing an

FSM, several test criteria2 like Transition Tour (TT), Distinguishing Sequence (DS),

Unique Input/Output (UIO) (SIDHU; LEUNG, 1989), W (CHOW, 1978), switch cover

(1-switch) (PIMONT; RAULT, 1976) and state counting (PETRENKO; YEVTUSHENKO,

2005) can be used to generate test cases. Also, a comparison of fault detection

effectiveness of some of these criteria was presented in Sidhu and Leung (1989).

Sinha et al. (2007) demonstrated how a combination of UML use case and class

diagrams can be converted to an EFSM. The transformation algorithm translates

different use case specific constructs such as included use cases, extension points, by

accounting for their associated semantics. However, there is no more than one state

in the EFSM representing use cases. For testing, it is hard to think of an EFSM with

only one single state and a lot of self transitions as proposed in their approach. It

is not very clear and probably it is not feasible to generate test cases with a model

with these characteristics.

A Model-based approach to generate a set of conformance test cases for interactive

systems, i.e. those which react to operations invoked by external environment,

was proposed by Paradkar (2003). The approach presents extensions to both the

Category-Partition method (OSTRAND; BALCER, 1988) and the Test Specification

Language (TSL) (BALCER et al., 1989). Test case generation is based on the ex-

traction of a Finite State Automaton (FSA) from a specification written in an

extended version of TSL, known as Specification and Abstraction Language for

Testing (SALT).

An algorithm that generates a partition of the input domain from a Z specification

has been introduced by Hierons (1997). This partition can be used both for test

case generation and for the production of an FSA. This FSA can then be used to

control the testing process. This method generates a large FSA making this approach

difficult for test case generation addressing large software systems (PARADKAR,

2003). Singh et al. (1997) proposed an approach for generating test cases from formal

specifications written in Z language by combining the classification-tree method for

2Some authors prefer the term “method” rather than “criterion”. This work will adopt the latter.

29

partition testing with the Disjunctive Normal Form (DNF) (DICK; FAIVRE, 1993)

approach. Their technique first derives a classification tree describing high level test

cases from the Z formal specification of the IUT. Then, the high level test cases are

further refined by generating a DNF for them.

Conformance and Fault Injection (CoFI) is another model-based test case generation

methodology (AMBRÓSIO et al., 2007). In CoFI, the system behavior is partially

represented in state-transition diagrams representing FSMs, and test cases are gen-

erated based on such FSMs. In order to use the methodology, the test designer must

first identify a set of scenarios (services) to stimulate the IUT, and then he/she

must precisely define the IUT’s interfaces. CoFI is basically a use case-based testing

approach (FROHLICH; LINK, 2000; BERTOLINO; GNESI, 2003) with some emphasis in

hardware fault tolerance. One limitation of CoFI is not to provide mathematical-

based guidelines for the test designer to identify the usage scenarios (services).

Several approaches have been proposed to generate test cases based on Statecharts.

Hong et al. (2000) provides a way to derive EFSMs from Statecharts to devise test

criteria based on control and data flow analysis. Binder (1999) adapted the W test

criterion to a UML context and named it round-trip path testing, in which flattening

a Statechart model is a prerequisite before using the criterion itself. Antoniol et al.

(2002) presented a study whose main goal was to analyze cost and efficiency of the

Binder’s round-trip path criterion. Briand et al. (2004) showed a simulation and a

procedure to analyze cost and efficiency among three test criteria proposed by Offutt

and Abdurazik (1999) and the very same round-trip path.

A system testing approach to cover elementary transition paths was proposed by

Sarma and Mall (2009). The technique relies on the derivation of a System State

Graph (SSG) based on UML 2.0 use case models, sequence diagrams, and Statechart

models. Their technique aims to satisfy the test criterion transition path coverage,

which states that each elementary transition path p of the SSG must be covered at

least once by a test suite T . Their work presents some limitations but the most severe

of all is related to the combined fragment loop (like control structures while or for)

of sequence diagrams. A loop is either not executed at all or it is executed only once.

In other words, the behavior of a loop is like a control structure if. Thus, the authors

did not address one of the major problems in path testing. Howden (1976) stated

that, in general, a program containing loops will have an infinite or undetermined

number of paths. Hence, testing all the paths of a program is unfeasible. As UML

2.0 sequence diagrams allow to model loops, this fact may restrict their approach

30

and the problem of testing applications in the presence of huge number of paths is

not properly addressed.

Frohlich and Link (2000) presented a system testing method based on textual

descriptions of UML use cases. They translated a use case description into a UML

Statechart (UML state machine) and, after that, they applied Artificial Intelligence

planning techniques to derive test suites satisfying the coverage testing criterion

which states that all transitions of the UML state machine must be traversed at

least once.

Hartmann et al. (2000) presented an integration testing approach based on Stat-

echarts which were used to model components and their interfaces. They defined

a strategy to compose Statecharts that model software components as well as an

algorithm to reduce the size of the composed Statecharts. Test case generation is

accomplished using the Category-Partition method (OSTRAND; BALCER, 1988). A

TSL (BALCER et al., 1989) test design is created from the Global Behavioral Model, a

Statechart obtained after integration of state models representing components. One

limitation of their approach is that it does not support orthogonality to model each

component, a feature quite common in current software products.

Santiago et al. (2006) proposed a methodology to transform hierarchical and orthog-

onal Statecharts into FSMs in order to generate test cases, with the support of the

PerformCharts tool (VIJAYKUMAR et al., 2006). PerformCharts is a tool originally

designed for performance evaluation. The tool allows that a reactive system modeled

in Statecharts can be converted into a Markov Chain (BAIER; KATOEN, 2008).

Then, based on analytical solutions, steady-state probabilities are determined for

the corresponding Markov Chain and these are the basis for calculating performance

measures. However, an FSM can be used as a representation of a Markov Chain. This

was the motivation to use PerformCharts in combination with an implementation of

the FSM test criterion switch cover (1-switch) (PIMONT; RAULT, 1976) to generate

test cases.

PerformCharts is currently incorporated into the GTSC environment (SANTIAGO

et al., 2008b). GTSC is an important part of this PhD thesis and it will be briefly

discussed in Section 3.2. GTSC has been developed and used in the context of

research projects in the space domain and the environment is beginning to be applied

to a real application, a stratospheric balloon project to lift up a high energy astro-

physics experiment under development at Instituto Nacional de Pesquisas Espaciais

(INPE - National Institute for Space Research). Recently, a proposal for combining

31

Statechart-based and Z-based testing was presented (CRISTIÁ et al., 2010). GTSC

has been used in conjunction with the Fastest tool (CRISTIÁ; MONETTI, 2009) in

order to meet this goal.

PerformCharts and consequently GTSC support almost all features of the Stat-

echarts language. Table 2.4 shows the features suported by PerformCharts with

respect to the formal syntax of the Statecharts language as described in Harel et

al. (1987). The user then has enough flexibility to model a system using the main

features of Statecharts available in GTSC (PerformCharts). The following sets are

considered in Table 2.4:

∙ S is the set of states,

∙ Vp is the set of variables,

∙ V is the set of expressions,

∙ Cp is the set of primitive conditions,

∙ C is the set of conditions,

∙ Ep is the set of primitive events,

∙ E is the set of events, and

∙ A is the set of actions.

Table 2.4 - Subset of the Statecharts language supported by PerformCharts/GTSC.

Features marked with X are supported

Syntax feature Support

States X

Shallow and Deep History X

Hierarchy Function X

Type Function X

Default Function X

Expressions: If k is a number then k ∈ V X

Expressions: If v ∈ Vp then v ∈ V X

Expressions: If v ∈ V then current(v) ∈ V

Expressions: If v1, v2 ∈ V and op is an algebraic operation then op(v1, v2) ∈ V X

Conditions: T, F ∈ C, T, F stand for true, false, respectively X

Conditions: If c ∈ Cp then c ∈ C X

(Continues)

32

Table 2.4 - Conclusion

Syntax feature Support

Conditions: If s ∈ S then in(s) ∈ C X

Conditions: If e ∈ E then not yet(e) ∈ C

Conditions: If u, v ∈ V , R ∈ {=, >,<, ∕=,≤,≥} then u R v ∈ C X

Conditions: If c ∈ C then current(c) ∈ C

Conditions: If c1, c2 ∈ C then c1 ∨ c2, c1 ∧ c2, ¬c1 ∈ C X

Events: � ∈ E, � is the null event X

Events: If e ∈ Ep then e ∈ E X

Events: If c ∈ C then true(c) ∈ E X

Events: If c ∈ C then false(c) ∈ E

Events: If v ∈ V then cℎanged(v) ∈ E

Events: If s ∈ S then exit(s), entered(s) ∈ E X

Events: If e1, e2 ∈ E then e1 ∨ e2, e1 ∧ e2 ∈ E X

Events: If e ∈ E, c ∈ C then e[c] ∈ E X

Actions: � ∈ A, � is the null action X

Actions: If c ∈ Cp, d ∈ C then c := d ∈ A

Actions: If v ∈ Vp, u ∈ V then v := u ∈ A X

Actions: If ai ∈ A, i = 0, . . . , n then a0; . . . ; an ∈ A

Labels X

Transitions X

Hierons et al. (2009) published a survey which described formal methods, Software

Testing, and a number of ways in which a formal specification can be used in order

to assist testing. They divided formal specification languages into several categories,

among others Model-Based Languages (e.g. Z(SPIVEY, 1998)), Finite State-Based

Languages (e.g. FSM3(LEE; YANNAKAKIS, 1996), Statecharts (HAREL, 1987)), and

Process Algebra State-Based Languages (e.g. Communicating Sequential Processes

(CSP) (HOARE, 1985)). They concluded that “software testing benefits from the

presence of a formal specification in a number of important ways. In particular,

the presence of a formal specification aids test automation and allows the tester to

reason about test effectiveness”.

The literature related to Model-Based Testing is very extensive. For example, after

the completion of the second part of the survey on characterization of Model-Based

3Traditionally, an FSM is seen as a computational model and not as a language (HOPCROFT;

ULLMAN, 1979).

33

Testing techniques (DIAS NETO, 2009), 271 articles describing a total of 219 different

techniques of Model-Based Testing were found. Some additional observations about

the final version of this systematic review should be mentioned. These observations

take into account all the 219 techniques found. Considering the lifecycle phase in

which testing takes place classifier (Table 2.2), 71% of the surveyed techniques were

used for system testing, 16% were applied to unit testing, 15% were used for inte-

gration testing, and 3% for regression testing. Model-Based Testing was originally

intended for system testing and thus this explains the majority of approaches related

to this testing level. The percentage of Model-Based Testing techniques that have

tools to support test case generation was 69.86% while in 30.14% of the techniques

there were no evidence that tools were developed for this purpose. Regarding the

model/language, 34.70% of the Model-Based Testing techniques used UML models

so that the most adopted were state machine (variant of Harel’s Statecharts), class

diagram, and sequence diagram. On the other hand, 65.30% of the techniques

adopted non-UML methods and among the most used are FSM, Z language, graphs,

and Markov Chains.

2.3.2 Software Testing based on Natural Language requirements

Only one publication was found in the literature that proposed to generate test

cases starting from NL requirements: Text Analyzer (SNEED, 2007). It is a tool

that supports black box testing and it is intended to be used for system and

acceptance testing. Text Analyzer needs heavy intervention from the user to define

the application domain. The tool first scans the text in order to identify all nouns.

These nouns are displayed to the test designer who decides which ones are considered

pertinent objects of the IUT. Such objects are in turn the elements the test cases

relate to. This task can be very time-consuming depending on the complexity of

the requirements specification. The user must also identify keywords used in the

requirements text (e.g. INPT = this word indicates a system input). This is another

activity that seems to require considerable time and that may make the approach

less attractive, especially considering complex NL requirements documents.

2.3.3 Analysis of defects in Natural Language requirements

Literature has been addressing the analysis of software requirements to detect defects

such as ambiguity, incompleteness, and inconsistency. As said in Chapter 1, NL

is still a fairly common option to build software requirements specifications or

other artifacts created for documenting requirements. This section will present some

approaches that deal with the analysis of defects in NL requirements documents

34

such as ambiguity, incompleteness, and inconsistency.

Quality Analyzer for Requirements Specification (QuARS) is a tool that enables the

user to automatically analyze NL requirements (LAMI; TRENTANNI, 2004; GNESI

et al., 2005; FANTECHI et al., 2003; FERGUSON; LAMI, 2005; BUCCHIARONE et al.,

2008). Three categories of quality properties should be accounted for when analyzing

NL specifications: expressiveness (ambiguity mitigation and understandability im-

provement), consistency, and completeness. A quality model for the expressiveness

property was defined in a previous work (FABBRINI et al., 2001) and QuARS was

developed based on such model to automate NL requirements analysis.

The analysis performed by QuARS is limited to syntax-related issues of NL re-

quirements regarding expressiveness (ambiguity, understandability). Despite the re-

markable work, it is not evident whether the mechanisms employed by QuARS are

sufficient to detect all sorts of ambiguity. QuARS is able to partially support incon-

sistency and incompleteness analysis by clustering the requirements, also known as

View Derivation, according to specific topics. The quality model for expressiveness

has sub-characteristics associated with inconsistency (under reference) and incom-

pleteness (underspecification). However, QuARS does not address completely incom-

pleteness and inconsistency because these are complex issues requiring analysis of

the semantics of the NL sentences (FANTECHI et al., 2003). Moreover, incompleteness

and inconsistency analysis is mostly done manually by examining the Views.

Automated Requirements Measurement (ARM) is a tool developed to provide metrics

so that NASA project managers can assess the quality of NL requirements specifi-

cations and identify risks that poorly developed requirements would introduce into

their projects (WILSON et al., 1997). ARM has an associated quality model similar

to that developed for QuARS. This quality model was defined by compiling first

a list of quality attributes (e.g. complete, consistent, correct, unambiguous, etc.)

that requirements specifications are expected to exhibit. After that, a list of aspects

of a requirements specification that can be objectively and quantitavely measured

was developed. The two lists were analyzed to identify relationships between what

can be measured and the desired quality attributes. This analysis resulted in the

identification of categories (equivalent to sub-characteristics in the model of QuARS)

of sentences and individual items (i.e. words and phrases) that are primitive in-

dicators of the specification’s quality and that can be detected and counted by

using the document text file. The set of primitive indicators were then refined by

using a database of words and phrases derived from the analysis of 46 requirements

35

specifications, acquired from a broad cross section of NASA projects.

It seems that QuARS employs a more sophisticated analysis than ARM because

QuARS has an embedded syntax parser which helps in the mitigation of ambiguity.

Moreover, ARM suffers from the same issues of QuARS because the analyis which is

performed by ARM is not enough to adequately address defects like incomplete-

ness and inconsistency in requirements specifications: ARM basically scans the

requirements documents searching for the primitive indicators, totals and reports

the occurrence of such indicators individually and by category.

CIRCE is an environment that supports modeling and analysis of requirements

described in NL (AMBRIOLA; GERVASI, 2006; AMBRIOLA; GERVASI, 1997). The tool

parses and transforms NL requirements into a forest of parse trees. To do that,

CIRCE uses a domain-based parser called CICO. By defining requirements in accor-

dance with the formal model embedded in CIRCE, the tool can generate models like

state-transition diagrams allowing the user to analyze problems in requirements.

CIRCE seems to be a remarkable tool. However, the greatest issue related to CIRCE

is the difficulty to express the domain. In other words, application domain must be

expressed by a user by means of designations and definitions which, in turn, must be

written using a formal syntax. A Requirements Engineer must declare designations

using lots of tags and he/she must perform a deep analysis of the NL requirements

to accomplish that. The need to write Model, Action, Substitution (MAS) rules,

which are formal rules that drive the CICO’s parsing algorithm, can be a significant

obstacle for practitioners who are not specialized in the formal rules and wish to use

the tool.

Both forms of developing NL requirements, unrestricted and controlled approaches,

have supporters. Mich (1996) presented the Natural Language - Object Oriented

Production System (NL-OOPS), a tool that supports analysis of unrestricted NL

requirements by extracting the classes and their associations for use in creating

class models. The unrestricted NL analysis is obtained using as a core the NLP

system Large-scale, Object-based, Linguistic Interactor, Translator, and Analyser

(LOLITA) (MORGAN et al., 1995). LOLITA is built around a large graph called

SemNet, a particular form of conceptual graph, which holds knowledge that can

be accessed, modified or expanded using NL input. NL-OOPS allows detection of

ambiguities in the requirements but there is no evidence that it supports automated

detection of incompleteness and inconsistency.

36

However, Ambriola and Gervasi (2006) mentioned that the lack of domain knowledge

is a limiting factor for using systems based on unrestricted NL requirements taking

into account real and complex projects. They asserted that “... assuming that the

user should provide no further information than the requirements themselves, these

systems have to resort to heuristics to identify the proper objects, or rely on domain-

specific knowledge bases”. In the first case, they mentioned unsatisfactory results

when heuristic algorithms may need to be tuned, as reported in Mich et al. (2002).

Moreover, there are also reports of bad performance regarding the evaluation of infor-

mation extraction by using the LOLITA system (MORGAN et al., 1995; CALLAGHAN,

1998). In the second case, a negative aspect is the effort to build sufficiently large

domain knowledge bases which may be impractical.

Park et al. (2000) proposed a tool to support analysis of NL requirements by

measuring the similarity between requirement sentences written in Korean. The

similarity measurement method combines a sliding window model and a syntactic

parser, and uses z-scores and Salton’s cosine coefficients. Their approach to detect

ambiguity is similar to that used in QuARS (GNESI et al., 2005), by identifying

indicators (words) that might make a requirement ambiguous, and putting them into

a repository. Their tool supports traceability between NL documents by measuring

the similarity between a sentence in a high-level document and a sentence in a

low-level document. Although the support for traceability between NL documents

may eventually improve the detection of incompleteness defects, the detection itself

is indeed done manually by the user when looking at the results in the interface

of the tool and, for example, realizing that there are no sentences in the low-level

document associated with a given sentence in the high-level document. But this is

more a problem of traceability than incompleteness which in this case, the main

issues concern the omission of requirements and the lack of software responses to all

possible input data (IEEE, 1984).

Still on the work of Park et al. (2000), their tool supports the detection of incon-

sistency defects between NL requirements and also duplication of requirements in a

single document. However, identifications of inconsistency and duplication are indeed

performed by the user when looking at NL sentences and candidate sentences in the

interface of the tool. The authors claimed that their system allows an analyst to

improve completeness of a single NL document but again this is not the case.

Gervasi and Zowghi (2005) proposed a formal framework for identifying, analyzing,

and managing inconsistency in NL requirements derived from multiple stakeholders.

37

A prototype tool, CARL, was developed incorporating all the techniques described

in the reference. They focused on a particular kind of inconsistency, logical contra-

diction, and the authors claim that the framework supports the detection of both

explicit and hidden inconsistencies.4 For dealing formally with inconsistency, first

requirements expressed in controlled NL are automatically parsed and translated

into propositional logic formulae. This process involves morphosyntactic analysis

and the previously mentioned domain-based parser CICO. Once the specification is

represented as sets of propositional logic formulae, a Theorem Prover and a “Model

Checker”5 are used aiming at detecting inconsistencies. Despite these remarkable

features, and as well as CIRCE (AMBRIOLA; GERVASI, 2006), CARL suffers from

the same problem regarding the likely need to write new MAS rules depending on

the domain. Moreover, scalability is still an issue considering that the example shown

in the reference is very simple.

Hunter and Nuseibeh (1998) proposed a formal approach to reason, analyze, and

accomplish actions in inconsistent specifications. It seems that such a work influenced

in some ways the development of CARL (GERVASI; ZOWGHI, 2005). They adopted the

tolerating inconsistency approach, dealt with one kind of inconsistency, logical con-

tradiction, and multiple stakeholder development was accounted for. They presented

an adaptaion of classical logic, Quasi-Classical (QC) logic, that allows continued

reasoning in the presence of inconsistency. According to them, their approach is also

able to identify the likely sources of inconsistencies, and use this to suggest actions.

Despite the remarkable work, no tool was developed to automate the processes of

reasoning, analysis, and action, and the case study presented was too much simple

(it is the same case study used by Gervasi and Zowghi (2005)).

Attempto Controlled English (ACE) is a controlled NL specifically constructed to

write specifications (FUCHS et al., 1999; FUCHS et al., 2000). ACE is a subset of stan-

dard English, and its specifications are computer-processable and can be translated

into first order logic. In order to constrain structural ambiguity of NL, ACE avoids

some ambiguous constructs, deals with others by means of interpretation rules, and

the user is required to rephrase the input when necessary. There are tools based on

ACE like the ACE Parser (APE), the ACE Reasoner (RACE), and the AceRules

(UNIVERSITY OF ZURICH, 2009). Despite the significant effort in handling ambiguity,

inconsistency and incompleteness issues are not in the scope of ACE. Although it is

4In hidden inconsistencies, the inconsistency occurs due to the consequences of some require-
ments rather than the requirements themselves.

5Actually, CARL does not really apply Model Checking according to its most common definition
(CLARKE; LERDA, 2007; BAIER; KATOEN, 2008).

38

claimed that ACE combines NL with formal methods and it is easier to learn and

use than formal languages, the language is very restricted. Very restricted versions

of NL are often comparable to formal languages with NL-like keywords (AMBRIOLA;

GERVASI, 2006).

Kim and Sheldon (2004) presented a method that models and evaluates NL software

requirements specifications using the Z formal language and Statecharts. Their

method transforms an NL specification into a Z specification which in turn derives

the Statechart models (actually, State/Activity charts). The case study used in

their work was the NASA Guidance and Control Software (GCS) developed for the

Viking Mars Lander. The goal was to analyze the integrity of the GCS specification

in terms of completeness, consistency, and fault-tolerance. Their work presented

some interesting results but the transformations proposed were heavily dependent

on human skill, and there is no evidence that a tool was developed to automate the

detection of defects.

Java Requirement Analyzer (J-RAn) is a tool that implements a Content Analysis

technique to support the analysis of inconsistency and incompleteness in NL require-

ments specifications (FANTECHI; SPINICCI, 2005). Based on the NL document, this

technique explores the extraction of the interactions between the entities described

in the specification as Subject-Action-Object (SAO) triads. These SAO triads are

obtained with the help of the Link Grammar Parser (SLEATOR; TEMPERLEY, 1993),

a syntactic parser of English based on link grammar, a formal grammatical system.

J-RAn was applied to a simple case study and, even so, a significant number of

SAO triads were incorrectly extracted (21%) as a large number of extractions were

not detected as well (16%). The tool helps in the analysis of inconsistency and

incompleteness by providing Content Analysis charts (graphs) to a requirements

analyst. However, the analysis itself is not automated but manually carried out by

the analyst.

Lu et al. (2008) presented the Model-driven Object-oriented Requirement Editor

(MOR Editor), a tool that supports requirement document modeling and model-

driven document editing. According to the authors, the user can reuse requirements

patterns in order to help avoiding incompleteness in requirements. It seems that

the editor can help handling inconsistency between requirements documents and

artifacts of other phases of the software development lifecycle, but there is no

evidence that inconsistency in the requirements themselves is treated. It is possible to

transform the informal (NL) requirements into Model-based OO Requirement Mod-

39

els (MOORMs), templates from which software requirements can be instantiated.

Although the authors stated that, it was not very clear how the tool can effectively

aid in the detection of incompleteness defects in requirements, the approach lacks

mathematical formalism, and the translation from NL requirements into MOORMs

is not straightforward.

Konrad and Cheng (2006) presented a process that supports the specification and

analysis of UML models with respect to behavioral properties specified in NL.

This process has been implemented in the SPIDER tool suite. This approach is

a Model Checking of UML models against NL properties. Specifically, the process is

configured to read UML 1.4 models and generate the formal specification language

PROMELA for the Model Checker SPIN (HOLZMANN, 2003). NL properties are de-

rived using a previously developed grammar (KONRAD; CHENG, 2005) that supports

the specification patterns proposed by Dwyer et al. (1999). The grammar enables

the NL representation of these specification patterns, and it is used to formalize

properties in LTL (BAIER; KATOEN, 2008). Therefore, the aim is to check UML

models against the NL properties (requirements) and is not to detect problems in

the NL requirements themselves.

NATT OCH DAG et al. (2002) presented empirical evaluations of the benefits

of automated similarity analysis of NL requirements, where information retrieval

techniques were used to statistically measure requirements similarity. The similarity

analysis aimed at detecting duplicate requirements and was focused on market-driven

development organizations, where software is developed for a large market, there

is a high pressure on short time-to-market, and requirements arrive continuously

and may, at any time, affect previous, current, and coming releases of the software

product. The identification of duplicates is important to avoid doing the same job

twice, assigning the same requirement to different developers, or achieving two

solutions to the same problem. They concluded that such automated similarity

analysis is promising not only for duplicate requirements identification but also

for requirements interdependencies. And, according to Fantechi et al. (2003), “the

automatic determination of clusters of requirements dealing with the same argu-

ments may support the human analysis, aimed at detecting inconsistencies and

discrepancies, by focusing on smaller sets of requirements”.

2.3.4 Translation of requirements

This section presents some studies related to the translation of requirements from

one notation into a different notation. In particular, approaches that translate NL

40

requirements into formal methods can be quite convenient because they relieve

professionals of the cost of learning a formal method and, at the same time, provide

the requirements converted so that the benefits of formalization can be explored

during the development of software. In Section 2.3.3, CIRCE (AMBRIOLA; GERVASI,

2006; AMBRIOLA; GERVASI, 1997), CARL (GERVASI; ZOWGHI, 2005), ACE (FUCHS

et al., 1999; FUCHS et al., 2000), the SPIDER tool suite (KONRAD; CHENG, 2006), and

Kim and Sheldon method (KIM; SHELDON, 2004) are examples of such approaches.

Liang and Palmer (1994) discussed the correspondence between NL requirements

sentence structure patterns and events/transitions concepts in state-transition dia-

grams representing EFSMs. The goal was how to extract events and transitions from

conditional sentences. In order to support such extraction, a pattern matching and

clustering-based approach was proposed. The clustering algorithm used a similarity

measure and was applied to all event clauses. Hence, each resulting cluster contains

similar events. The same algorithm can be applied to extract conditions and actions

(outputs). Once events are identified, the original requirements are clustered based

on events to identify related-transition information. There was no tool to automate

this approach. The identification of events/conditions/actions per se is manually

accomplished by the user by examining clusters.

Fraser et al. (1991) proposed to bridge the gap between informal and formal re-

quirements specification languages. They used Structured Analysis (SA), by means

of Data Flow Diagrams (DFDs), and the Vienna Development Model (VDM) as

surrogates for informal and formal languages, respectively. Two approaches were

presented for integrating SA and VDM. The first approach used the SA model of a

system to guide the Requirements Engineer’s understanding of the system and the

development of VDM specifications. The second one proposed a rule-based method

for generating VDM specifications from a set of corresponding SA specifications.

This proposal did not start the translation directly from NL requirements.

There are also approaches that aim to automatically translate NL sentences for the

purpose of Formal Verification. In some of these studies, the goal is to automatically

translate NL requirements into properties formalized in some sort of logic (HOLT

et al., 1999; NELKEN; FRANCEZ, 1996; FANTECHI et al., 1994) while others aim to

automatically transform NL sentences into a model (KOH; SEONG, 2009). Some of

these approaches are discussed in the next section.

41

2.3.5 Formal methods and requirements specifications

Some researchers have made efforts in applying formal methods to requirements

specifications with diverse purposes such as to perform analysis of these deliverables

themselves and to generate test cases. This section details some of these efforts.

NL2ACTL is a tool for the formalization of requirements (FANTECHI et al., 1994).

NL2ACTL supports the automatic translation of NL sentences into formulae of

Action Computation Tree Logic (ACTL). The tool was incorporated into a verifi-

cation environment, JACK, which was able to cover several aspects of the formal

software development process. The Model Checker included in JACK allowed the

satisfiability of ACTL formulae on the model representing the system to be verified.

Nelken and Francez (1996) presented another work that also aims to translate NL

requirements into ACTL formulae. Their translation method was implemented in

a tool, SpecTran 1.0. Holt et al. (1999) developed a system that allowed Formal

Verification of digital circuits using specifications developed in English. Their system

supports the translation of NL sentences into CTL (BAIER; KATOEN, 2008) formulae.

However, their implementation dealt with only a restricted subset of English.

Koh and Seong (2009) addressed safety analysis of NL software requirements specifi-

cations by using Model Checking. The authors argued that the conventional method

for applying Fault Tree Analysis for safety evaluation has problems in terms of

correctness and efficiency, since the fault tree generated from NL specifications may

contain defects while the manual work of safety verification is time-consuming.

Therefore, they proposed an approach where a fault tree is generated from the

Symbolic Model Verifier (SMV) model but not from NL specifications, and the

safety properties, formalized in CTL, are automatically verified by using the Model

Checker SMV (McMILLAN, 1993).

Software Cost Reduction (SCR) is a formal method based on a tabular notation.

There is a set of software tools to analyze requirements specifications in the SCR

notation such as a specification editor, a consistency checker, a simulator, and

the capability to work with traditional Model Checkers (HEITMEYER et al., 1998;

BHARADWAJ; HEITMEYER, 1999; GARGANTINI; HEITMEYER, 1999).

Bharadwaj and Heitmeyer (1999) described how a complete requirements specifica-

tion created in SCR can be model checked. Their approach used Model Checking

to analyze properties of complete SCR specifications with variables ranging over

many data types. They described two methods for producing abstraction from

42

requirements specifications, and showed how SCR specifications can be translated

into the language of either SMV (McMILLAN, 1993) or SPIN (HOLZMANN, 2003)

Model Checkers. According to their experiments, explicit state Model Checkers, such

as SPIN, were computationally less expensive than symbolic Model Checkers, such

as SMV, for detection of defects. On the other hand, when a property was violated,

SMV was guaranteed to produce the shortest possible counterexample which was an

advantage over SPIN.

The use of formal methods within partial specifications in the context of Independent

Verification and Validation of the requirements for Fault Detection, Isolation and

Recovery on the International Space Station (ISS) was presented by Easterbrook

and Callahan (1998). They used a combination of AND/OR tables (HEIMDAHL;

LEVESON, 1996), the SCR method (BHARADWAJ; HEITMEYER, 1999), and the SPIN

(HOLZMANN, 2003) Model Checker. By manually restating the requirements in

AND/OR tables, they removed ambiguity and their approach found inconsistencies

by using the SCR consistency checker and SPIN. The problems they encountered in

applying formal methods to safety-critical complex specifications were: the process

of translating informal (NL) specifications into a formal notation was error-prone,

it was hard to guarantee fidelity between informal (NL) and formal specifications,

and it was hard to manage consistency between partial specifications developed in

different notations.

Heimdahl and Leveson (1996) described an automated approach to analyzing a

Requirements State Machine Language (RSML) specification for some aspects of

completeness (a set of criteria related to robustness) and consistency (conflicting

requirements and non-determinism). RSML is a formal state-based requirements

specification language which includes several features of Statecharts (HAREL, 1987).

One difference is that Statecharts use predicate calculus to describe the guarding

conditions on the transitions and RSML uses AND/OR Tables, a tabular represen-

tation of DNF. Their method was applied to the specification of an avionics system,

the Traffic alert and Collision Avoidance System II (TCAS II), and they claimed

that state-space explosion problems were eliminated by applying the analysis at a

high level of abstraction: instead of generating a reachability graph for analysis, the

analysis was performed directly on the model.

Despite the interesting results, Heimdahl and Leveson’s approach has issues due to

the presence of spurious (false positive) reports of defects. Basically, two features of

the predicates in RSML contributed to this problem: the use of simple arithmetic

43

and the use of mathematical functions. The number of spurious reports of defects

increased dramatically when the number of predicates including these features in-

creased. In addition, since they did not explore the reachable state space, the states

that exhibit inconsistency or incompleteness may not be reachable, and their decision

to consider only transitions with the same trigger may limit the accuracy of their

method (CHAN et al., 1998).

Chan et al. (1998) translated a portion of a preliminary version of the TCAS II

requirements specification from RSML into the language of the SMV (McMILLAN,

1993) Model Checker. Their goal was more related to realize about the effective-

ness of Model Checking on software systems, so that applying the technology was

more important than the individual results. They defined rules for declaring and

initializing SMV variables from RSML models, for translating deterministic and a

class of non-deterministic RSML transitions. Their approach was able to detect

some inconsistency defects but there were no evident results that assure it can

detect incompleteness defects in the specifications (although the authors claimed

it). Besides, their translation mechanism involved significant manual effort, such

as modifications of the SMV Model Checker and the use of special-purpose macro

processors (BHARADWAJ; HEITMEYER, 1999).

Pontes et al. (2009b) presented two approaches to refine software requirements

specifications: Model Checking using timed automata and the UPPAAL Model

Checker (BEHRMANN et al., 2004), and the CoFI testing methodology (AMBRÓSIO et

al., 2007). They used a very simple case study, an automatic coffee machine, to show

the usefulness of their proposal and they claimed that Model Checking contributed

to detect defects like ambiguity, inconsistency, and incompleteness in informal (NL)

requirements. Moreover, CoFI could identify a larger number of incompleteness

defects.

The work of Pontes et al. (2009b) is interesting, however, it has some issues. First,

the authors stated that there are no guidelines to translate informal requirements

into CTL formulae. This is not quite right because Dwyer et al. (1999) proposed

directives for the translation from informal (NL) requirements into CTL formulae

just as Konrad and Cheng (2005) proposed the translation into Timed Computation

Tree Logic (TCTL) (BAIER; KATOEN, 2008).

Second, they stated that Model Checking contributed to detect ambiguities when

CTL formulae associated with requirements were defined. This assertion that Model

Checking contributes to the detection of ambiguity in informal (NL) requirements

44

is also shared by other authors (BAIER; KATOEN, 2008). But, it was not really

Model Checking that detected ambiguities. In order to state that it is because of

Model Checking that ambiguities are detected, it is necessary that properties are

formalized, a model is generated and the checking of the model against the properties

derives results that somehow indicate that there are ambiguities in the informal

requirements. Without checking the model against the properties it is not possible

to assert that Model Checking is really applied, and that it actually helps to detect

ambiguities. When attempting to generate properties from informal requirements,

the professional (human being) is who actually contributes and detects ambiguities.

Whatever the type of ambiguity (lexical, syntactic) present in NL requirements spec-

ifications, its automated detection is a complex process and requires computational

linguistics techniques. For example, a parser can help to detect syntactic ambiguity

by deriving two parse trees from the same NL requirement. Other approaches, such as

Software Reading Techniques (BASILI et al., 1996), can be used but in such proposals

the use of Model Checking does not seem appropriate.

Still on the work of Pontes et al. (2009b), the incompleteness problem in informal

(NL) requirements was addressed by deriving models and manually/visually inspect-

ing them. As a result, for the detection of incompleteness, Model Checking was not

really applied because the verification of the model against properties was not made.

In some sense, the use of Model Checking and the CoFI methodology resembles

techniques already proposed in the literature: Software Reading Techniques such as

PBR (BASILI et al., 1996). It seems that the only situation where Model Checking

was coherently applied was limited to inconsistency detection but even so it was not

very clear which incosistencies were detected by the application of Model Checking

and which ones were detected by visual inspection of the models. In another work

from the same authors (PONTES et al., 2009a), the problems quoted above are also

present with respect to the application of Model Checking.

More recently, Pontes and his colleagues presented another work aiming at using

Model Checking to verify software embedded in on-board data handling computers

of satellites (PONTES et al., 2010). The case study was based on six subtypes of

two services of the European Cooperation for Space Standardization (ECSS) -

Packet Utilization Standard (PUS) (ECSS, 2003). Although the case study is more

interesting than that reported in the previous studies (PONTES et al., 2009b; PONTES

et al., 2009a), the authors continue stating that there are no directives to transform

informal requirements into CTL properties. Thus, they do not provide guidelines to

formalize the properties.

45

Yu et al. (2008) proposed an approach to perform completeness and consistency

analysis on requirements, and another approach to correcting the inconsistencies

identified. A formal scenario model based on first order logic was used to represent

requirements so that scenario elements of condition guards, events and actions could

be automatically extracted (a prototype tool was developed). Condition guards

associated with the same event were constructed into a tree in order to perform

completeness analysis and supplement missing requirements. Consistency analysis

focused on three types of inconsistencies and it was accomplished according to the

intra-relations among condition guards and inter-relations with actions. However,

scalability seems to be a problem because their approach was applied to a very

simple case study.

Gargantini and Heitmeyer (1999) proposed a method for generating test cases from

an operational SCR requirements specification containing mixed variable types, i.e.

integers, booleans, and enumerated types. Model Checking was used to generate

test cases. Their method is based on two ideas. First, the Model Checker is used as

an oracle to compute the expected results. Second, the Model Checker’s ability to

generate counterexamples is used to construct the test cases. A tool was developed

to automatically translate the SCR specification into the language of either SMV

(McMILLAN, 1993) or SPIN (HOLZMANN, 2003) Model Checkers6, to execute the

selected Model Checker, and to derive the test cases. There are also other studies

that use Model Checking for test case generation (AMMANN et al., 1998; ENGELS et

al., 1997).

2.4 Final remarks about this chapter

This chapter presented the theory and research related to this PhD thesis. The

areas of knowledge associated with this work include, among others, Model-Based

Testing, combinatorial designs, Formal Verification (Model Checking), NLP, and

formal methods in general. Each of these research areas have much information,

so that this chapter has tried to present only what is necessary for the proper

understanding of this work. Also, emphasis was given to studies which will then

be compared in the chapters concerning the development of the PhD thesis itself.

Next chapter presents version 1.0 of the SOLIMVA methodology.

6The translation method was the same as described in Bharadwaj and Heitmeyer (1999).

46

3 THE SOLIMVA METHODOLOGY

This chapter presents version 1.0 of the SOLIMVA methodology which addresses

the primary goal of this PhD thesis: generation of model-based system and ac-

ceptance test cases considering NL requirements deliverables. In this chapter when

used without any explicit indication of the version number, the terms “SOLIMVA

methodology” and “SOLIMVA” refer to version 1.0 of the SOLIMVA methodology.

In SANTIAGO JÚNIOR and VIJAYKUMAR (2012) there is an abridged version

of this chapter. As mentioned in Chapter 1, SOLIMVA is supported by a main

tool, also called SOLIMVA, that makes it possible to automatically translate NL

requirements into Statechart models. Once the Statecharts are created, the GTSC

environment is used to generate Abstract Test Cases which are later translated into

Executable Test Cases. However, in order to improve understandability, the main

case study in which the SOLIMVA methodology and supporting tools (SOLIMVA

tool and GTSC environment) were applied will be firstly described.

3.1 Main case study: software embedded in satellite payload

This case study is a space application software product, Software for the Payload

Data Handling Computer (SWPDC), developed in the context of the Qualidade do

Software Embarcado em Aplicações Espaciais (QSEE - Quality of Space Application

Embedded Software) research project (SANTIAGO et al., 2007). QSEE was an expe-

rience in outsourcing the development of software embedded in satellite payload.

INPE was the customer and there were two SWPDC’s suppliers: INPE itself and

a Brazilian software company. The QSEE research project used ECSS standards

(ECSS, 2008) in order to guide the relationship between customer and supplier. The

main goals of QSEE were: (i) to transfer to Brazilian software industry INPE’s

knowledge in software development for space applications, particularly Verification

and Validation methods and techniques applied to software embedded in scientific

instruments of satellites and in balloon applications; (ii) to update the software

development methodology for scientific satellites and balloon applications under

development at INPE; iii) to create a methodology so that INPE can accept software

developed by private software companies.

Figure 3.1 shows the functional architecture defined for QSEE project. Note the

following computing units in the architecture: On-Board Data Handling (OBDH)

Computer, Payload Data Handling Computer (PDC), Event Pre-Processors (EPPs;

EPP H1 and EPP H2), and Ionospheric Plasma Experiments (IONEX) Computer.

OBDH is the satellite platform computer in charge of processing platform and

47

OBDH
(Simulation
Software)

PDC
(SWPDC)

EPP H1
(Data

Simulation)

EPP H2
(Data

Simulation)

Temperature
Simulation

IONEX

Temperature
Simulation

Converter

USB DAQ

RS-232

ADC

RS-232

Instruments
RS-232

Figure 3.1 - Functional architecture defined for QSEE project. Caption: ADC = Analog-
to-Digital Converter; DAQ = Data Acquisition Board; RS-232 = Recom-
mended Standard 232; USB = Universal Serial Bus

SOURCE: Adapted from Santiago et al. (2007)

payload information and formatting/generating data to be transmitted to Ground

Stations. The payload is composed of two scientific instruments (note the dashed

rectangles). However, for the purpose of this case study, the main instrument is the

one in which PDC exists, because SWPDC is embedded into PDC. The main goal

of PDC is to obtain scientific data from EPPs and to transmit them to the OBDH.

EPPs are front-end processors in charge of fast data processing of X-ray camera

signals.

Essentially, this system employs a two-level primary/secondary communication

model. In the first level, OBDH is the primary unit, PDC and IONEX are the

secondary units. In the second level, PDC is the primary unit and EPPs (EPP H1

and EPP H2) are the secondary units. Communication protocols were specified to

make the interface among the several computing units within the architecture.

The main functions of the SWPDC software product are: (i) interaction with EPPs

in order to collect Scientific, Diagnosis and Test Data; (ii) data formatting; (iii)

memory management to store data temporarily before transmission to the OBDH;

(iv) implementation of flow control mechanisms; (v) Housekeeping Data generation;

(vi) implementation of complex fault tolerance mechanisms; and (vii) loading of new

48

programs on the fly (SANTIAGO et al., 2007). This case study has, therefore, almost

all the functions of data handler computers for space applications and thus, the

characteristics of SWPDC are representative of an important class of software in

space domain.

Figure 3.2 shows QSEE’s software development lifecycle processes (rectangles), for-

mal technical reviews (circles), and main deliverables (artifacts). It is worth men-

tioning that the Independent Verification and Validation process was conducted

by an independent team at INPE and started since the beginning of the software

development lifecycle. Formal technical reviews were the main interaction points

between customer and supplier. Each formal technical review had associated a set of

deliverables which were assessed by reviewers and discussed during formal technical

reviews meetings in order to improve their overall quality.

The most important deliverables evaluated within each formal technical review are

below each review’s circle in Figure 3.2. For example, within the Preliminary Design

Review (PDR), PDC-OBDH Communication Protocol Specification (POCP), PDC-

EPPs Communication Protocol Specification (PECP), Software Development Plan

(SwDevPlan), Software Requirements Specification (SRS), and Independent Verifi-

cation and Validation Plan (IVVPlan) were the main input and output deliverables.

Suppliers provided the deliverables marked with an asterisk (*), e.g. SRS, and the

customer was in charge of the others with no asterisk, e.g. POCP. Furthermore,

deliverables in boldface and underlined mean that their output version within the

review is considered their final version. Hence, Requirements Baseline (RB) was

developed by the customer, it was input and output of the System Requirements

Review (SRR), and RB’s output version within SRR was frozen. The IVVPlan

was also developed by the customer, and it was assessed within SRR, PDR, and

Critical Design Review (CDR). IVVPlan’s output version within CDR was frozen.

SRSs were responsibility of the suppliers and they were evaluated within PDR and

Detailed Design Review (DDR). SRSs’ output versions within DDR were frozen.

In the next two sections version 1.0 of the SOLIMVA methodology, the main tool

that supports the methodology, i.e. the SOLIMVA tool, and, very briefly, the GTSC

environment will be described and, whenever necessary, the SWPDC case study will

be used to demonstrate the execution of the activities. In order to apply version 1.0

of the SOLIMVA methodology, four deliverables were consulted: RB, SRS, POCP,

and PECP.

49

SRR PDR CDR QR AR

System

Engineering

Requirements

and Architecture

Engineering

Acceptance

DDR

RB

POCP

PECP

SwDevPlan*

IVVPlan

POCP

PECP

SwDevPlan*

SRS*

IVVPlan

SRS*

SwDesign*

SwTSP*

Design and

Implementation

Engineering

Independent Verification and Validation

SwDesign*

IVVPlan

SWPDCCode*

SwTSP*

SwTR*

UsrMan*

SwAccPlan

SwAccSpec

UsrMan*

SwAccPlan

SwAccSpec

SwAccReport

UsrMan*

Figure 3.2 - QSEE project: software development lifecycle processes, formal technical
reviews, and main deliverables. Caption: SRR = System Requirements
Review; PDR = Preliminary Design Review; DDR = Detailed Design
Review; CDR = Critical Design Review; QR = Qualification Review; AR
= Acceptance Review; RB = Requirements Baseline; POCP = PDC-OBDH
Communication Protocol Specification; PECP = PDC-EPPs Communication
Protocol Specification; SwDevPlan = Software Development Plan; IVVPlan =
Independent Verification and Validation Plan; SRS = Software Requirements
Specification; SwDesign = Software Design Document; SwTSP = Software
Test Specification and Plan; SwTR = Software Test Report; SWPDCCode
= SWPDC’s Source Code; UsrMan = User Manual; SwAccPlan = Software
Acceptance Test Plan; SwAccSpec = Software Acceptance Test Specification;
SwAccReport = Software Acceptance Test Report

SOURCE: Adapted from Santiago et al. (2007)

3.2 Description of version 1.0 of the SOLIMVA methodology

Version 1.0 of the SOLIMVA methodology is illustrated in the activity diagram

of Figure 3.3. The first activity is the definition of a Dictionary by the user/test

designer. The Dictionary defines the application domain and it is considered as a

quintuple ⟨N,R, STM .C, STM .F, STM .Y ⟩, where:

50

∙ N is a set of Names defining mainly the names of states of the model;

∙ R : R.IE → R.OE. R is a function1 from R.IE (input event set) to R.OE

(output event set) that represents the Reactiveness of the system;

∙ STM is the Semantic Translation Model. STM is composed of two sets

and a function. One set characterizes specific control behaviors, STM .C.

The other set characterizes the occurrence of self transitions within the

model, STM .F ; and STM .Y : Y.IP → Y.OP . STM .Y is a function from Y.IP

(input pattern set) to Y.OP (output pattern set) that is related to hierarchy

(depth) in the Statechart model.

Define and Input Dictionary

Define Scenarios

Select and Input NL Requirements

Generate Model

Clear Requirements
and Model [manual refinement]

Generate Abstract Test Cases

Generate Executable Test Cases

[more scenarios]

 [end of scenarios]

 [else]

Update Dictionary
[dictionary update]

 [else]

Figure 3.3 - Version 1.0 of the SOLIMVA methodology

1In this work, a function F is considered as a set of ordered pairs (x, y), where x is an element
of the domain of F , and y is an element of the codomain of F .

51

The set N , the functions R and STM .Y are defined by the user. The sets STM .C

and STM .F are already defined within the SOLIMVA tool which supports the

methodology, although the user can change if needed. Users enter data via Graphical

User Interface and using NL and, moreover, they are not required to have any

knowledge in formal methods and their notations to define the application domain.

It is worth mentioning that the Reactiveness feature of the Dictionary comes into

picture because reactive systems are the main targets of SOLIMVA.

Consider the SWPDC case study described in Section 3.1. The Name (N) set of the

Dictionary will be composed mainly by relevant words or set of words that map to

important entities of the application domain. These include the first-level primary

computing unit (OBDH), the computer in which SWPDC will be embedded (PDC)

and the operation modes of such computer, SWPDC itself, and so on. Hence, N can

be composed of:

N={PDC, SWPDC, OBDH, Initiation Operation Mode, Safety Operation

Mode, ...}.

The Reactiveness (R) function is basically a mapping between the commands (the

domain of R, i.e. R.IE) and responses (the codomain of R, i.e. R.OE) defined in

the PDC-OBDH Communication Protocol Specification and possibly in the PDC-

EPPs Communication Protocol Specification as well. For instance, VERIFY PDC’s

OPERATION MODE (VER-OP-MODE) is a command (an element of R.IE) that

the OBDH sends to PDC in order to know which is its current operation mode. The

response that PDC sends back to the OBDH is the INFORMATION REGARD-

ING THE PDC’s OPERATION MODE (INFO-OP-MODE), an element of R.OE.

The OBDH may CHANGE PDC’s OPERATION MODE TO NOMINAL (CH-OP-

MODE-NOMINAL) or CHANGE PDC’s OPERATION MODE TO SAFETY (CH-

OP-MODE-SAFETY). Assuming there is no problem during the transmission of the

command to the PDC, in both cases the PDC responds with a positive acknowl-

edgement, i.e. COMMAND CORRECTLY RECEIVED (CMD-REC). Hence, R.IE,

R.OE, and R can be composed of:

∙ R.IE = {VER-OP-MODE, CH-OP-MODE-NOMINAL, CH-OP-MODE-

SAFETY, ...},

∙ R.OE = {INFO-OP-MODE, CMD-REC, ...},

52

∙ R = {(VER-OP-MODE, INFO-OP-MODE), (CH-OP-MODE-NOMINAL,

CMD-REC), (CH-OP-MODE-SAFETY, CMD-REC), ...}.

The Semantic Translation Model of the Dictionary will be detailed in subsequent

sections. After the definition of the Dictionary, scenarios are identified. A scenario

is defined as follows.

Definition 3.1. A scenario is defined as an interaction between a user and the IUT.

Associated with each scenario there is a set of requirements which characterize such

an interaction.

Figure 3.4 shows the Define Scenarios activity of the SOLIMVA methodology in form

of an activity diagram while Figure 3.5 shows the Define Scenarios activity in form of

a procedure. In the sequence, the explanations about the Define Scenarios activity

are given taking into account the form of procedure that describes the activity

(Figure 3.5). The first task, which is optional, serves to obtain the basic elements

that enable interaction with the IUT. In terms of embedded reactive systems, these

basic elements can be protocol data units, commands, etc. that characterize the

interface between two or more computing systems. Hence, a set of very simple

scenarios are determined aiming at observing the correct implementation of these

elements by the IUT.

This first task is optional because the test designer might simply rely on test cases

applied on previous phases of the software development lifecycle, e.g. unit testing,

and consider that these basic elements are correctly implemented. In the SWPDC

case study, a simple scenario is to switch the PDC on and send the VER-OP-MODE

command to evaluate whether SWPDC has correctly implemented the reception and

processing of this command.

In SOLIMVA, combinatorial designs (MATHUR, 2008) are used to help to identify

scenarios. The basic idea is to define factors (input variables) and levels (values

assignable to a factor) and to use a combinatorial designs algorithm to determine

the set of levels, one for each factor, known as a factor combination or run (Sec-

tion 2.1.1.3). Among the combinatorial designs techniques available, the SOLIMVA

methodology adopted the Mixed-Level Covering Array. The algorithm used is the In-

Parameter-Order (IPO) (LEI; TAI, 1998), a procedure that can generate Mixed-Level

Covering Arrays. At present, the SOLIMVA methodology uses version 2.1 of TConfig

(UNIVERSITY OF OTTAWA, 2008), an open source tool which has implemented the

53

Identify Normal Scenarios

Identify Unfolded Scenarios

[more normal scenarios]

Apply Combinatorial Designs (Unfolded)

Identify Simple Scenarios

Evaluate Normal Scenario

 [end of nomal scenarios]

[identification of simple scenarios]

 [else]

Apply Combinatorial Designs (Normal)

 [unfolding]

 [else]

Figure 3.4 - The Define Scenarios activity of the SOLIMVA methodology: activity
diagram

IPO procedure.2

Let fi, 1 ≤ i ≤ m, be a set of factors, and lij, 1 ≤ j ≤ n, be the set of levels

for each factor fi, where n may vary depending on i. Hence, a factor combination

number X (fc X) of the generated Mixed-Level Covering Array could be fc X =

{l11, l23, . . . , lm1} which means the first level of factor 1, the third level of factor 2,

and so on until the first level of factor m. Thus, a factor combination derived by the

2The IPO procedure was originally conceived for 2-way (pairwise) testing. Version 2.1 of the
TConfig tool can generate from 2-way to 6-way Mixed-Level Covering Arrays. However, it is
not clear if the tool has implemented the In-Parameter-Order-General (IPOG) (LEI et al., 2007)
algorithm which deals with general t-way testing or else if another approach was adopted.

54

input : NL requirements deliverables
output: scenarios for model-based test case generation

1 if identification of simple scenarios is needed then
2 Identify simple scenarios based on the core elements that enable interaction with the IUT;
3 end
4 Identify factors and levels;
5 Define strengtℎ = #factors− 1;
6 Run the combinatorial designs algorithm, using the strengtℎ defined in the previous step;
7 Identify normal scenarios. Consider the interpretation of at least (factors − 1) out of
factors levels of each factor combination when identifying normal scenarios. Each factor
combination will drive the identification of a scenario;

8 foreach normal scenario do
9 if unfolding is needed then

10 Identify new factors and levels;
11 Define a priority factor;
12 Define strengtℎ = #factors− 1;
13 Run the combinatorial designs algorithm, using the strengtℎ defined in the previous

step;
14 Identify scenarios obtained by unfolding the normal scenario. At least (factors − 1)

out of factors levels of each factor combination shall be accounted for when
identifying unfolded scenarios. The number of unfolded scenarios will be the number
of levels of the priority factor;

15 end

16 end

Figure 3.5 - The Define Scenarios activity of the SOLIMVA methodology: procedure

combinatorial designs algorithm is interpreted by the test designer in order to define

a scenario (the interaction between the user and the IUT). In this work the expression

“scenario X”, where X is given by the tool that has implemented the combinatorial

designs algorithm, means that this is the scenario defined by the test designer due

to the interpretation of fc X. This perspective applies only to normal scenarios

and unfolded scenarios (further explanation of these scenarios in sequence) which

are those generated with the aid of the combinatorial designs algorithm. In other

words, there is no fc X to interpret to define simple scenarios because these are not

derived with the help of the tool that has implemented the combinatorial designs

algorithm.

As seen from lines 4 to 7 in Figure 3.5, scenarios identified by the interpretation

of the factor combinations due to the first use of combinatorial designs are called

normal scenarios. Besides, note that strengtℎ = #factors−1 with the objective of

achieving the maximum number of factor combinations without using an exhaustive

(all to all) approach (#factors = total number of factors).

55

A scenario might have more that one test objective associated. However, these test

objectives should not be too disparate. This recommendation might lead the user

to neglect one level on interpreting the factor combination in order to identify a

scenario. The explanation for this fact is that the characteristics of the factors can

be considerably different so that if the test designer defines a scenario based on

all levels of a factor combination, it is possible that such a scenario has several

unrelated test objectives which is not a good approach, resulting in a bad strategy in

terms of test objectives. For instance, in a web application, interpretation of a factor

combination may generate a scenario in which it is necessary to verify whether a web

service is correctly implemented, and some security requirements are satisfied, and

information retrieval from a data base due to a specific type of request is consistent.

There are many different and unrelated test objectives in this case. Thus, it is more

interesting to disregard the interpretation of a level to decrease the amount of test

objectives. In such situations, “-” is used to mean “do not consider any level of this

factor for this particular scenario”.

A simplified choice of factors and levels for the SWPDC case study is shown in

Table 3.1. The explanation for the factors and levels follows:

a) Cmd. This factor relates to the commands defined in the PDC-OBDH

Communication Protocol Specification. These commands were grouped

into levels considering processing activities to acquire and transmit

data (DtAcqTx), and handling of hardware and software parameters

(HwSwHnd);

b) OpMode. This factor relates to PDC’s operation modes. In this simplified

example, only the Nominal Operation Mode (Nom) was considered;

c) Services. This factor relates to the services supported by SWPDC. In this

example, only the services related to acquisition, formatting, and transmis-

sion of Scientific Data (Sci), and generation, formatting, and transmission

of Housekeeping Data (Hk) were taken into account.

Note that each factor has a level Inv, which stands for invalid value. The SOLIMVA

methodology strongly recommends that in each factor there is such a level to address

Robustness testing which is particularly useful for embedded critical software where,

for instance, it is possible to observe the behavior of the IUT under non specified

test input data. Running the combinatorial designs algorithm with strengtℎ =

56

Table 3.1 - Simplified choice of factors and levels for the SWPDC case study

Factors Levels

Cmd DtAcqTx HwSwHnd Inv

OpMode Nom Inv

Services Sci Hk Inv

#factors − 1 = 2, nine factor combinations are generated. Table 3.2 shows the

normal scenarios based on the interpretation of each factor combination.

The first remark about the generated scenarios is that when a level is not present

in a factor combination, this does not necessarily imply that it will not be somehow

related to the scenario derived from the interpretation of such factor combination.

It depends on the kind of factor. For instance, in Table 3.2, normal scenario 1

has level DtAcqTx due to the command factor (Cmd). It does not mean that the

selection of NL requirements that characterize normal scenario 1 will be such that

no requirement shall be related to commands to handle hardware and software

parameters (HwSwHnd). Indeed, it is very likely that HwSwHnd commands should

be sent to PDC in order to drive the SWPDC to the appropriate state so that

the test objective of normal scenario 1 can be achieved. For example, in order to

acquire, format, and transmit Scientific Data in the Nominal Operation Mode, first

EPP H1 and EPP H2 must both be turned on. But, the commands to switch them

on are HwSwHnd commands. Hence, they need to be sent to PDC prior to data

acquisition. However, for normal scenario 1, the main contribution of the command

factor is related to data acquisition and transmission (DtAcqTx).

In normal scenarios 2, 3 and 4, one level was not accounted for (“-”) when inter-

preting the factor combinations. This level was precisely Inv which was addressed in

other scenarios (5, 6, 7, 9) whose main goals were related to Robustness testing.

This stresses the important recommendation that the methodology provides to

incorporate Robustness testing covering several different situations. Scenarios where

robustness is the main test objective can be mapped to “unhappy cases” in use case

modeling.

The Inv level may be translated into many different test input data. This is a

characteristic of combinatorial designs testing where each factor combination may

drive one or more test input data. For instance, in normal scenario 5, the test

designer may select several different invalid commands by looking at the PDC-

OBDH Communication Protocol Specification and choosing “commands” that are

57

Table 3.2 - Normal scenarios due to the factors and levels of Table 3.1. Caption: #Scn =
Scenario number

Factor Combination #Scn Scenario (Interpretation)

{DtAcqTx, Nom, Sci} 1 Acquire, format, and transmit Scientific Data in the Nomi-

nal Operation Mode

{DtAcqTx, -, Hk} 2 Generate, format, and transmit Housekeeping Data in the

Nominal Operation Mode

{HwSwHnd, Nom, -} 3 Verify the correct implementation of commands related to

hardware parameters manipulation in the Nominal Opera-

tion Mode

{HwSwHnd, -, Sci} 4 Verify the correct implementation of commands related

to hardware parameters manipulation during acquisition,

formatting, and transmition of Scientific Data

{Inv, Nom, Hk} 5 Verify the behavior of SWPDC when receiving commands

with inconsistent values during transmission of Housekeep-

ing Data in the Nominal Operation Mode (Robustness

testing)

{Inv, Inv, Inv} 6 Verify the behavior of SWPDC when receiving commands

with inconsistent values, when trying to change PDC’s

operation mode to an unspecified operation mode, and

when asking SWPDC to provide services not defined in the

Software Requirements Specification (Robustness testing)

{Inv, Nom, Sci} 7 Verify the behavior of SWPDC when receiving commands

with inconsistent values during acquisition, formatting, and

transmission of Scientific Data in the Nominal Operation

Mode (Robustness testing)

{HwSwHnd, Nom, Hk} 8 Verify the correct implementation of commands related to

software parameters manipulation, and generate, format,

and transmit Housekeeping Data in the Nominal Operation

Mode

{DtAcqTx, Nom, Inv} 9 Verify the behavior of SWPDC when asking SWPDC to

provide services not defined in the Software Requirements

Specification during data acquisition, generation, and trans-

mission (Scientific or Housekeeping Data) in the Nominal

Operation Mode (Robustness testing)

not specified to be sent to PDC. To do that, other traditional black box testing

techniques like boundary-value analysis might be applied to choose such invalid

values. Hence, normal scenario 5 may have as many as needed invalid commands

the test designer wishes, addressing the robustness of SWPDC. Another approach if

the contribution of the Cmd factor is Inv within a factor combination is to address

situations where a command is not entirely received by PDC due to problems in the

physical transmission medium.

58

The fact that the user can neglect one level in interpreting the factor combination to

derive a scenario does not mean that the entire test suite, considering all test cases

derived according to all Statechart models, will be incomplete. Looking at Table 3.2,

the set of derived scenarios cover all aspects of factors/levels of Table 3.1. In other

words, within the scenarios defined in Table 3.2, it is possible to acquire, format,

and transmit Scientific Data in the Nominal Operation Mode, to generate, format,

and transmit Housekeeping Data in the Nominal Operation Mode, to verify the

correct implementation of HwSwHnd commands, related to hardware and software

parameters, and of DtAcqTx commands too. What matters is the expertise of the

test designer in the application domain in order to interpret the factor combinations

and to define scenarios that will generate, at the end, a test suite that is sufficiently

complete.

However, it is possible that some normal scenarios have to be unfolded so that

more factor combinations should be generated. The explanation for the need of such

unfolding process lies in the fact that some levels may implicitly have specific values

of variables (e.g. initial and final values of memory addresses) so that it is necessary

to deal with situations which address the combination of such values. Not all normal

scenarios need to have this demand. For those that need, new factors and levels are

defined, as well as a priority factor. The total number of unfolded scenarios due

to such process must be equal to the number of levels of the priority factor.

In case a normal scenario is unfolded, it is not necessary to accomplish that more

than once because multiple unfoldings will make the methodology complex without

substantial benefit in practical terms. Normal scenario 8 in Table 3.2 is the only

one that needs to be unfolded into other scenarios. This is because the software

parameters that are updated via commands have a default value, but also minimum

and maximum values. Hence, it is interesting to replace normal scenario 8 with more

specific scenarios addressing several situations regarding such values. Table 3.3 shows

a simplified set of factors and levels for unfolding normal scenario 8.

Table 3.3 - Unfolding normal scenario 8: simplified choice of factors and levels

Factors Levels

HkTime Min Def Max Inv

IniPtr Min InRng Max Inv

SmpTime Min Def Max Inv

59

In Table 3.3, the priority factor is the parameter that defines the period (time

interval) in which Housekeeping Data are generated (HkTime). In the PDC-OBDH

Communication Protocol Specification, not only a default value (Def) is specified but

also minimum (Min) and maximun (Max) values of this parameter. The same levels

of HkTime apply to the sampling time of the analog input channels (SmpTime). The

initial pointer (memory address) in which it is possible to load new executable code

on the fly (IniPtr) has also minimum (Min) and maximum (Max) values, but it also

allows initial addresses in range (InRng), i.e. between the minimum and maximum

values.

Since the priority factor has four levels then four unfolded scenarios will be defined

and will replace normal scenario 8. For instance, unfolded scenario 8.2, i.e. the

second scenario unfolded from normal scenario 8, suggests the test designer to add

requirements related to commands so that the following situations are covered:

∙ HkTime = Def, IniPtr = Min, SmpTime = Def;

∙ HkTime = Def, IniPtr = InRng, SmpTime = Min;

∙ HkTime = Def, IniPtr = Max, SmpTime = Inv;

∙ HkTime = Def, IniPtr = Inv, SmpTime = Max.

Note that the time to generate Housekeeping Data remains fixed in the default value

within unfolded scenario 8.2. The other parameters must be udpated via commands

with different values. Besides, Robustness testing is still in order due to the invalid

values. In these cases, SWPDC can receive but it must not process any of the invalid

commands.

After the previous steps, the user must select and input a set of NL requirements

which together characterize a single scenario (simple, normal, unfolded). Then, the

user must search these requirements in documents such as software requirements

specifications. For normal and unfolded scenarios, the test designer must search for

these NL requirements so that each level of a factor combination is addressed and

thus a scenario can be characterized. For example, in the SWPDC case study, each

interaction with the IUT requires that the PDC is energized and, after that, the

activities of initializing the computing system are performed by SWPDC. Thus the

following requirements, defined in the SWPDC’s Software Requirements Specifica-

tion, relate to the beginning of each scenario (SRS001, SRS002, and SRS003 are the

identification of requirements. Appendix A has more details on this matter):

60

∙ SRS001 - The PDC shall be powered on by the Power Conditioning Unit.

∙ SRS002 - The PDC shall be in the Initiation Operation Mode after being

powered on. The SWPDC shall then accomplish a POST. If PDC presents

any irrecoverable problem, this computer shall remain in the Initiation

Operation Mode and such a problem shall not be propagated to the OBDH.

∙ SRS003 - If PDC does not present any irrecoverable problem, after the

initiation process, the PDC shall automatically enter into the Safety Op-

eration Mode.

Chapter 4 addresses the SWPDC case study in more detail, showing sets of chosen

NL requirements that characterize scenarios.

The Dictionary does not necessarily have to be defined completely at once. The user

can start defining and inputting part of the Dictionary at the beggining and, after

choosing the NL requirements that characterize each scenario, the Dictionary can be

updated according to new important words. This is the reason behind the optional

activity Update Dictionary. Hence, the creation of the Dictionary is incremental and

dependent on the selected set of NL requirements. This approach prevents the user

to completely define the Dictionary at an early stage when applying SOLIMVA.

After that, the generation of the Statechart model follows. This activity will be

discussed in detail in Section 3.3. After generating the model, the test designer may

decide to manually refine it. Hence, he/she can accomplish this refinement in which

the requirements of the scenario and the respective created model must be cleared

(Clear Requirements and Model activity). The user can make such a refinement

because he/she realized that the generated model can be improved and/or there

is some kind of incoherence in the model probably due to mistakes when inserting

the NL requirements (e.g. wrong sequence of requirements). The relevance of the

manual refinement will be demonstrated with requirements SRS001, SRS002, and

SRS003 presented above. If the test designer mistakenly switch the order of NL

requirements SRS002 and SRS003, the resulting Statechart model due to this wrong

input sequence of requirements will be naturally incorrect. Figure 3.6 shows a piece

of the correct Statechart model while Figure 3.7 shows a piece of the incorrect

Statechart model due to the wrong order of NL requirements.

After these steps, Abstract Test Cases are generated by using the GTSC envi-

ronment (SANTIAGO et al., 2008b). GTSC allows test designers to model software

61

PDC Initiation
Operation Mode

be power on_Power Conditioning Unit

PDC_3

Safety
Operation Mode

do not present_irrecoverable problem

be#then accomplish_post#present_irrecoverable problem#

not be propagate

∞

Figure 3.6 - Piece of the entire Statechart model related to a scenario: correct model

PDC
be power on_Power Conditioning Unit

PDC_2

Safety
Operation Mode

do not present_irrecoverable problem

be#then accomplish_post#present_irrecoverable problem#

automatically enter
Initiation

Operation Mode ∞

Figure 3.7 - Piece of the entire Statechart model related to a scenario: incorrect model

behavior using Statecharts and/or FSMs in order to automatically generate test

cases based on some test criteria for FSM and some for Statecharts. At present,

GTSC has implemented DS, UIO (SIDHU; LEUNG, 1989) and H-switch cover (SOUZA,

2010) test criteria for FSM models, and four test criteria from SCCF (SOUZA,

2000), all-transitions, all-simple-paths, all-paths-k-C0-configuration, and all-paths-

k-configurations, targeting Statechart models. In GTSC, the implementation of the

62

all-paths-k-C0-configuration and all-paths-k-configurations test criteria considered

k = 2. Thus, test criteria define the rules that drive test case generation in GTSC.

Figure 3.8 shows the architecture of GTSC where, in addition to the architectural

elements themselves which are encapsulated by the larger rectangle, there are ele-

ments prepared/generated (Reachability Tree, Test Cases, ...) when using the GTSC.

These external elements are not part of the architecture and they were placed in the

figure only for better understanding.

ConfigurationModeling
(PcML Editor)

Test Criteria
Selection

Statecharts
Flattening

PcML
Specification

Test CasesFlat FSM
(XML format)

Modeling
(Graphical Editor)

Reachability
Tree

Generation

Statechart
Criteria

Implementation

FSM
Criteria

Implementation

Reachability
Tree

Figure 3.8 - The GTSC architecture. Caption: PcML = PerformCharts Markup Language,
XML = Extensible Markup Language

SOURCE: Adapted from SANTIAGO JÚNIOR et al. (2010)

In order to use GTSC, the test designer translates the Statechart behavioral model

into a PerformCharts Markup Language (PcML) specification (SANTIAGO et al.,

2006). Based on a PcML specification, GTSC obtains a flat FSM. A flat FSM is

a model where all hierarchical and orthogonal features of a Statechart model were

removed. PerformCharts tool (VIJAYKUMAR et al., 2006), one of the components of

the GTSC environment, is responsible for such a transformation. Each state of the

resulting flat FSM is actually a configuration Ci (Section 2.1.1.2) of the Statechart

model at a certain step of computation. This flat FSM is indeed the basis for test

case generation.

A test designer may then follow two approaches to generate test cases. If an SCCF

test criterion is selected to derive test cases, GTSC adapts the flat FSM to resemble

a reachability tree (MASIERO et al., 1994). Thus, based on the selected test criterion

63

of SCCF and on this tree, test cases are created. On the other hand, if an FSM test

criterion is the option then GTSC simply generates test cases based on the flat FSM

and on the selected test criterion.

The generated Statechart model is an abstract representation of the behavior of the

IUT according to a specific scenario. Hence, the test cases derived from this model

are a kind of functional tests on the same level of abstraction as the model. As will be

shown in Chapter 4, the generated“test input data”and“expected results”of the test

cases based on the Statechart model are usually pieces of NL sentences (particularly

in the SWPDC case study, some commands/responses of Communication Protocol

Specifications may also be present). Hence, the test cases generated by GTSC are

Abstract Test Cases and thus they cannot be directly executed against the IUT due

to the fact they are on the incorrect level of abstraction. Therefore, the test designer

shall accomplish the translation from Abstract Test Cases into Executable Test

Cases to enable the effective execution of test cases.

Having created the test cases (Executable Test Cases) for a single scenario, the

test designer starts again selecting and inserting the NL requirements for the next

scenario. But before doing this, he/she must clear the requirements and related

model of the current scenario. This process must be repeated until there is no more

scenario.

3.3 Model generation

The Generate Model activity in Figure 3.3 is composed of two sub-activities. When

the user selects in the Graphical User Interface of the SOLIMVA tool the options

related to these sub-activities, algorithms are executed to meet the goals. These

sub-activities are described below.

3.3.1 Generation of tuples

The first task refers to the generation of Behavior-Subject-Action-Object (BSAO)

4-tuples. The BSAO 4-tuples are an extension of the concept of SAO triads used in

the J-RAn tool (FANTECHI; SPINICCI, 2005).

In the SOLIMVA tool, the first extension is the inclusion of Behavior features in

the SAO triad transforming into a BSAO 4-tuple. The reason behind this lies in the

fact that words like “if” determine a particular behavior in the created model. For

instance, finding an if-then-else situation in one or in several NL requirements (e.g.

in a requirement: “If an echo is received ...”; in the same or in the next requirement:

64

“If an echo is not received ...”) may imply that the behavioral model will have

a state with two outgoing transitions each one representing the possible outcome

of the if-then-else situation. Thus, if such a situation is detected within the NL

requirements that characterize a scenario, an approach is followed which is similar

to when a Control Flow Graph must be built from the source code and when a

control structure if is found.

The second modification is related to Object identification. J-RAn presented a large

number of extractions that were not detected (FANTECHI; SPINICCI, 2005), and one

explanation for this fact is because J-RAn used a single link type (“O”) of the Link

Grammar Parser (SLEATOR; TEMPERLEY, 1993) to identify Objects. However, it is

possible that there is no explicit Object generated by Link Grammar depending on

the NL requirement. Consider the following requirement:

Users’ data shall be updated on the server every 12 hours.

When using Link Grammar, there is no Object because none of the link types with

respect to Object (“O”, “OT”, ...) appears in the parser output. An attempt to

circumvent this problem was embedded in the SOLIMVA tool where an algorithm

was developed and implemented to automatically identify the BSAO tuples. The

algorithm makes use of version 3.0 of the Stanford POS Tagger (TOUTANOVA et al.,

2003) in order to identify the lexical categories (POS) of each sentence of the NL

requirements. Actually, after the user has selected and inserted the NL requirements

that characterize a scenario, the SOLIMVA tool combines all such requirements into

a file. This file is input to the Stanford POS Tagger which assigns the POS tag of

each word.3

Figure 3.9 shows, in form of an activity diagram, the algorithm to automatically

generate the BSAO tuples based on the NL requirements while Figure 3.10 shows

the same algorithm in form of a procedure. In the sequence, the explanations about

the algorithm are given taking into account the form of procedure that describes the

algorithm (Figure 3.10). Besides the Dictionary (dic), the algorithm takes as input

all the words (allw set) in the file that contains the set of NL requirements. In case

of verbs and nouns, the algorithm obtains the lemma4 and adds it in the allw set

3The Stanford POS Tagger adopts the Penn Treebank POS tagset (MARCUS et al., 1993).
4In linguistics, one definition of lemma is: the canonical form, dictionary form, or citation form

of a set of words (headword). For instance, in English, “run”, “runs”, and “ran” are forms of the
same lexeme, with “run” as the lemma.

65

instead of adding the word itself. For simplification, from now onwards when writing

“word”, this may refer to the word itself or to its lemma.

Identify Subject

Generate Verbs (WSD Refinement)

[more words]

Assign Behavior

Identify Action

 [else]

Get Word

[conditions for behavior ok]

Identify Object

 [end of words]

Generate BSAO Tuple

[conditions for tuple ok]

 [else]

Figure 3.9 - Main algorithm for generating BSAO tuples: activity diagram

With respect to the notation in Figure 3.10, the allw set is in fact a set of ordered

triples where each ordered triple is composed of: a word (or lemma) (upper index lw),

a POS tag (upper index tg) obtained from the POS tagging algorithm implemented

in the SOLIMVA tool, and a counter for the exact identification of the word (upper

index id). Hence, allw is a set with the following ordered triples:

allw = {(wlw
1 , w

tg
1 , w

id
1), (wlw

2 , w
tg
2 , w

id
2), . . . , (wlw

ℎ , w
tg
ℎ , w

id
ℎ)}.

66

Thus, wlw
1 means the word of the first ordered triple, wtg

4 means the POS tag of the

fourth ordered triple, and wid
7 represents the identification of the seventh ordered

triple of the set. In the tuples (tup) set, b, s, a, o represent Behavior, Subject,

Action, and Object, respectively. Similarly, tup is a set of ordered quadruples such

as:

tup = {(tb1, ts1, ta1, to1), (tb2, ts2, ta2, to2), . . . , (tbk, tsk, tak, tok)}.

The verbs for WSD set (vrbwsd) will be discussed in Section 3.3.2.2. Some additional

sets were predefined in order to help the process to derive the BSAO tuples. They

are:

a) usefulWords. This set contains POS tags that aid in the process of

creating a key for the words within the requirements. The key is defined as

“counter of Useful Words (cntUW) - word”. This key is useful for accurate

identification of words which are part of the Action of the tuple. This set

also defines the lexical categories of the running/useful words for the WSD

algorithm (Section 3.3.2.2). The chosen lexical categories were: common

nouns (singular and plural), verbs, adjectives, and adverbs;

b) candSubObj. This set contains POS tags that define the candidate words

to be Subjects and Objects. The selected lexical categories were: common

nouns (singular and plural), proper nouns (singular and plural), adjectives,

cardinal numbers, and coordinating conjunctions;

c) confirmSub. This set contains POS tags that confirm that a previous word

identified as a Subject is indeed a Subject. The selected lexical categories

were: modal verbs and verbs. This set is important because after a Subject

usually there is a verb. If no verb is found, it is likely that a word previously

identified as a Subject is not in fact a Subject;

d) confirmAct. Set that contains POS tags that characterize an Action. The

selected lexical categories were: verbs, adverbs, and coordinating conjunc-

tions;

e) endTuple. Set that contains POS tags which aid in the decision whether

a BSAO tuple must be created or not. The chosen lexical categories were:

common nouns (singular and plural), proper nouns (singular and plural),

verbs, adjectives, adverbs, modal verbs, and cardinal numbers.

67

input : dictionary dic = {N,R, STM .C, STM .F, STM .Y }
input : allWords allw = {wg

f ∣ g = lw, tg, id}, f = 1..ℎ

output: tuples tup = {tji ∣ j = b, s, a, o}, i = 1..k
output: verbsWSD vrbwsd = {vqp ∣ q = ivr, inf}, p = 1..r

1 initializeAuxiliaryVariables();
2 for f ← 1 to ℎ do

3 while wtg
f ∕= “.” do

4 if wtg
f ∈ usefulWords then

5 cntUW ← cntUW + 1;
6 end

7 if wtg
f = “IN” ∧ wlw

f ∈ STM .C then

8 beℎavior ← beℎavior + wlw
f ;

9 end

10 if wtg
f ∈ candSubObj ∧ ¬subCreated then

11 if iLastSub = 1 ∨ iLastSub = f − 1 then
12 subject← subject+ wlw

f ;

13 iLastSub← f ;

14 else
15 if iLastSub ∕= f − 1 then
16 subject← empty;

17 subject← wlw
f ;

18 iLastSub← f ;

19 end

20 end

21 else

22 if wtg
f ∈ confirmSub ∧ subject ∕= empty then

23 subCreated← true;

24 if wtg
f ∈ confirmAct then

25 if iLastAct = 1 ∨ iLastAct = f − 1 then
26 action← action+ “cntUW” + “− ” + wlw

f ;

27 iLastAct← f ;
28 actCreated← true;

29 end

30 end

31 else

32 if wtg
f ∈ confirmAct ∧ subCreated then

33 if iLastAct = 1 ∨ iLastAct = f − 1 then
34 action← action+ “cntUW” + “− ” + wlw

f ;

35 iLastAct← f ;
36 actCreated← true;

37 end

38 else

39 if wtg
f ∈ candSubObj ∧ actCreated then

40 if iLastObj = 1 ∨ iLastObj = f − 1 then
41 object← object+ wlw

f ;

42 iLastObj ← f ;
43 objCreated← true;

44 end

45 end

46 end

47 end

48 end
49 f ← f + 1;

50 if subCreated ∧ actCreated ∧ objCreated ∧ wtg
f = “.” ∨ wtg

f = “, ” ∨ wtg
f /∈ endTuple then

51 (tbi , tsi , tai , toi)← (beℎavior, subject, action, object);
52 end

53 end

54 end
55 vrbwsd← generateVerbsWSD(tup, dic);

Figure 3.10 - Main algorithm for generating BSAO tuples: procedure

68

The auxiliary variables such as behavior, subject, action, and object are also ini-

tialized (task accomplished by the procedure initializeAuxiliaryVariables() in line

1 of Figure 3.10) elsewhere in the algorithm: after the line 51 and also just before

the line 54. One of the first tasks accomplished within the algorithm is the probable

identification of a Behavior (b) feature. Thus, the algorithm first verifies if a word is a

preposition or subordinating conjunction (POS tag“IN”) and also if such a word is in

STM .C (lines 7 to 9). If these conditions are matched, then the b element of the tuple

is assigned to such a word. If not, b is empty. Note that the STM .C set has words

like “if”, and, at first, the user does not need to alter it. This set is independent of

the application domain and it was derived aiming to add in the resulting Statechart

model behaviors due to the semantics associated with some requirements.

After the determination of b, the Subject (s), Action (a), and Object (o) elements

of the tuple are identified (lines 10 to 48). Essentially, the algorithm verifies whether

the POS tags of words are equal to predefined POS tags that characterize a Subject

(according to the sets candSubObj and confirmSub), an Action (according to the

set confirmAct), or an Object (based on set candSubObj). If they match, the

corresponding s, a, and o elements of the tuple are fulfilled.

However, a BSAO tuple is created if and only if a Subject and an Action and

an Object were identified, and some other conditions were satisfied (lines 50 to 52).

If these conditions are not satisfied, no BSAO tuple is created. This is to avoid

situations which might occur in NL sentences, and might produce ill-formed tuples.

For instance, a piece of a sentence might derive an s, an a but not an o because

the sentence ended. The algorithm picks the next ordered triple of the allw set (line

49) in order to continue the assessment of words within a sentence (a sentence is

delimited by a period). However, the algorithm also checks whether not only if s, a

and o were created but also if the POS tag of the next ordered triple of the allw set

is a period to decide about the creation of a BSAO tuple.

Note that the algorithm for generating BSAO tuples can generate Subject made up

of several words. Line 12 of the algorithm shows that the auxiliary variable subject

is updated so that the Subject element of the tuple (tsi , line 51) can be filled with the

correct composition of words. Conditions must be satisfied for a word to be part of

the Subject: POS tag of such a word must be in candSubObj set; and, Subject must

not have been yet created (variable subCreated; line 10). There is also a mechanism

to avoid the inclusion of words whose POS tags are in the candSubObj set but do

not really make part of the Subject (lines 11 to 13). Similar remarks are valid for

69

creating Action (lines 24 to 37, and line 51) and Object (lines 39 to 45, and line 51)

formed by several words.

In order to illustrate how a BSAO tuple is automatically generated, consider the

following requirement:

If the main software system does not start operating the air conditioning

system at midnight, maintenance personnel should be called.

Table 3.4 shows how a BSAO tuple is generated considering each word of this

requirement. The POS tag and consequently the lexical category of each word is

provided by the Stanford POS Tagger. The Behavior (B), Subject (S), Action (A),

and Object (O) columns contain the value of each one of these tuple’s elements after

applying algorithm shown in Figure 3.10.

The conditions that determine behavior (line 7) were satisfied and hence the Behav-

ior element of the tuple was fulfilled accordingly. In addition and as explained above,

several words make up the Subject, Action, and Object. The content of Action was

derived with the keys previously mentioned. In other words, “4-do” is the key due to

the verb “does”. The number (4) is the current “counter of Useful Words (cntUW)”

which uniquely identifies this word within the set of NL requirements. In this case,

“do” is the lemma of “does”. Notice that the same explanation applies to “6-start”

due to the verb “start”, and “7-operate” due to “operating”.

The NL requirement presented in Table 3.4 might generate another BSAO tuple

with Behavior empty, “maintenance personnel” as Subject, and “14-be 15-call” as

Action. However, the sentence ends and no Object has been detected. Therefore, a

second BSAO tuple is not created because the Object element is missing.

Table 3.4 - Generation of a BSAO tuple. Caption: Cat = Category

Word Lexical Cat Tag B S A O

If preposition or

subordinating

conjunction

IN if

the determiner DT if

main adjective JJ if main

software common noun,

singular

NN if main software

(Continues)

70

Table 3.4 - Conclusion

Word Lexical Cat Tag B S A O

system common noun,

singular

NN if main software

system

does verb, present

tense, 3rd

person singular

VBZ if main software

system

4-do

not adverb RB if main software

system

4-do 5-not

start verb, base form VB if main software

system

4-do 5-not 6-start

operating verb, gerund

or present

participle

VBG if main software

system

4-do 5-not 6-start

7-operate

the determiner DT if main software

system

4-do 5-not 6-start

7-operate

air common noun,

singular

NN if main software

system

4-do 5-not 6-start

7-operate

air

conditioning common noun,

singular

NN if main software

system

4-do 5-not 6-start

7-operate

air condi-

tioning

system common noun,

singular

NN if main software

system

4-do 5-not 6-start

7-operate

air con-

ditioning

system

at preposition or

subordinating

conjunction

IN

midnight common noun,

singular

NN

maintenance common noun,

singular

NN

personnel common noun,

plural

NNS

should modal verb MD

be verb, base form VB

called verb, past

participle

VBN

71

3.3.1.1 Relation with typed dependencies

This section presents some other important observations about the Subject, Action,

and Object of the BSAO tuples. These comments will be presented from the per-

spective of the Stanford typed dependencies (MARNEFFE; MANNING, 2008) which are

provided by the Stanford Parser (this is another tool, other than the Stanford POS

Tagger, developed by Stanford University). Typed dependencies are also known as

grammatical relations.

The goal of these observations is to show the relation between the approach proposed

in this PhD thesis to identify Subject, Action, and Object, which was based on

the lexical categories of words, with another point of view based on grammatical

relations. Thus, according to the proposal presented in this PhD thesis, this section

provides preliminary guidelines to identify the Subject, Action, and Object of tuples

by using typed dependencies rather than lexical categories.

If all the above conditions are satisfied, both in the active voice and passive voice,

the syntactic subject of a sentence or clause will be the Subject of the tuple. In

this case, the typed dependencies involved would be nominal subject and passive

nominal subject. However, in order to consider Subjects formed by several words, it

is necessary to take into account other typed dependencies such as noun compound

modifier and adjectival modifier.

Typed dependencies nominal subject and passive nominal subject are also important

to identify the Action of the tuple. In order to allow the Action to be composed

of several words, various other typed dependencies should be considered such as

auxiliary, passive auxiliary, negation modifier, open clausal complement, and phrasal

verb particle.

In the active voice, the main typed dependency related to the Object of the tuple

is direct object whereas in the passive voice is the typed dependency agent (the

performer of the action). As in previous cases, other typed dependencies should be

considered such as noun compound modifier, adjectival modifier, and prepositional

modifier.

3.3.2 Translation from BSAO tuples into behavioral model

The main algorithm supporting this second sub-activity is shown, in form of an ac-

tivity diagram, in Figure 3.11 while Figure 3.12 shows the same algorithm in form of

a procedure. In the sequence, the explanations about the algorithm are given taking

72

into account the form of procedure that describes the algorithm (Figure 3.12). The

remarks about notation made in Section 3.3.1 apply to Figure 3.12. One additional

remark is about the notation related to the Reactiveness (R) function. The notation

Rn(rie) means this is the element of the domain of R (rie ∈ R.IE) of the ntℎ ordered

pair of R. Similar observations apply to the codomain of R (R.OE), and also to the

STM .Y function.

Assign IEV/OEV (Event Sets)

Add quadruple to Model

Get BSAO Tuple

Refine Model (Domain Information)

Evaluate Control Behavior

Assign IEV (Tuple's Action_Object)

Refine Model (Word Sense Disambiguation)

Refine Model (Hierarchy)

 [object in input event set]

[more tuples]

 [else]

 [end of tuples]

Figure 3.11 - Main algorithm for the translation of BSAO tuples into models: activity
diagram

As shown in Figure 3.12, the Dictionary and the BSAO tuples are the basis for

generating the model. The generated model (mod) is a set of ordered quadruples

where each ordered quadruple represents a transition in the model. Hence, each

73

ordered quadruple is composed of: a source state (upper index src), an input event

(upper index iev), an output event (upper index oev), and a destination state (upper

index des). Formally, mod is a set such as:

mod = {(msrc
1 ,miev

1 ,moev
1 ,mdes

1), . . . , (msrc
z ,miev

z ,moev
z ,mdes

z)}.

The initial idea is to denote the states of the model with Subjects of the BSAO

tuples. This is clearly shown in lines 6, 14 and 31 in Figure 3.12. However, the

checkSubject procedure (lines 6 and 14) checks whether there is already a source state

in the model with the same name of the current BSAO Subject. The checkSubject

procedure returns a name for the state just adding an underscore followed by an

incrementing number after the Subject, if there is already a same state name in the

model; otherwise, it will return the same BSAO Subject to be assigned as the name

of the source state.

The Reactiveness (R) function of the Dictionary plays an important role in defining

input and output events within a transition. As shown from lines 22 to 28, if the

Object of the BSAO tuple exists in the input event set (R.IE), then the input event

(iev) will be assigned to the matched element of the domain of R (R.IE), and the

output event (oev) will have the value of the corresponding element of the codomain

of R (R.OE). However, if the tuple’s Object does not match any element of R.IE, the

input event becomes a combination of Action Object of the BSAO tuple, and the

output event null. Another remark is that the if-then-else situation in NL sentences

is addressed from lines 3 to 21. Hence, more than one transition may be leaving the

same source state in the resulting model.

Consider the following two requirements from the SWPDC case study:

∙ SRS001 - The PDC shall be powered on by the Power Conditioning Unit.

∙ SRS002 - The PDC shall be in the Initiation Operation Mode after being

powered on. The SWPDC shall then accomplish a POST. If PDC presents

any irrecoverable problem, this computer shall remain in the Initiation

Operation Mode and such a problem shall not be propagated to the OBDH.

These requirements produce 6 BSAO tuples as shown in Table 3.5. Piece of the

resulting model set based on these tuples is shown in Table 3.6.

74

input : dictionary dic = {N,R, STM .C, STM .F, STM .Y }
input : tuples tup = {tji ∣ j = b, s, a, o}, i = 1..k
input : verbsWSD vrbwsd = {vqp ∣ q = ivr, inf}, p = 1..r
output: model mod = {my

x ∣ y = src, iev, oev, des}, x = 1..z

1 cond← false;
2 for i← 1 to k do
3 if tbi ∈ STM .C ∧ ¬cond then
4 existBeℎ← tbi ;
5 existSub← tsi ;
6 tmodsrc ← checkSubject(tsi);
7 lastState← tmodsrc;
8 cond← true;

9 else
10 if tbi = existBeℎ ∧ tsi = existSub then
11 tmodsrc ← lastState;
12 cond← false;

13 else
14 tmodsrc ← checkSubject(tsi);

15 if tbi ∈ STM .C then
16 existBeℎ← tbi ;
17 existSub← tsi ;
18 lastState← tmodsrc;

19 end

20 end

21 end
22 if toi ∈ R.IE then

// rie ∈ R.IE.
23 tmodiev ← Rn(rie);

// roe ∈ R.OE.

24 tmodoev ← Rn(roe);

25 else
26 tmodiev ← tai + “ ” + toi ;
27 tmodoev ← null;

28 end

29 tmoddes ← null;
// add quadruple to model mod.

30 x← i;
31 msrc

x ← tmodsrc;
32 miev

x ← tmodiev;
33 moev

x ← tmodoev;

34 mdes
x ← tmoddes;

35 end
// first automated refinement.

36 mod← refineModelDomainInfo(mod, dic);
// second automated refinement.

37 mod← refineModelWordSense(mod, dic, vrbwsd);
// third automated refinement.

38 mod← refineModelHierarchy(mod, dic);

Figure 3.12 - Main algorithm for the translation of BSAO tuples into models: procedure

75

Table 3.5 - BSAO tuples obtained from requirements SRS001 and SRS002

B S A O

- PDC 1-be 2-power on Power Conditioning Unit

- PDC 3-be Initiation Operation Mode

- SWPDC 6-then 7-accomplish post

if PDC 9-present irrecoverable problem

- computer 13-remain Initiation Operation Mode

- problem 15-not 16-be 17-propagate OBDH

Table 3.6 - Piece of the model set obtained from the BSAO tuples in Table 3.5. Caption:
#Tr = Transition number

#Tr Source State Input Event Output Event Destination State

1 PDC 1-be 2-power on Power
Conditioning Unit

null null

2 PDC 2 3-be Initiation Operation
Mode

null null

3 SWPDC 6-then 7-accomplish post null null

4 PDC 3 9-present irrecoverable

problem

null null

5 computer 13-remain Initiation Opera-

tion Mode

null null

6 problem 15-not 16-be
17-propagate OBDH

null null

Up to this point, the number of transitions in the created model is equal to the

number of BSAO tuples. Observe that the Subjects of the BSAO tuples define

the name of the source states in Table 3.6. However, the checkSubject procedure

creates different names for source states when finding “PDC” repeatedly by adding

“ ” followed by an incrementing number. None of the Objects of BSAO tuples are

in R.IE. Hence, each input event is a concatenation of Action Object of the BSAO

tuple, and the output event is null. Besides, all destination states are also null.

Some ordered quadruples of the model may be removed. As shown from lines 36

to 38 of the main algorithm (Figure 3.12), there are three types of automated

refinements which are applied to the original model so that the final model may be

enhanced with respect to the original one. The concept of refinement is defined below.

Definition 3.2. Refinement is a mechanism that aims to better adapt the generated

model considering the context of Statechart-based test case generation.

76

3.3.2.1 Refinement based on domain information

The first automated refinement is to eliminate unnecessary states and transitions of

the model, to rename certain states of the model, and to fulfill the destination

states of the transitions. It is called a refinement based on domain information

(refineModelDomainInfo in Figure 3.12). The algorithm to refine the model based

on domain information is shown, in form of an activity diagram, in Figure 3.13 while

Figure 3.14 shows the same algorithm in form of a procedure. In the sequence, the

explanations about the algorithm are given taking into account the form of procedure

that describes the algorithm (Figure 3.14).

Remove Quadruple

Change Name of Source State

Get Quadruple of Model

Set Destination States

 [cond to remove quadruple ok]

[more quadruples]

 [else]

[cond to change src state ok] [else]

 [end of quadruples]

Figure 3.13 - Refinement based on domain information: activity diagram

As shown from lines 6 to 8, an ordered quadruple (a transition) is removed from the

original model if the source state (srcSta) does not exist in N , and the Object part of

the input event (inpObj) does not exist in N , and the entire input event (miev
x) does

not exist either in R.IE. This is done because not all NL sentences contain relevant

information to justify the creation of a transition in the context of model-based test

77

input : model mod = {my
x ∣ y = src, iev, oev, des}, x = 1..za

input : dictionary dic = {N,R, STM .C, STM .F, STM .Y }
output: model mod = {my

x ∣ y = src, iev, oev, des}, x = 1..zb

1 inpObj, inpAct, srcSta← empty;
2 for x← 1 to za do
3 srcSta← removeUnderlineFromSourceState(msrc

x);
4 inpAct← extractAction(miev

x);
5 inpObj ← extractObject(miev

x);
// check whether an ordered quadruple must be removed from the model.

6 if srcSta /∈ N ∧ inpObj /∈ N ∧ miev
x /∈ R.IE then

7 mod← removeOrderedQuadruple(msrc
x ,miev

x ,moev
x ,mdes

x);
8 x← x− 1;

9 else
// check whether the name of the source state must be changed.

10 if inpObj ∈ N ∧ miev
x /∈ R.IE then

11 msrc
x ← inpObj;

12 miev
x ← inpAct;

13 end

14 end

15 end
// set the destination states.

16 for x← 1 to zb do
17 if x ∕= zb then
18 mdes

x ← msrc
x+1;

19 else
20 mdes

x ← msrc
1 ;

21 end

22 end

Figure 3.14 - Refinement based on domain information algorithm: procedure

case generation.

If an ordered quadruple is not to be removed (lines 10 to 13), the name of its source

state may be changed if the Object part of the input event (inpObj) exists in N and

the entire input event (miev
x) does not exist in R.IE. This is explained due to the

fact that Subjects, which in turn first generated the name of states in the model,

in NL requirements are usually a few names like system, the name of a computer

or a software product. This implies that the name of the states would be basically

limited to those names added by a counter (recall the check Subject procedure) such

as system, system 1, system 2, and so on. In order to improve this and to provide

more meaningful names for states, the new name of the state is changed to a word

or words that are in N (Object part of the input event (inpObj)).

After the processing presented above, a last feature of the refinement based on

domain information is setting the destination states. This is simply done considering

78

the source state of the next ordered quadruple as the destination state of the current

ordered quadruple (line 18). However, the destination state of the last transition of

the model is the first (initial) state (line 20). The FSM test criteria implemented in

GTSC (DS, UIO and H-switch cover) require that the flat FSM is strongly connected.

In such a machine for each pair of states (si, sj), there is a path5 connecting si to

sj. This explains the logic of setting the destination state of the last transition.

Even though the Statechart criteria implemented in GTSC (all-transitions, all-

simple-paths, all-paths-k-C0-configuration, all-paths-k-configurations) do not have

that restriction, this action makes the model translated from NL requirements more

generic in the sense that a test designer may choose any of the seven GTSC test

criteria to generate the test suite.

Table 3.7 shows the piece of the model set after the refinement based on domain

information considering requirements SRS001 and SRS002. Assuming that N =

{PDC, SWPDC, Initiation Operation Mode, OBDH, ...}, no transition is eliminated.

Note that computer and problem are not in N but the Object parts of the input

events (after “ ”) of these transitions (in Table 3.6: Initiation Operation Mode in

transition 5 and OBDH in transition 6) are in N . Because the Object parts of

the input events are in N , the source states of transitions 2, 5, and 6 are changed

according to them. Finally, the destination states are set in accordance with the

processing presented earlier.

3.3.2.2 Word Sense Disambiguation refinement

In the SOLIMVA tool, the second automated refinement (refineModelWordSense

in Figure 3.12) refers to an adaptation of the graph-based approach proposed by

Sinha and Mihalcea (2007) taking into account only one similarity measure, Jiang

and Conrath, and one graph-based centrality algorithm, indegree (Section 2.2.1

presented an overview of the proposal of Sinha and Mihalcea (2007) as well as

the Jiang and Conrath measure and the indegree algorithm). The set usefulWords

(Section 3.3.1) attempts to define the lexical categories (common nouns (singular

and plural), verbs, adjectives, and adverbs) required for proper operation of this

adaptation of the proposal of Sinha and Mihalcea (2007). The goal of such adaptation

was to automate the identification of the semantics related to the generated model.

Specifically, the idea was to automatically identify self transitions in the resulting

Statechart model.

5A path is a finite sequence of adjacent transitions. Note that this definition of path is different
from the one given in Section 2.1.1.2 where a path is defined as a finite sequence of configurations.

79

Table 3.7 - Piece of the model set after the refinement based on domain information.
Caption: #Tr = Transition number

#Tr Source
State

Input Event Output Event Destination
State

1 PDC 1-be 2-power on Power
Conditioning Unit

null Initiation
Operation
Mode

2 Initiation
Operation
Mode

3-be null SWPDC

3 SWPDC 6-then 7-accomplish post null PDC 3

4 PDC 3 9-present irrecoverable problem null Initiation
Operation
Mode

5 Initiation
Operation
Mode

13-remain null OBDH

6 OBDH 15-not 16-be 17-propagate null PDC 3

Considering the BSAO tuples and the refinement based on domain information

(Section 3.3.2.1), the default behavior is: if the current state of the model is si, the

next state is sj where i ∕= j. The goal was to determine in which situations and based

on the set of NL requirements the next state is si, i.e. when a self transition occurs

within the model. To achieve this goal, the synsets related to verbs in WordNet

were manually searched to find verb’s senses which mean “remain in a same place”.

The interpretation is that finding a verb with this particular sense implies that the

model could exhibit a self transition.

Eleven verbs (“continue”, “remain”, “stay”, etc.) with a total of 21 sense numbers

were found which satisfied the conditions for self transition. These 21 sense numbers

are the elements of the STM .F set. The STM .F set is independent of the application

domain and thus the test designer does not need to change it. A sample of the

STM .F set is as follows, where the number indicates the sense number as defined in

WordNet :

STM .F = {remain#v#1, remain#v#2, stay#v#1, ..., rest#v#6, ...}.

In order to obtain Jiang and Conrath measures between pairs of verbs, version 11.01

of the Java WordNet::Similarity (UNIVERSITY OF SUSSEX, 2010), a Java version of

80

the Perl WordNet::Similarity package developed by the University of Minessota

(PEDERSEN et al., 2004), was used. Both packages use as corpus, by default, SemCor

(MILLER et al., 1993) which is a manually sense-tagged subset of the Brown Corpus.

In addition, version 2.1 of WordNet was selected for use.

Among the four graph-based centrality algorithms used by Sinha and Mihalcea

(2007), the indegree algorithm was implemented in the SOLIMVA tool. Recall that

for an undirected weighted graph G = (V,E) where V is the set of vertices and E

is the set of edges, the indegree is defined as

indegree(Va) =
∑
Vb∈V

wgab

where wgab is the weight on the edge between Va and Vb. In the graph generated

by the SOLIMVA tool, Va and Vb are senses of two distinct verbs, and wgab is the

Jiang and Conrath measure between these two verb’s senses. Furthermore, wn = 4

which was the value that provided the best results regarding the correct word sense

assignment. In order to identify the sense of a verb, the algorithm only figures out

the sense with the highest score among all the senses of a verb.

The reason to choose only the Jiang and Conrath similarity measure it was because

the goal was to disambiguate the senses of verbs. According to the results shown

in Sinha and Mihalcea (2007), the best measure in terms of true positives for verbs

was the Leacock and Chodorow followed closely by the Jiang and Conrath measure

(the Jiang and Conrath measure was 4.55% worse than the Leacock and Chodorow

measure; other measures were more than 10% worse than the Leacock and Chodorow

measure). At first, the Leacock and Chodorow measure was tried in the SWPDC’s

Software Requirements Specification but the results were not very promising. Thus,

the Jiang and Conrath measure was selected which presented a better performance.

The reasoning behind the selection of the indegree graph-based centrality algorithm

was also because this was the best algorithm for verb’s sense disambiguation out-

performing the other three algorithms (SINHA; MIHALCEA, 2007). The initial idea

was to implement the four graph-based centrality algorithms and combine them in a

voting scheme as proposed by Sinha and Mihalcea (2007). But, the results presented

for verbs according to their approach were not very promising and the decision was

to implement the algorithm with best performance, the indegree.

The main WSD refinement algorithm is shown, in form of an activity diagram, in

81

Figure 3.15 while Figure 3.16 shows the same algorithm in form of a procedure. In

the sequence, the explanations about the algorithm are given taking into account

the form of procedure that describes the algorithm (Figure 3.16). The verbs for

WSD set (vrbwsd) contains all verbs of the set of NL requirements that match

the verbs defined in STM .F . Each ordered pair of vrbwsd is composed of: the key

(“counter of Useful Words (cntUW) - word”) defined in Section 3.3.1 (upper index

ivr), and one out of two possible values (upper index inf), “self” and “no”. This

set has been previously generated (Figure 3.10) which informs whether there are

verbs within the NL requirements that characterize a self transition in the resulting

model (value “self”). Hence, the adaptation of the approach proposed by Sinha and

Mihalcea (2007) was in fact implemented as part of the BSAO tuples generation

algorithm. However, to make use of the results by adapting the Sinha and Mihalcea

(2007) approach to identify self transitions in the Statechart model, additional steps

are necessary as described in Figure 3.16. Finally, the importance of the key is due

to the fact that naturally the same verb (for instance, stay) may occur several times

within the NL requirements indicating or not indicating the presence of several self

transitions. So it is necessary to know exactly which word (verb) is being evaluated.

The algorithm in Figure 3.16 takes the vrbwsd set as input, and first extracts the

Action part (if any) of the input event of a transition and realizes whether it matches

a key of vrbwsd (lines 7 to 8). Assuming this is true and also that the information

related to the key matches the value “self” (line 10), the algorithm performs a

backward search until it finds a previous source state which is the same as the

current source state where the verb (key) characterizes a self transition (lines 12

to 20). As long as this does not occur, the input events of all transitions backward

traversed are stored (tempIET , line 14) in order to compose the new input event

of a transition in the model (line 24). The new current destination state is exactly

the current source state which is the expected behavior in such a situation (line 25).

Intermediate and needless states and transitions are removed from the model (line

26), and the new next source state is also set (line 27).

To sum up, there are four conditions to be satisfied so that a self transition is detected

and added in the model after the WSD refinement. First, the verb must match the

verbs in STM .F . Second, the information must be “self”. Third, a previous source

state must match the current source state in the backward search. This is important

because if there is no match then it is not possible to decide which are the source

and destination states of the self transition. Finally, during the backward search,

none of the input events must match an element of R.IE. Again, this demonstrates

82

Find Previous Source State (Backward Search)

Set New Current IEV, Destination State

Extract Action of IEV

 [not end of quadruples and cond IEV false]

 [info-"self" agreement]

Get Pair of VRBWSD

Remove Unnecessary States and Transitions

Set New Next Source State

 [previous src state found]

 [else]

 [else]

 [key-action agreement]

 [end of pairs]

 [else]

 [end of quadruples or cond IEV true]

 [more pairs]

Figure 3.15 - Main WSD refinement algorithm: activity diagram

the priority of reactiveness over other behaviors in the resulting model.

Requirements SRS001 and SRS002 produce the following keys (verbs): “1-be”, “2-

power”, “3-be”, “4-be”, “5-power”, “7-accomplish”, “9-present”, “13-remain”, “16-be”,

and “17-propagate”. Within the generateVerbsWSD procedure (Figure 3.10), the

sense (label) dependency graph is created considering all verbs and with wn = 4.

For instance, verb “be” has 13 distinct senses (sense numbers: be#v#1, be#v#2, ...,

be#v#13), verb “power” has only one sense (sense number: power#v#1), and verb

“accomplish”’ has 2 senses (sense numbers: accomplish#v#1, accomplish#v#2). As

mentioned earlier, each sense of each verb is a vertex of the graph and Jiang and

Conrath measures are obtained between senses of different verbs since they are

encompassed by the value of the window (4). Thus, for verb “1-be”, the measures

are obtained considering all senses of “2-power”, “3-be”, “4-be”, “5-power” and the

83

input : model mod = {my
x ∣ y = src, iev, oev, des}, x = 1..zb

input : dictionary dic = {N,R, STM .C, STM .F, STM .Y }
input : verbsWSD vrbwsd = {vqp ∣ q = ivr, inf}, p = 1..r
output: model mod = {my

x ∣ y = src, iev, oev, des}, x = 1..zc

1 inpAct, newIET, tempIET ← empty;
2 matIET,matSrc← false;
3 ib, it← 1;
4 for p← 1 to r do
5 x← 1;
6 while x ≤ zb ∧ ¬matIET do
7 inpAct← extractAction(miev

x);
8 if vivrp = inpAct then
9 matIET ← true;

10 if vinfp = “self” then
11 ib← x;
12 while ib ≥ 1 ∧ ¬matSrc do
13 ib← ib− 1;
14 tempIETit ← miev

ib ;
15 it← it+ 1;
16 if msrc

x = msrc
ib ∧ miev

ib /∈ R.IE then
17 newIET ← reverseTempIETGenerateNewIET (tempIET);
18 matSrc← true;

19 end

20 end
21 tempIET ← empty;
22 it← 1;
23 if matSrc then

// new current input event.

24 miev
ib ← newIET ;

// new current destination state.

25 mdes
ib ← msrc

ib ;
// remove unnecessary states and transitions.

26 mod← removeStatesTransitions(mod, ib+ 1);
// new next Source State.

27 msrc
ib+1 ← msrc

ib ;

28 matSrc← false;
29 newIET ← empty;

30 end

31 end

32 end
33 x← x+ 1;

34 end
35 matIET ← false;

36 end

Figure 3.16 - Main WSD refinement algorithm: procedure

84

senses of “1-be” themselves. For “13-remain”, the other verbs to generate Jiang and

Conrath measures are “9-present”, “16-be”, and “17-propagate”. Figure 3.17 shows a

small part of the entire sense dependency graph focusing on key (verb) “13-remain”.

0.078

9-present 13-remain 16-be 17-propagate

verb#v#1

verb#v#2

verb#v#3

verb#v#8

verb#v#13

1.728

1.863

2.000

1.537verb#v#4

0.075

0.067

0.073

0.071

0.064

0.069

0.066

0.060

0.064

0.062
0.057

0.234

0.099

0.093

0.197

0.091

0.087

0.166

0.084

0.080

0.088

0.078

0.074

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Figure 3.17 - A small part of the entire sense dependency graph due to requirements
SRS001 and SRS002

From all verbs present in requirements SRS001 and SRS002, only verb “remain” has

some sense numbers in STM .F . In Figure 3.17, the number of different senses of

verbs “present”, “remain”, “be”, and “propagate” are 13, 4, 13, and 8, respectively.

So, exactly these amounts of vertices (white circles) were created in the graph. Each

85

value on an edge of the graph is the Jiang and Conrath measure between two senses

of distinct verbs. For instance, the measure between present#v#1 (the first sense

of “9-present”) and remain#v#1 (the first sense of “13-remain”) is 0.078 while the

measure between remain#v#3 (the third sense of “13-remain”) and be#v#2 (the

second sense of “16-be”) is 0.084.

The values inside the vertices (senses) of verb “13-remain” are the scores derived

from the indegree algorithm. Since the highest score is 2.000 then the selected sense

of “13-remain” is the first one: remain#v#1. Because remain#v#1 is in STM .F , the

information is “self”. The current source state, i.e. the state whose input event is

“13-remain”, is Initiation Operation Mode (transition 5 in Table 3.7). During the

backward search, the WSD algorithm finds another source state named Initiation

Operation Mode (transition 2 in Table 3.7). Moreover, during the backward search,

none of the input events are in R.IE. Therefore, all conditions are satisfied and a self

transition is added into the model. Table 3.8 shows the piece of the model set after

the WSD refinement based on requirements SRS001 and SRS002. Transition number

2 is a self transition. Moreover, the input event of transition 2 is the concatenation

of previous input events as designed in the main WSD refinement algorithm.

Table 3.8 - Piece of the model set after the WSD refinement. Caption: #Tr = Transition
number

#Tr Source
State

Input Event Output Event Destination
State

1 PDC 1-be 2-power on Power
Conditioning Unit

null Initiation
Operation
Mode

2 Initiation
Operation
Mode

3-be#6-then 7-accomplish post#
9-present irrecoverable problem#

null Initiation
Operation
Mode

3 Initiation
Operation
Mode

15-not 16-be 17-propagate null PDC 3

3.3.2.3 Refinement for adding hierarchy

The output model obtained after the WSD refinement is no more than an FSM as

defined in Chapter 2. In order to obtain a Statechart model, a strategy was created

to incorporate hierarchy (depth) into the final model. This is the last automated

86

refinement incorporated into the SOLIMVA tool (refineModelHierarcℎy in Fig-

ure 3.12). Figure 3.18 shows, in form of an activity diagram, this algorithm while

Figure 3.19 shows the same algorithm in form of a procedure. In the sequence, the

explanations about the algorithm are given taking into account the form of procedure

that describes the algorithm (Figure 3.19).

Make IEV Analysis

Add Hierarchy (IEV)

Get Quadruple of Model

Add Hierarchy (Source State)

 [else]

 [more quadruples]

 [self transition]

 [cond to add hierarchy ok]

 [else]

Make Source State Analysis

 [cond to add hierarchy ok]

Add Hierarchy (Default)

 [else]

[end of quadruples]

Add In State Condition

Figure 3.18 - The algorithm to add hierarchy into the model: activity diagram

The algorithm partitions the set of states of the model based on information gathered

from the STM .Y function. Such a function is a mapping among some names of

source states (msrc
x) and input events (miev

x) of transitions, which are elements of

the input pattern set (Y.IP), and names that will define the COMPOSITE states

of the Statechart model, which are elements of the output pattern set (Y.OP). The

selected names of source states are in N as well as the names of input events are in

R.IE.

One basic assumption is that no COMPOSITE state will be created if a self transi-

87

input : model mod = {my
x ∣ y = src, iev, oev, des}, x = 1..zc

input : dictionary dic = {N,R, STM .C, STM .F, STM .Y }
output: model mod = {my

x ∣ y = src, iev, oev, des}, x = 1..z

1 matcℎ← false;
2 for x← 1 to zc do
3 if msrc

x ∕= mdes
x then

4 if x = zc then
5 matcℎ← cℎeckInputPatternSet(miev

x , {});
6 else
7 if x = zc− 1 then
8 matcℎ← cℎeckInputPatternSet(miev

x , {miev
x+1});

9 else
10 matcℎ← cℎeckInputPatternSet(miev

x , {miev
x+1,m

iev
x+2});

11 end

12 end
13 if matcℎ = true then
14 mod← addHierarcℎyIEV (mod);
15 else
16 if x = zc then
17 matcℎ← cℎeckInputPatternSet(msrc

x , {});
18 else
19 if x = zc− 1 then
20 matcℎ← cℎeckInputPatternSet(msrc

x , {msrc
x+1,m

iev
x+1});

21 else
22 matcℎ← cℎeckInputPatternSet(msrc

x , {msrc
x+1,m

iev
x+1,m

src
x+2,m

iev
x+2});

23 end

24 end
25 if matcℎ = true then
26 mod← addHierarcℎySRC(mod);
27 else
28 mod← addHierarcℎyDefault(mod);
29 end

30 end

31 end

32 end
33 mod← addInStateCondition(mod);

Figure 3.19 - The algorithm to add hierarchy into the model: procedure

88

tion exists in a certain state. This is shown in line 3 of Figure 3.19. In other words,

if source (msrc
x) and destination (mdes

x) states are equal then no processing aiming

to add hierarchy into the model is accomplished. Moreover, the general idea is to

detect whether the source state or the input event of a transition is in Y.IP and, if

so, names of appropriate source and destination states are changed so that depth

can be incorporated into the model.

The procedure checkInputPatternSet has as arguments an element of a transition

that should be checked if it is in Y.IP and a second argument that is actually a set

of elements that should not be in Y.IP . First, an analysis is made considering the

input events (miev
x ; lines 4 to 12). In the case of the last transition of the model (line

4) being evaluated, this second argument is not relevant (represented by the empty

set, {}, in line 5). The value of the boolean variable match is true if the input event

is in Y.IP . For the penultimate transition of the model (line 7), the second argument

is the next input event (miev
x+1; line 8). So even if the current input event (miev

x) is in

Y.IP , match will be false if the next input event is also in Y.IP . If neither the last

nor the the penultimate transition of the model is being assessed (line 10), then the

analysis is performed if miev
x is in Y.IP and the next two input events (miev

x+1,m
iev
x+2)

are not in Y.IP . In other words, match will be true if the current input event is in the

input pattern set and none of the next two input events are. Hence, a COMPOSITE

state is created if match is true and thus hierarchy is incorporated into the model

(lines 13 to 14).

Similar solution was adopted for the assessment taking into account the source states

(msrc
x ; lines 16 to 26). The basic difference is that in the penultimate transition (line

19) it is evaluated if the current source state is in Y.IP and both the next source

state (msrc
x+1) and the next input event (miev

x+1) are not in Y.IP (line 20) to match

becomes true. From the first to the antepenultimate transition, the absence of the

next two source states (msrc
x+1,m

src
x+2) and the next two input events (miev

x+1,m
iev
x+2) in

the input pattern set are requirements for the addition of hierarchy into the model

as well as, of course, the current source state (msrc
x) is in Y.IP (line 22).

The reasoning behind the inclusion of hierarchy only if next input events and/or

source states are not in the input pattern set is to avoid creating an excessive number

of COMPOSITE states and/or COMPOSITE states encompassing few states. Some

other requirements were considered when designing the algorithm for incorporating

hierarchy. First, depth was limited to two levels, say the main level and a second

hierarchy level. Although depth is an important feature of Statecharts, from the

89

point of view of models for system and acceptance test case generation, too many

hierarchy levels may make the entire modeling difficult to read. Two levels seem to

be enough for this purpose.

There is no priority among COMPOSITE states. In other words, at any time the be-

havior may be“leave the COMPOSITE state s”if the conditions previously described

are satisfied. Another feature is that the initial state of the main Statechart model is

not allowed to be part of a COMPOSITE state, this is verified inside the procedures

to add hierarchy (addHierarchyIEV, addHierarchySRC, addHierarchyDefault), and

there is also a mechanism to include the In State conditions of Statecharts into the

final model (line 33).

The SOLIMVA tool does not consider the creation of orthogonal (parallel) states.

Orthogonality (parallelism) is not very relevant in the context of this PhD thesis

because the main goal is to automatically create models for system and acceptance

test case generation. In summary, use case scenarios are derived and the IUT is

stimulated one command at a time. Thus, orthogonality is not very important. Note

that this is entirely different if test cases had to be generated based on models

created by the development team in which orthogonality is very likely to occur,

and important to be accounted for. With this characteristic, models generated by

the SOLIMVA methodology and by the SOLIMVA tool are easier to read and

the translation from the Abstract Test Suite into the Executable Test Suite is not

complex either.

An observation about what was called output event (moev
x) in this work should be

made. According to the designation given by Harel et al. (1987), output events are

called actions in Statecharts. In Statecharts, an action is not simply sent to the

“outside world” as an output such as occurs in FSMs. An action typically affects the

behavior modeled in orthogonal components of Statecharts. This is achieved by the

broadcasting mechanism. However, as the SOLIMVA tool does not take into account

orthogonality as explained above, the mechanism of broadcasting turns out to be

ineffective with no action as internal event that could cause firing of transitions in

orthogonal components. Therefore, output events (moev
x) end up being semantically

similar to outputs in FSMs. With respect to the input events (miev
x), they are known

as events (HAREL et al., 1987) in Statecharts and simply inputs in the terminology

of FSMs (PETRENKO; YEVTUSHENKO, 2005).

Consider the SWPDC case study. Hence, Y.IP , Y.OP , and STM .Y can be composed

of:

90

∙ Y.IP = {Safety Operation Mode, CH-OP-MODE-NOMINAL, ... },

∙ Y.OP = {Safety Operation Mode, Nominal Operation Mode, ... },

∙ STM .Y = {(Safety Operation Mode, Safety Operation Mode), (CH-OP-

MODE-NOMINAL, Nominal Operation Mode), ... }.

3.4 Final remarks about this chapter

This chapter presented version 1.0 of the SOLIMVA methodology which addresses

the primary objective of this PhD thesis. First, a brief description of the main case

study, SWPDC software product (SANTIAGO et al., 2007), in which the methodology

was applied, was made. After that, descriptions of version 1.0 of the SOLIMVA

methodology and of the SOLIMVA tool were made. SOLIMVA relies on several

theories such as combinatorial designs (MATHUR, 2008), POS Tagging (TOUTANOVA

et al., 2003), WSD (NAVIGLI, 2009), and, of course, Model-Based Testing (EL-FAR;

WHITTAKER, 2001; UTTING; LEGEARD, 2007) to generate model-based test cases.

Next chapter presents the application of version 1.0 of the SOLIMVA methodol-

ogy to the SWPDC software product where all the elements associated with the

methodology, such as factors, levels, NL requirements, models, Abstract Test Cases,

Executable Test Cases and others, are shown in detail. At the end of Chapter 4, other

observations about version 1.0 of the SOLIMVA methodology and the SOLIMVA

tool are presented.

91

4 APPLICATION OF THE SOLIMVA METHODOLOGY

This chapter shows in detail the application of version 1.0 of the SOLIMVA method-

ology and supporting tools (SOLIMVA tool and GTSC environment) to the SWPDC

software product (SANTIAGO et al., 2007). In this chapter when used without any

explicit indication of the version number, the terms “SOLIMVA methodology” and

“SOLIMVA” refer to version 1.0 of the SOLIMVA methodology. The comparison

between the SOLIMVA methodology and an expert’s (manual) approach under the

aspects of coverage of test objectives and characteristics of Executable Test Cases

are detailed as well as directives to apply the methodology to a second case study

related to the Ground Segment (CARDOSO et al., 2008) are also shown. An abridged

version of this chapter can be seen in SANTIAGO JÚNIOR and VIJAYKUMAR

(2012).

The test designer starts by defining the Dictionary. Then, he/she can create the

Name (N) set and Reactiveness (R) function in accordance with Table 4.1, and

one possibility for the Semantic Translation Model is shown in Table 4.2: Control

(STM .C) set, Self Transition (STM .F) set, and Hierarchy (STM .Y) function. In

functions, the representation is x → y where x is an element of the domain of

the function and y is an element of the codomain of the function. Furthermore,

the elements in CAPITAL letters of the domain (R.IE) and codomain (R.OE)

of R are simply abbreviations for commands and responses of the PDC-OBDH

Communication Protocol Specification. Thus, VER-OP-MODE is an abbreviation

for the command VERIFY PDC’s OPERATION MODE. As previously stated,

STM .C and STM .F are already defined in configuration files of the SOLIMVA tool

and hence the user does not need to alter them. However, if necessary the user has

an option to change them.

Table 4.1 - Sample of the Name set and the Reactiveness function for the SWPDC case
study

Name Reactiveness

PDC VER-OP-MODE → INFO-OP-MODE

SWPDC PREP-HK → CMD-REC

Initiation Operation Mode TX-DATA-SCI-End → SCI-DATA or NO-DATA

Safety Operation Mode CH-OP-MODE-NOMINAL → CMD-REC

Nominal Operation Mode CH-OP-MODE-SAFETY → CMD-REC

EPP Hx Several TX-DATA-HK→ Several HK-DATA or NO-DATA

OBDH ...

...

93

Table 4.2 - Sample of the Semantic Translation Model for the SWPDC case study

Control Self Transition Hierarchy

if remain#v#1 Initiation Operation Mode → Initiation Operation Mode

... remain#v#2 Safety Operation Mode → Safety Operation Mode

stay#v#1 Nominal Operation Mode → Nominal Operation Mode

stay#v#2 CH-OP-MODE-NOMINAL → Nominal Operation Mode

stay#v#4 CH-OP-MODE-SAFETY → Safety Operation Mode

rest#v#1 ...

rest#v#6

continue#v#1

...

After that, scenarios are defined using the strategy described in Section 3.2. First,

the core elements in this case study are the 37 commands that the OBDH can send to

PDC which are defined in the PDC-OBDH Communication Protocol Specification.

These 37 commands were grouped into 28 scenarios. These are very simple scenarios

consisting essentially in switching the PDC on and send these commands in order

to realize whether PDC correctly receives and processes such commands.

For the normal scenarios, Table 4.3 shows a possible choice of factors and levels for

the SWPDC case study. The meanings of the factors Cmd, OpMode, and Services as

well as the levels HwSwHnd, DtAcqTx, Nom, Sci, and Hk have already been given

in Section 3.2. The explanation for the remaining factors and levels follows:

a) Levels of the Cmd factor: processing activities to manage PDC’s operation

mode (OpMMgm), load new program into PDC’s Data Memory on the fly

(PrLoad);

b) Levels of the OpMode factor: Initiation/Initialization (Init), Safety (Safe),

and Diagnosis (Diag) are other PDC’s operation modes;

c) Levels of the Services factor: Services related to acquisition, formatting,

and transmission of Test (Tst) and Diagnosis (Dg) Data, generation, for-

matting, and transmission of Dump (Dmp) Data, loading new program

into PDC’s Data Memory on the fly (Load);

d) StartMode factor. This factor relates to the way PDC is started: Power On

(PwrOn) or Reset (Reset).

Since there are four factors and as explained in the Define Scenarios activity (Fig-

94

Table 4.3 - Factors and levels for the SWPDC case study

Factors Levels

Cmd HwSwHnd OpMMgm DtAcqTx PrLoad Inv

OpMode Nom Init Safe Diag Inv

Services Sci Hk Dmp Load Dg Tst Inv

StartMode PwrOn Reset Inv

ure 3.5), then strengtℎ = 3. The combinatorial designs algorithm produced 175

factor combinations which shall be interpreted to derive 175 normal scenarios. One

example is the factor combination 71: {DtAcqTx, Nom, Sci, Inv}. However, the

test designer may neglect the level Inv assuming that robustness will be covered

by another factor combination. Hence, factor combination 71 becomes: {DtAcqTx,

Nom, Sci, -}. The interpretation of such factor combination defines scenario 71 to

“acquire, format, and transmit Scientific Data in the Nominal Operation Mode”.

All normal scenarios were analyzed to see if they needed to be unfolded. Normal

scenarios 73 ({DtAcqTx, Nom, Dmp, -}) whose interpretation is “generation, for-

matting, and transmission of Dump Data in the Nominal Operation Mode”, and

94 ({DtAcqTx, Diag, Dmp, -}) whose interpretation is “generation, formatting, and

transmission of Dump Data in the Diagnosis Operation Mode”, are two normal

scenarios to be unfolded. The Dump Data (Dmp) service refers to get data from

pieces of PDC’s Program or Data Memories. Organization of PDC’s Program Mem-

ory is simple with a 64-kByte program address space, from 0000h to FFFFh (h =

hexadecimal). However, organization of PDC’s Data Memory is more complicated as

shown in Figure 4.1. The size of the data address space is also 64 kBytes, from 0000h

to FFFFh. However, there is a paging mechanism which enables PDC to access more

than 64 kBytes of Data Memory. Each one of the 8 pages in Figure 4.1 has a size of

32 kBytes. Hence, in order to dump data from PDC’s memories the user must:

∙ select the memory from where to dump data. The options are Program

and Data Memories. In case the user selects the Data Memory, the page

(0 to 7) must be selected too;

∙ provide the initial and final 16-bit memory addresses.

The selection is accomplished by means of a specific command defined in the PDC-

OBDH Communication Protocol Specification. Then, dumping from different pieces

of memory areas can be made, and robustness aspects of SWPDC may also be

95

Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7Pg 0

Shared Memory – All Pages

0000h

8000h

FFFFh

Figure 4.1 - Organization of PDC’s Data Memory. Caption: Pg = Page

emphasized. For instance, what is its behavior when the initial address is greater

than the final address, the initial or final address is less than the minimum physical

address allowed for a certain type of memory and so on. These facts explain the

need for unfolding.

Table 4.4 shows the configuration of factors and levels for unfolding normal scenarios

73 and 94. The priority factor in this case is the type of Memory (Mem; Prg =

Program Memory, DtP0 = Data Memory - Page 0, ..., DtP7 = Data Memory - Page

7) from where the dumping will take place, and strengtℎ = 2. The initial memory

address (IniAdd) and final memory address (FinalAdd) are the other factors. Since

the priority factor has 10 levels, then not only normal scenario 73 but also normal

scenario 94 will be replaced with 10 unfolded scenarios each (note that the only

difference between normal scenarios 73 and 94 is the PDC’s operation mode). These

unfolded scenarios are identified as 73.1, 73.2, ..., 73.10, 94.1, 94.2, ..., 94.10.

When running the combinatorial designs algorithm, the factor combinations that are

interpreted for deriving each unfolded scenario are shown in Table 4.5. As mentioned

in Section 3.2, the test designer adds NL requirements to characterize each unfolded

scenario according to the directives provided by the combinatorial designs algorithm.

It is interesting to stress the focus on Robustness testing related to this unfolding

process. For instance, unfolded scenarios 73.3 or 94.3 propose the following situa-

tions, where all cases relate to Page 1 of PDC’s Data Memory (DtP1):

∙ IniAdd = Min, FinalAdd = LessMin;

96

∙ IniAdd = Max, FinalAdd = InRng;

∙ IniAdd = LessMin, FinalAdd = Min;

∙ IniAdd = GreatMax, FinalAdd = Min;

∙ IniAdd = Min, FinalAdd = GreatMax;

∙ IniAdd = InRng, FinalAdd = Max.

Table 4.4 - Unfolding normal scenarios 73 and 94

Factors Levels

Mem Prg DtP0 DtP1 DtP2 DtP3 DtP4 DtP5 DtP6 DtP7 Inv

IniAdd InRng Min Max LessMin GreatMax

FinalAdd InRng Min Max LessMin GreatMax

SWPDC must process only the last situation (IniAdd = InRng, FinalAdd = Max)

because all the others have innapropriate settings of initial and/or final memory

addresses. The unfolding process generated 20 additional scenarios, 10 to replace

normal scenario 73 and another 10 to replace normal scenario 94.

Four other normal scenarios needed to be unfolded: normal scenario 109 ({Pr-

Load, Nom, Load, -}; “loading new program into PDC’s Data Memory on the fly

in the Nominal Operation Mode”) which contributed with 6 additional scenarios;

normal scenarios 2 ({HwSwHnd, Nom, Hk, -}), 16 ({HwSwHnd, Safe, Hk, -}),
23 ({HwSwHnd, Diag, Hk, -}) whose interpretations are “verification of correct

implementation of commands related to software parameters manipulation, and

generation, formatting, and transmission of Housekeeping Data in the Nominal

(scenario 2), Safety (scenario 16) or Diagnosis (scenario 23) Operation Modes”, and

that provided 7 additional scenarios each one, adding 21 new scenarios. Hence, the

total number of scenarios proposed by the SOLIMVA methodology for the SWPDC

case study was 244 as shown in Table 4.6. Due to the fact that six normal scenarios

have been unfolded and then substituted for unfolded scenarios the total amount of

normal scenarios decreased compared to the value (175) originally obtained.

For each scenario, a set of NL requirements is chosen. As a matter of illustration,

Table 4.7 shows the set of NL requirements in order to characterize normal scenario

71: {DtAcqTx, Nom, Sci, -}.

97

Table 4.5 - Factor combinations for creating unfolded scenarios from normal scenarios 73
and 94. Caption: Min/Max = Minimum/Maximum allowed memory address;
LessMin/GreatMax = Less/Greater than Minimum/Maximum allowed mem-
ory address; InRng = Address between Min and Max (In Range)

Unfolded
Scenario

Factor Combinations

73.1 and 94.1 {Prg, InRng, InRng}, {Prg, Min, Min}, {Prg, Max, Max}, {Prg, LessMin,

LessMin}, {Prg, GreatMax, GreatMax}
73.2 and 94.2 {DtP0, InRng, Min}, {DtP0, Min, InRng}, {DtP0, Max, LessMin}, {DtP0,

LessMin, Max}, {DtP0, GreatMax, InRng}, {DtP0, Min, GreatMax}
73.3 and 94.3 {DtP1, InRng, Max}, {DtP1, Min, LessMin}, {DtP1, Max, InRng}, {DtP1,

LessMin, Min}, {DtP1, GreatMax, Min}, {DtP1, Min, GreatMax}
73.4 and 94.4 {DtP2, InRng, LessMin}, {DtP2, Min, Max}, {DtP2, Max, Min}, {DtP2,

LessMin, InRng}, {DtP2, GreatMax, Max}, {DtP2, Min, GreatMax}
73.5 and 94.5 {DtP3, InRng, GreatMax}, {DtP3, Min, InRng}, {DtP3, Max, Min}, {DtP3,

LessMin, Max}, {DtP3, GreatMax, LessMin}
73.6 and 94.6 {DtP4, InRng, InRng}, {DtP4, Min, GreatMax}, {DtP4, Max, Min}, {DtP4,

LessMin, Max}, {DtP4, GreatMax, LessMin}
73.7 and 94.7 {DtP5, InRng, InRng}, {DtP5, Min, Min}, {DtP5, Max, GreatMax}, {DtP5,

LessMin, Max}, {DtP5, GreatMax, LessMin}
73.8 and 94.8 {DtP6, InRng, InRng}, {DtP6, Min, Min}, {DtP6, Max, Max}, {DtP6,

LessMin, GreatMax}, {DtP6, GreatMax, LessMin}
73.9 and 94.9 {DtP7, InRng, InRng}, {DtP7, Min, Min}, {DtP7, Max, Max}, {DtP7,

LessMin, LessMin}, {DtP7, GreatMax, GreatMax}
73.10 and 94.10 {Inv, InRng, InRng}, {Inv, Min, Min}, {Inv, Max, Max}, {Inv, LessMin,

LessMin}, {Inv, GreatMax, GreatMax}

Table 4.6 - Total number of scenarios for the SWPDC case study

Type of Scenario Quantity

Simple 28

Normal 169

Unfolded 47

Total 244

After the selection of the requirements, the next step is to generate the Statechart

model. Figure 4.2 shows the main model generated by the SOLIMVA tool for normal

scenario 71. Note the self transition in state Initiation Operation Mode. This behavior

occurs due to the verb “remain” in requirement SRS002 as explained in the WSD

refinement section (Section 3.3.2.2). There are three COMPOSITE states (symbol

∞) in the main Statechart model: Nominal Operation Mode (Figure 4.3), Safety

Operation Mode 2 (Figure 4.4), and Safety Operation Mode (Figure 4.5). When

98

Table 4.7 - Set of NL requirements that characterize normal scenario 71. Caption: Req =
Requirement; Id = Identification

Req Id Req Description

SRS001 The PDC shall be powered on by the Power Conditioning Unit.

SRS002 The PDC shall be in the Initiation Operation Mode after being powered on. The

SWPDC shall then accomplish a POST. If PDC presents any irrecoverable problem,

this computer shall remain in the Initiation Operation Mode and such a problem

shall not be propagated to the OBDH.

SRS003 If PDC does not present any irrecoverable problem, after the initiation process, the

PDC shall automatically enter into the Safety Operation Mode.

POCP001 The PDC can only respond to requests (commands) from OBDH after the PDC

has been energized for at least 1 minute. If OBDH sends commands within less

than 1 minute, the OBDH shall not receive any response from PDC.

RB001 The OBDH shall send VER-OP-MODE to PDC.

RB002 The PDC shall switch each Event Pre-Processor (EPP Hx, x = 1 or 2) on or off

independently, when the OBDH sends distinct commands to perform such actions.

PECP001 Each EPP Hx can only respond to requests (commands) from PDC after each EPP

Hx has been energized for at least 30 seconds. If PDC sends commands within less

than 30 seconds to a certain EPP Hx, the PDC shall not receive any response from

this EPP Hx.

SRS004 The OBDH should wait 600 seconds before asking for a Housekeeping Data frame.

SRS005 Housekeeping data transmission shall start with PREP-HK. After that, the OBDH

can send several TX-DATA-HK to PDC. The transmission shall be ended with

TX-DATA-SCI-End.

RB003 The OBDH shall send CH-OP-MODE-NOMINAL to PDC.

RB001 The OBDH shall send VER-OP-MODE to PDC.

POCP002 The OBDH should wait 10 seconds before asking for a Scientific Data frame.

SRS006 The SWPDC shall obtain and handle scientific data from each EPP Hx. The

SWPDC shall also accept scientific data transmission requests from OBDH.

RB004 The OBDH shall send CH-OP-MODE-SAFETY to PDC. After that, the PDC shall

be in the Safety Operation Mode.

RB002 The PDC shall switch each Event Pre-Processor (EPP Hx, x = 1 or 2) on or off

independently, when the OBDH sends distinct commands to perform such actions.

RB005 After switching both EPPHxs off via PDC, the OBDH shall switch the PDC off

via the Power Conditioning Unit.

omitted, the output event within a transition is null. Moreover, some transitions

are of the form input event[In(A.B)]/output event.1 For these situations, A means a

COMPOSITE state and B the substate inside COMPOSITE state A. In Figure 4.2,

transition CH-OP-MODE-NOMINAL[In(SOM.OBDH 7)]/CMD-REC is fired if the

input event CH-OP-MODE-NOMINAL occurs but also if the current active state of

1Alternatively, following the notation in Harel et al. (1987): event[in(state) condition]/action.

99

the model is OBDH 7 of the COMPOSITE state Safety Operation Mode (SOM).

Similar remarks are valid for other transitions where the abbreviations for COM-

POSITE states should be accounted for: Nomimal Operation Mode (NOM), Safety

Operation Mode 2 (SOM 2).

PDC Initiation
Operation Mode

be power on_Power Conditioning Unit

PDC_3

Safety
Operation Mode do not present_irrecoverable problem

be#then accomplish_post#present_irrecoverable problem#

not be propagate

CH-OP-MODE-SAFETY[In(NOM.OBDH_10)]
/ CMD-REC

Nominal
Operation Mode

switch

send_distinct command[In(SOM_2.OBDH_11)]

CH-OP-MODE-NOMINAL[In(SOM.OBDH_7)]
/ CMD-REC

Safety
Operation Mode_2

∞

∞

∞

Figure 4.2 - The main Statechart model derived from NL requirements that characterize
normal scenario 71

In the sequence, GTSC is run to generate Abstract Test Cases. The Abstract

Test Suites created from all-transitions, all-simple-paths, and all-paths-k-C0-

configuration test criteria are presented in Table 4.8. An Abstract Test Case is

composed of a set of input/output pairs and it is delimited by left and right braces.

Abstract Test Cases must be translated into Executable Test Cases in order to stimu-

late the IUT. Tables 4.9 and 4.10 show examples of such translations considering the

second Abstract Test Case of the all-transitions Abstract Test Suite. It is interesting

to realize that in some cases, there is no specific test input data to stimulate the IUT

but only actions shall be performed and certain behaviors shall occur. Besides, the

100

OBDH_8 OBDH_9

VER-OP-MODE
/ INFO-OP-MODE wait_10 seconds

Nominal Operation Mode

SWPDC_2

SWPDC_3

obtain and handle_scientific datum

OBDH_10
also accept_scientific datum transmission request

Figure 4.3 - Normal scenario 71: COMPOSITE state Nominal Operation Mode

mapping is not one to one, i.e. not necessarily one input/output pair of an Abstract

Test Case will derive exactly one test input data/expected result of an Executable

Test Case.

PDC_11
be

OBDH_11
switch_Event Pre-Processor

Safety Operation Mode_2

IniState_2

Figure 4.4 - Normal scenario 71: COMPOSITE state Safety Operation Mode 2

Another remark is that most of the translations shown in Tables 4.9 and 4.10 are

applied not only to other Abstract Test Suites derived from other test criteria for

normal scenario 71 but also to other Abstract Test Suites due to the all-transitions

or other test criteria regarding another scenario. The point is that it is not necessary

to do all the mapping when considering other scenarios: most of the translations are

reusable.

The complete translation of the Abstract Test Suites for normal scenario 71 into

Executable Test Suites is shown in Table 4.11. Similarly, an Executable Test Case

consists of a set of test input data/expected result and it is delimited by left and right

braces. However, since actions can also be present in Executable Test Cases then

101

such test cases provide a clear correspondence with the sequence of test steps of the

testing procedures which are, in fact, the instructions so that Executable Test Cases

can be executed. Therefore, the term “test step” will be used to represent both the

test input data/expected result of an Executable Test Case, meaning that the IUT

must be stimulated by such input data and should be expected the indicated result,

as to represent an action that must be performed.

PDC_5
only respond_request

PDC_6

VER-OP-MODE
/ INFO-OP-MODE

OBDH_3

OBDH_4

PDC_8

OBDH_5 Housekeeping Datum
Transmission

OBDH_7

Safety Operation Mode

IniState_1
automatically enter

OBDH

have be energize_least 1 minute

OBDH_2
send_command not receive_response

PDC_7
switch_Event Pre-Processor send_distinct command

EPP Hx

EPP Hx_2

only respond_request

have be energize_least 30 seconds
PDC_9

send_command

not receive_response

wait_600 seconds
OBDH_6

PREP-HK
/ CMD-REC

Transmission

Several TX-DATA-HK
/ Several HK-DATA or NO-DATA

TX-DATA-SCI-End
/ SCI-DATA or NO-DATA

Figure 4.5 - Normal scenario 71: COMPOSITE state Safety Operation Mode

Action1, Action2, Action3, Action4, and Action5 are defined in Tables 4.9 and 4.10.

Action6 is the translation of the abstract input/output pair be#then accomplish -

post#present irrecoverable problem#/null. Hence, Action6 directs the test designer

to simulate an irrecoverable problem during the intitiation (initialization) process

102

of PDC and realize whether PDC remains in the Initiation Operation Mode, as

presented in Figure 4.2. Action7 is to switch PDC off. The idea then is just to

substitute one or more input/output pairs of the Abstract Test Suite for the corre-

sponding test input data/expected result or actions of the Executable Test Suite as

shown in Tables 4.9 and 4.10. Translations into other Executable Test Suites due to

other test criteria follow the same principles.

Table 4.8 - Abstract Test Suites for normal scenario 71

Test Criterion Abstract Test Cases

all-transitions {be power on Power Conditioning Unit/null, be#then accomplish -

post#present irrecoverable problem#/null}, {be power on Power Con-

ditioning Unit/null, not be propagate/null, do not present irrecover-

able problem/null, automatically enter/null, only respond request/null,

have be energize least 1 minute/null, send command/null, not re-

ceive response/null, VER-OP-MODE/INFO-OP-MODE, switch Event Pre-

Processor/null, send distinct command/null, only respond request/null,

have be energize least 30 seconds/null, send command/null, not re-

ceive response/null, wait 600 seconds/null, PREP-HK/CMD-REC, Sev-

eral TX-DATA-HK/Several HK-DATA or NO-DATA, TX-DATA-SCI-

End/SCI-DATA or NO-DATA, CH-OP-MODE-NOMINAL/CMD-REC,

VER-OP-MODE/INFO-OP-MODE, wait 10 seconds/null, obtain and han-

dle scientific datum/null, also accept scientific datum transmission re-

quest/null, CH-OP-MODE-SAFETY/CMD-REC, be/null, switch Event

Pre-Processor/null, send distinct command/null}, {switch/null}

all-simple-paths {be power on Power Conditioning Unit/null, not be propagate/null, do not

present irrecoverable problem/null, automatically enter/null, only respond -

request/null, have be energize least 1 minute/null, send command/null,

not receive response/null, VER-OP-MODE/INFO-OP-MODE, switch -

Event Pre-Processor/null, send distinct command/null, only respond re-

quest/null, have be energize least 30 seconds/null, send command/null,

not receive response/null, wait 600 seconds/null, PREP-HK/CMD-REC,

Several TX-DATA-HK/Several HK-DATA or NO-DATA, TX-DATA-SCI-

End/SCI-DATA or NO-DATA, CH-OP-MODE-NOMINAL/CMD-REC,

VER-OP-MODE/INFO-OP-MODE, wait 10 seconds/null, obtain and han-

dle scientific datum/null, also accept scientific datum transmission re-

quest/null, CH-OP-MODE-SAFETY/CMD-REC, be/null, switch Event

Pre-Processor/null, send distinct command/null}, {switch/null}

(Continues)

103

Table 4.8 - Conclusion

Test Criterion Abstract Test Cases

all-paths-k-C0 {be power on Power Conditioning Unit/null, be#then accomplish -

post#present irrecoverable problem#/null, not be propagate/null, do not

present irrecoverable problem/null, automatically enter/null, only respond -

request/null, have be energize least 1 minute/null, send command/null,

not receive response/null, VER-OP-MODE/INFO-OP-MODE, switch -

Event Pre-Processor/null, send distinct command/null, only respond re-

quest/null, have be energize least 30 seconds/null, send command/null,

not receive response/null, wait 600 seconds/null, PREP-HK/CMD-REC,

Several TX-DATA-HK/Several HK-DATA or NO-DATA, TX-DATA-SCI-

End/SCI-DATA or NO-DATA, CH-OP-MODE-NOMINAL/CMD-REC,

VER-OP-MODE/INFO-OP-MODE, wait 10 seconds/null, obtain and han-

dle scientific datum/null, also accept scientific datum transmission re-

quest/null, CH-OP-MODE-SAFETY/CMD-REC, be/null, switch Event

Pre-Processor/null, send distinct command/null}

Table 4.9 - Examples of the translation from the Abstract Test Suite into the Executable

Test Suite. Caption: Abs = Abstract

Abs Input/Output Test Input Data Expected

Result

Action

be power on Power

Conditioning Unit/null

Action1 Action1: Switch PDC on

not be propagate/null + do

not present irrecoverable

problem/null +

automatically enter/null

Action2 Action2: Realize whether

the PDC is in the Safety

Operation Mode after the

initiation process

only respond request/null

+ have be energize least 1

minute/null +

send command/null + not

receive response/null

VER-OP-MODE

Action3

Timeout OBDH shall send any

command within less than

1 minute since the PDC

has been energized.

Action3: OBDH should

wait 60 seconds to send a

command

(Continues)

104

Table 4.9 - Conclusion

Abs Input/Output Test Input Data Expected

Result

Action

VER-OP-MODE/INFO-

OP-MODE

VER-OP-

MODE

INFO-OP-

MODE

OBDH shall send this

command

only respond request/null

+ have be energize least 30

seconds/null +

send command/null + not

receive response/null

PREP-TST

Action4

TX-DATA-TST

TX-DATA-TST

TX-DATA-SCI

CMD-REC

NO-DATA

NO-DATA

NO-DATA

OBDH shall send/perform

all these commands/action

within less than 30 seconds

since each EPP Hx has

been energized. Hence,

PDC will try to get Test

(TST) Data from each

EPP Hx but a timeout will

occur in the PDC side of

the communication. The

result is that no Test Data

frame (NO-DATA) will be

sent to the OBDH.

Action4: OBDH should

wait 10 seconds to send a

command

Table 4.10 - More examples of the translation from the Abstract Test Suite into the

Executable Test Suite. Caption: Abs = Abstract

Abs Input/Output Test Input Data Expected

Result

Action

wait 600 seconds/null Action5 Action5: OBDH should

wait 600 seconds to send a

command

TX-DATA-SCI-End/SCI-

DATA or NO-DATA

TX-DATA-SCI NO-DATA OBDH shall send this

command

wait 10 seconds/null Action4 Action4: OBDH should

wait 10 seconds to send a

command

(Continues)

105

Table 4.10 - Conclusion

Abs Input/Output Test Input Data Expected

Result

Action

obtain and

handle scientific

datum/null + also

accept scientific datum

transmission request/null

TX-DATA-SCI SCI-DATA After waiting for 10

seconds, the OBDH can

send this command. In

case that many Scientific

Data frames shall be

requested, this process is

repeated as many times as

needed (wait 10 seconds,

send the command)

Table 4.11 - Executable Test Suites translated from the Abstract Test Suites for normal

scenario 71

Test Criterion Executable Test Cases

all-transitions {Action1, Action6}, {Action1, Action2, VER-OP-MODE/Timeout, Action3,

VER-OP-MODE/INFO-OP-MODE, ACT-HW-EPPH1ON/CMD-REC,

ACT-HW-EPPH2ON/CMD-REC, PREP-TST/CMD-REC, Action4, TX-

DATA-TST/NO-DATA, TX-DATA-TST/NO-DATA, TX-DATA-SCI/NO-

DATA, Action5, PREP-HK/CMD-REC, TX-DATA-HK/HK-DATA,

TX-DATA-SCI/NO-DATA, CH-OP-MODE-NOMINAL/CMD-REC,

VER-OP-MODE/INFO-OP-MODE, Action4, TX-DATA-SCI/SCI-DATA,

Action4, TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-DATA,

Action4, TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-DATA,

Action4, TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-DATA,

Action4, TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-DATA,

Action4, TX-DATA-SCI/SCI-DATA, CH-OP-MODE-SAFETY/CMD-

REC, VER-OP-MODE/INFO-OP-MODE, ACT-HW-EPPH1OFF/CMD-

REC, ACT-HW-EPPH2OFF/CMD-REC}, {Action7}

(Continues)

106

Table 4.11 - Conclusion

Test Criterion Executable Test Cases

all-simple-paths {Action1, Action2, VER-OP-MODE/Timeout, Action3, VER-OP-

MODE/INFO-OP-MODE, ACT-HW-EPPH1ON/CMD-REC, ACT-HW-

EPPH2ON/CMD-REC, PREP-TST/CMD-REC, Action4, TX-DATA-

TST/NO-DATA, TX-DATA-TST/NO-DATA, TX-DATA-SCI/NO-DATA,

Action5, PREP-HK/CMD-REC, TX-DATA-HK/HK-DATA, TX-DATA-

SCI/NO-DATA, CH-OP-MODE-NOMINAL/CMD-REC, VER-OP-

MODE/INFO-OP-MODE, Action4, TX-DATA-SCI/SCI-DATA, Action4,

TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-DATA, Action4,

TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-DATA, Action4,

TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-DATA, Action4,

TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-DATA, Action4,

TX-DATA-SCI/SCI-DATA, CH-OP-MODE-SAFETY/CMD-REC, VER-

OP-MODE/INFO-OP-MODE, ACT-HW-EPPH1OFF/CMD-REC,

ACT-HW-EPPH2OFF/CMD-REC}, {Action7}

all-paths-k-C0 {Action1, Action6, Action2, VER-OP-MODE/Timeout, Action3, VER-

OP-MODE/INFO-OP-MODE, ACT-HW-EPPH1ON/CMD-REC, ACT-

HW-EPPH2ON/CMD-REC, PREP-TST/CMD-REC, Action4, TX-DATA-

TST/NO-DATA, TX-DATA-TST/NO-DATA, TX-DATA-SCI/NO-DATA,

Action5, PREP-HK/CMD-REC, TX-DATA-HK/HK-DATA, TX-DATA-

SCI/NO-DATA, CH-OP-MODE-NOMINAL/CMD-REC, VER-OP-

MODE/INFO-OP-MODE, Action4, TX-DATA-SCI/SCI-DATA, Action4,

TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-DATA, Action4,

TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-DATA, Action4,

TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-DATA, Action4,

TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-DATA, Action4,

TX-DATA-SCI/SCI-DATA, CH-OP-MODE-SAFETY/CMD-REC, VER-

OP-MODE/INFO-OP-MODE, ACT-HW-EPPH1OFF/CMD-REC,

ACT-HW-EPPH2OFF/CMD-REC}

The concrete test input data/expected result of an Executable Test Case is obtained

just by replacing the abbreviations of commands/responses with the values as spec-

ified in the PDC-OBDH Communication Protocol Specification. For instance, the

first VER-OP-MODE/INFO-OP-MODE of the second Executable Test Case of the

all-transitions Executable Test Suite, of the first Executable Test Case of the all-

107

simple-paths Executable Test Suite, and of the first (single) Executable Test Case

of the all-paths-k-C0-configuration Executable Test Suite (Table 4.11) is substituted

for (all values are in hexadecimal):

∙ VER-OP-MODE: EB 80 00 00 00 00 04 00 00 00 FE 91;

∙ INFO-OP-MODE: EB 20 XX XX XX XX 83 00 00 01 01 XX XX.

In the expected result, XX represents values that are very difficult to predict in

advance such as the time stamp that indicates the exact value of the clock of the

PDC computer when PDC is assembling a response to be sent back to OBDH. In

these cases, it is not necessary to worry about these values.

4.1 Comparing the SOLIMVA methodology with an expert’s approach

This section compares the models and Executable Test Cases generated by version

1.0 of the SOLIMVA methodology and by the SOLIMVA tool with others manually

generated by a test designer who is an expert in the SWPDC software product. The

20 scenarios and their respective models generated by the expert can be seen in

SANTIAGO JÚNIOR et al. (2010). The purposes of such a comparison are twofold:

(i) to know if the SOLIMVA methodology is able to cover the test objectives of the

set of scenarios manually developed by an expert with respect to a certain IUT; (ii)

to verify whether the Executable Test Cases generated according to the SOLIMVA

methodology have the same characteristics of the test cases developed according to

the expert’s models.

4.1.1 Coverage of test objectives

The results of the comparison to check the coverage of test objectives are shown in

Tables 4.12 and 4.13. In both tables, the leftmost column shows the Test Objectives

associated with a scenario, Expert shows the number of the manually generated

scenario, and the SOLIMVA column shows the corresponding factor combinations

whose interpretations derive the scenarios which have associated the same test

objectives of the manual (expert) scenarios. The number of the scenario in the

SOLIMVA column refers to those generated only by the main execution of the

combinatorial designs algorithm, i.e. one that resulted in 175 normal scenarios.

108

Table 4.12 - Scenarios 1 to 10 of the expert: a comparison between the expert’s approach

and SOLIMVA from the perspective of coverage of test objectives

Test Objectives Expert SOLIMVA

PDC initiation process 1 {OpMMgm, Init, -, -} = 43, 44, 45, 46, 47, 48, 49

Switching EPP Hxs on and off 2 {HwSwHnd, Safe, -, -} = 15, 16, 17, 18, 19, 20, 21

Changing software parameters in

the Safety Operation Mode

3 {HwSwHnd, Safe, Hk, -} = 16

Processes of Power On and Reset 4 {HwSwHnd, Safe, -, PwrOn} = 16

{HwSwHnd, Safe, -, Reset} = 17, 18

{OpMMgm, Safe, -, PwrOn} = 50, 53, 54, 55, 56

{OpMMgm, Safe, -, Reset} = 52

Scientific Data Acquisition and

Transmission in the Nominal Op-

eration Mode

5 {DtAcqTx, Nom, Sci, -} = 71

Scientific Data Acquisition and

Transmission in the Nominal Op-

eration Mode, Robustness (com-

mand)

6 {DtAcqTx, Nom, Sci, -} = 71

{Inv, Nom, Sci, -} = 141

Houseekeeping Data Transmission

in the Nominal Operation Mode

7 {DtAcqTx, Nom, Hk, -} = 72

Houseekeeping Data Transmission

in the Nominal Operation Mode,

Robustness (reception), Load new

programs

8 {DtAcqTx, Nom, Hk, -} = 72

{PrLoad, Nom, Load, -} = 109

{Inv, Nom, Hk, -} = 142

Dump Data of Program Memory

in the Nominal Operation Mode

9 {DtAcqTx, Nom, Dmp, -} = 73

Dump Data of Program Memory

in the Nominal Operation Mode,

Robustness (command and recep-

tion)

10 {DtAcqTx, Nom, Dmp, -} = 73

{Inv, Nom, Dmp, -} = 143

109

Table 4.13 - Scenarios 11 to 20 of the expert: a comparison between the expert’s approach

and SOLIMVA from the perspective of coverage of test objectives

Test Objectives Expert SOLIMVA

Dump Data of Data Memory

(Pages 0 - 3) in the Nominal Op-

eration Mode

11 Bad strategy

Dump Data of Data Memory

(Page 0) in the Nominal Opera-

tion Mode, Robustness (command

and reception)

12 {DtAcqTx, Nom, Dmp, -} = 73

{Inv, Nom, Dmp, -} = 143

Dump Data of Data Memory

(Page 1) in the Nominal Opera-

tion Mode, Robustness (command

and reception)

13 {DtAcqTx, Nom, Dmp, -} = 73

{Inv, Nom, Dmp, -} = 143

Dump Data of Data Memory

(Page 2) in the Nominal Opera-

tion Mode, Robustness (command

and reception)

14 {DtAcqTx, Nom, Dmp, -} = 73

{Inv, Nom, Dmp, -} = 143

Dump Data of Data Memory

(Page 3) in the Nominal Opera-

tion Mode, Robustness (command

and reception)

15 {DtAcqTx, Nom, Dmp, -} = 73

{Inv, Nom, Dmp, -} = 143

Dump Data of Data Memory

(Pages 4 - 7) in the Nominal Op-

eration Mode

16 Bad strategy

Dump Data of Data Memory

(Page 4) in the Nominal Opera-

tion Mode, Robustness (command

and reception)

17 {DtAcqTx, Nom, Dmp, -} = 73

{Inv, Nom, Dmp, -} = 143

Dump Data of Data Memory

(Page 5) in the Nominal Opera-

tion Mode, Robustness (command

and reception)

18 {DtAcqTx, Nom, Dmp, -} = 73

{Inv, Nom, Dmp, -} = 143

(Continues)

110

Table 4.13 - Conclusion

Test Objectives Expert SOLIMVA

Dump Data of Data Memory

(Page 6) in the Nominal Opera-

tion Mode, Robustness (command

and reception)

19 {DtAcqTx, Nom, Dmp, -} = 73

{Inv, Nom, Dmp, -} = 143

Dump Data of Data Memory

(Page 7) in the Nominal Opera-

tion Mode, Robustness (command

and reception)

20 {DtAcqTx, Nom, Dmp, -} = 73

{Inv, Nom, Dmp, -} = 143

The first goal of the comparison was achieved. All test objectives of the expert’s

scenarios were satisfactorily covered by SOLIMVA’s scenarios. Observe that a single

expert’s scenario can be addressed by more than one corresponding SOLIMVA’s

scenario. For instance, the test objective associated with expert’s scenario 1 can be

addressed by any of the following SOLIMVA’s scenarios: 43, 44, 45, 46, 47, 48, 49.

Besides, a factor combination may be interpreted in different ways. In Table 4.12,

three different test objectives are related to factor combination 16: “Switching EPP

Hxs on and off”, “Changing software parameters in the Safety Operation Mode”,

and “Process of Power On”. It is up to the test designer to choose one of these

test objectives for SOLIMVA’s scenario 16, and leave the others to be addressed by

interpreting other factor combinations.

Besides covering all the test objectives, SOLIMVA’s philosophy also pointed out

some problems in the expert’s strategy. Expert’s scenario 4 could be broken into

two different scenarios: one addressing the process of power on and another related

to the reset of PDC. As expert’s scenario 4 can be mapped to four distinct groups of

scenarios in SOLIMVA, this demonstrates that the test objectives of the expert were

confused trying to deal with many different aspects into a single scenario. Figure 4.6

shows the main Statechart model derived by the expert for scenario 4. This model

is an AND state with three substates: Initiation, Timing, and PowerState. Let the

sequence of transitions be (only input events and In State conditions are shown):

{switchPDCOn, POSTOk, tsinc, VER OP MODE[In (Power)]}, where tsinc is an

internal event. After such a sequence of transitions, the COMPOSITE state SafeM -

PowerVer is entered and, within it, all behavior modeling activities related to the

process of switching PDC on (power on process) is considered.

111

PDCOff IniM_POST
switchPDCOn
/ start60s SafeM_

Entered

tsinc

SafeM_
PowerVer

VER_OP_MODE[In (Power)]
/ INFO_OP_MODE

SafeM_
ResetVer

Idle CountingTime

endtime[In (SafeM_Entered) ∨ In (SafeM_WaitHk) ∨ In (SafeM_WaitHkRes)]
/ tsinc

tr [In (SafeM_WaitHk)]

tr [In (IniM_POST)]

switchPDCOff [In (SafeM_ResetOK)]

Timing

Initiation

Expert's Scenario 4

POSTOk
SafeM_
VerOp

ACT_HW-Reset [In (SafeM_PowerOnOK)]
/ CMD_REC

Power NoPower

PowerState

VER_OP_MODE
[In (NoPower)]
/ INFO_OP_MODE

tr [In (SafeM_PowerOnOK)]

tr [In (SafeM_ResetOK)]

PDCReset

start60s

tr [In (SafeM_WaitHkRes)]

∞

∞

Figure 4.6 - Expert’s scenario 4: main Statechart model

SOURCE: Adapted from SANTIAGO JÚNIOR et al. (2010)

After the verification of power on, this second sequence of transitions {ACT -

HW-Reset[In (SafeM PowerOnOk)], start60s, POSTOk, tsinc, VER OP MODE[In

(NoPower)]} allows the system to enter into the COMPOSITE state SafeM Re-

setVer in order to verify whether the SWPDC performed correctly the tasks related

to the reset process. A better approach is to separate these two test objectives into

two distinct scenarios. SOLIMVA’s normal scenario 50 (Figures 4.7, 4.8) addresses

the power on process while SOLIMVA’s normal scenario 17 covers the reset process

(Figures 4.9, 4.10, 4.11).

The first difference among the models for expert’s scenario 4 and those for

112

PDC Initiation
Operation Mode

be power on_Power Conditioning Unit

PDC_3

Safety
Operation Mode do not present_irrecoverable problem

be#then accomplish_post#present_irrecoverable problem#

not be propagate
switch

distinguish_Power On/Reset process[In(SOM.SWPDC_2)]

∞

Figure 4.7 - SOLIMVA’s normal scenario 50: main Statechart model

PDC_5
only respond_request

PDC_6

VER-OP-MODE
/ INFO-OP-MODE

OBDH_3

Housekeeping Datum
Transmission

Safety Operation Mode

IniState_1
automatically enter

OBDH

have be energize_least 1 minute

OBDH_2
send_command not receive_response

OBDH_4
wait_600 seconds

OBDH_5

PREP-HK
/ CMD-REC

Transmission

Several TX-DATA-HK
/ Several HK-DATA or NO-DATA

SWPDC_2

TX-DATA-SCI-End
/ SCI-DATA or NO-DATA

Figure 4.8 - SOLIMVA’s normal scenario 50: Safety Operation Mode

SOLIMVA’s scenarios 50 and 17 is the lack of orthogonality (parallelism) in the

models generated by the SOLIMVA tool as explained in Section 3.3.2.3. Actually,

all main Statechart models of all expert’s scenarios are AND states and hence

orthogonality is a characteristic of the expert’s modeling. Besides, the expert’s

113

model missed one important transition that represents severe problems during the

PDC initiation (initialization) process (the self transition in the Initiation Operation

Mode state in Figures 4.7, 4.9).

PDC Initiation
Operation Mode

be power on_Power Conditioning Unit

PDC_3

do not present_irrecoverable problem

be#then accomplish_post#present_irrecoverable problem#

not be propagate

CH-OP-MODE-SAFETY
/ CMD-REC

switch

distinguish_Power On/Reset process[In(SOM_2.SWPDC_2)]

Safety
Operation Mode ∞

Safety
Operation Mode_2 ∞

AC-HW-RESET[In(SOM.OBDH_4)]
/ CMD-REC

PDC_7

apply

OBDH_5

store_information

Figure 4.9 - SOLIMVA’s normal scenario 17: main Statechart model

The separation of test objectives into two different scenarios provides a clear benefit

in terms of strategy. Models generated for SOLIMVA’s normal scenario 50, which

have associated the power on verification, are very simple models. Checking whether

the processes of power on and reset were successful is by means of Housekeeping Data

where SWPDC adds information to form a log. Hence, in the models for SOLIMVA’s

normal scenario 50, the Safety Operation Mode COMPOSITE state contains behav-

ior to transmit Housekeeping Data, i.e. the sequence of transitions {wait 600 seconds,

PREP-HK, Several TX-DATA-HK, TX-DATA-SCI-End} in Figure 4.8. However,

for reset process addressed by SOLIMVA’s normal scenario 17, the Safety Operation

Mode COMPOSITE state has no such behavior because right after the initiation (ini-

tialization) process, the system shall be reset (AC-HW-RESET[In(SOM.OBDH 4)]

in Figure 4.9) returning to the Initiation Operation Mode state. The behavior to

114

PDC_5
only respond_request

PDC_6

VER-OP-MODE
/ INFO-OP-MODE

OBDH_3

Safety Operation Mode

IniState_1
automatically enter

OBDH

have be energize_least 1 minute

OBDH_2
send_command not receive_response

OBDH_4

Figure 4.10 - SOLIMVA’s normal scenario 17: Safety Operation Mode

transmit Housekeeping Data appears in the Safety Operation Mode 2 COMPOS-

ITE state. Again, these differences favor simplicity. In order to contemplate these

characteristics, the expert’s models for scenario 4 were created with three hierarchy

levels, say the main, the second and the third levels, adding complexity to understand

such models.

Expert’s scenario 8 is another issue. In this case, the test objectives aimed at

two completely and unrelated goals such as Houseekeeping Data transmission and

loading new programs on the fly into PDC’s Data Memory, and a third goal related

to the robustness of SWPDC in situations where a command is not entirely received

by PDC (reception). Loading new programs on the fly is a complex process in which

the entire executable code is substituted for a new one during satellite operation.

Figure 4.12 shows the the NomM HkData COMPOSITE state developed by the

expert for scenario 8 where the three test objectives are addressed. The sequence

of transitions {start600s, tsinc, TX DATA-Hk, PREP HK[In(Idle)], TX DATA-

Hk, TX DATA-Sci} addresses the test objective “Housekeeping Data Transmission

in the Nominal Operation Mode”. This sequence of transitions is similar to ones

presented in some SOLIMVA’s COMPOSITE states (Figures 4.5, 4.8, 4.11). In

other words, to receive Housekeeping Data from PDC, the OBDH should wait

600 seconds (start600s). After that a command to PREPARE HOUSEKEEPING

DATA (PREP HK) shall be sent to PDC followed by one or more commands to

115

IniState_2 PDC_9

VER-OP-MODE
/ INFO-OP-MODE

only respond_request

Safety Operation Mode_2

PDC_10
be

have be energize_least 1 minute

OBDH OBDH_6
send_command

OBDH_7
not receive_response

OBDH_8 Housekeeping Datum
Transmission

wait_600 seconds
OBDH_9

PREP-HK
/ CMD-REC

Transmission

Several TX-DATA-HK
/ Several HK-DATA or NO-DATA

SWPDC_2

TX-DATA-SCI-End
/ SCI-DATA or NO-DATA

Figure 4.11 - SOLIMVA’s normal scenario 17: Safety Operation Mode 2

TRANSMIT HOUSEKEEPING DATA (TX DATA-Hk) and, to finish this process,

the last command shall be TRANSMIT SCIENTIFIC DATA (TX DATA-Sci).

The test objective “Robustness addressing problem of incomplete reception of com-

mands (reception)” is modeled by the following sequence of transitions: {start60s,

tsinc, PREP HK[In(Idle)], TX DATA-Hk, RET ANSW[In(Idle)]}. Note the ex-

pected result timeout due to the test input data TRANSMIT HOUSEKEEPING

DATA (TX DATA-Hk). The test designer assumed that a problem, probably in the

physical transmission medium, occurred and only part of the command was received

by SWPDC. The OBDH can then send a command to RETRANSMIT THE LAST

DATA RESPONSE (RET ANSW). In this case, the reception of this last command

is successful but the OBDH will not receive Housekeeping Data as indicated in the

expert’s model (expected result HK DATA-RSC0 in Figure 4.12). This model has a

116

NomM_
BeginHkData

NomM_
WaitChPar1

VER_OP_MODE
/ INFO_OP_MODE

NomM_
WaitT1

CH_SW_PAR-Hk_60s
/ CMD_REC

NomM_
EndHkData

NomM_HkData

start600s

NomM_
WaitPrepHk1

NomM_
TxHkSqEr

PREP_HK [In(Idle)]
/ CMD_REC NomM_

PrepHkR1
NomM_

PrepDmpR1

start60s

TX_DATA-Hk
/ HK_DATA-RSC0

NomM_
TxHkR1

NomM_
WaitPrepHk2

NomM_
PrepHkR2

NomM_
TxHkR2

NomM_
TxHkR3

NomM_
UpPrg

NomM_
TxHkR4

NomM_
WaitChPar2

TX_DATA-Sci
/ SCI_DATA

PREP_HK [In(Idle)]
/ CMD_REC

TX_DATA-Hk
/ timeout

RET_ANSW[In(Idle)]
/ HK_DATA-RSC0

UPLOAD_PRG-CSC0-8000H-1113
/ CMD_REC TX_DATA-Hk

/ NO_DATA

CH_SW_PAR-Hk_600s
/ CMD_REC

NomM_
EndT1

tsinc

NomM_
EndT2

tsinc

TX_DATA-Hk
/ NO_DATA

PREP_DMP [In(Idle)]
/ CMD_REC

TX_DATA-Hk
/ NO_DATA

NomM_
WaitT2

TX_DATA-Sci
/ SCI_DATA

Figure 4.12 - Expert’s scenario 8: NomM HkData

SOURCE: Adapted from SANTIAGO JÚNIOR et al.
(2010)

minor defect. To explain this fact, consider the following NL requirements, one from

the PDC-OBDH Communication Protocol Specification (POCP021) and the other

from the Software Requirements Specification (SRS013):

∙ POCP021 - The PDC may not receive a command sent in its entirety.

After identifying the beginning of a command frame, the PDC shall wait

two times MAX-TRANSM-DELAY for the rest of the command. If this

stipulated time expires, a timeout shall occur, the PDC shall abort the

communication, the command shall be discarded, an event report shall be

generated, and the PDC shall wait for a new OBDH’s command.

117

∙ SRS013 - The SWPDC shall always maintain temporarily stored the last

data response sent to the OBDH because the OBDH can demand the

retransmission of this last data response.

Since the command to TRANSMIT HOUSEKEEPING DATA (TX DATA-Hk) is

not completely received by the PDC, the response for RET ANSW is the last data

response sent to the OBDH which is Scientific Data (note the transition TX DATA-

Sci/SCI DATA from state NomM TxHkR1 to state NomM WaitT2). Thus, the

correct sequence of test input data/expected result to address this test objective

should be something like this: {start60s, tsinc, PREP HK[In(Idle)]/CMD REC,

TX DATA-Hk/timeout, RET ANSW[In(Idle)]/SCI DATA, PREP HK/CMD -

REC, TX DATA-Hk/HK DATA-RSC0, TX DATA-Sci/SCI DATA}.

The test objective “Loading new programs on the fly into PDC’s Data Memory” is

covered by the following transition: UPLOAD PRG-CSC0-8000H-1113. This single

command represents, in fact, all the commands to load a small new program into

PDC’s Data Memory (a concise representation was used in this case). And as

mentioned earlier, the combination of these three test objectives makes expert’s

scenario 8 very confusing and inadequate.

The SOLIMVA methodology will certainly drive the test designer to separate these

three test objectives leading to a more coherent solution. For the test objective

“Housekeeping Data Transmission in the Nominal Operation Mode”, SOLIMVA’s

normal scenario 72 can be used. Figure 4.13 shows the COMPOSITE state Nominal

Operation Mode of normal scenario 72. The following sequence of transitions is

related to this test objective: {wait 600 seconds, PREP-HK, stop scientific datum

acquisition, Several TX-DATA-HK, TX-DATA-SCI-End}.

SOLIMVA’s normal scenario 142 can be used to cover “Robustness addressing

problem of incomplete reception of commands (reception)”. Figure 4.14 shows

the COMPOSITE state Nominal Operation Mode of this scenario where the

following sequence of transitions addresses the test objective: {wait 600 seconds,

PREP-HK, stop scientific datum acquisition, Several TX-DATA-HK, TX-

DATA-SCI-End, not receive command, wait two time MAX-TRANSM-DELAY,

abort communication, wait new OBDH, always maintain temporarily store last

datum response, demand retransmission}. Some of these abstract input/output

pairs were derived from NL requirements POCP021 and SRS013 shown above.

The last test objective, “Loading new programs on the fly into PDC’s Data Memory”

118

OBDH_6 OBDH_7

VER-OP-MODE
/ INFO-OP-MODE

Nominal Operation Mode

OBDH_8

CH-SW-PHK-MIN
/ CMD-REC

Housekeeping Datum
Transmission

OBDH_10

wait_600 seconds

SWPDC_2

PREP-HK
/ CMD-REC

Transmission

Several TX-DATA-HK
/ Several HK-DATA or NO-DATA

TX-DATA-SCI-End
/ SCI-DATA or NO-DATA

OBDH_9
stop_scientific datum acquisition

Housekeeping Datum
Transmission_2

wait_MINDEF seconds

OBDH_12

SWPDC_3

PREP-HK
/ CMD-REC

Transmission_2

Several TX-DATA-HK
/ Several HK-DATA or NO-DATA

TX-DATA-SCI-End
/ SCI-DATA or NO-DATA

OBDH_11
stop_scientific datum acquisition

Housekeeping Datum
Transmission

OBDH_10

SWPDC_2

PREP-HK
/ CMD-REC

Transmission

Several TX-DATA-HK
/ Several HK-DATA or NO-DATA

TX-DATA-SCI-End
/ SCI-DATA or NO-DATA

OBDH_9
stop_scientific datum acquisition

Housekeeping Datum
Transmission_2

wait_MINDEF seconds

OBDH_13

CH-SW-PHK-DEF
/ CMD-REC

Figure 4.13 - SOLIMVA’s normal scenario 72: Nominal Operation Mode

is addressed by SOLIMVA’s normal scenario 109. However, as mentioned earlier,

normal scenario 109 needs to be unfolded and contributes with 6 unfolded scenarios

replacing this normal scenario. Table 4.14 shows factors and levels for unfolding

normal scenario 109. The primary factor is the initial memory address (IniAdd) so

that, from this address, the piece of executable code contained within a data frame

(command) can be loaded. Inside each LOAD PROGRAM (LD-PRG) command

there is the initial memory address.

Command Sequence Control (CSC) is a field of the command frame that indicates

the sequence number of a command of a series of commands to be sent and which are

related to a certain service supported by SWPDC. This field is primarily used for the

service of loading new programs. In short, CSC tells SWPDC which is the number

119

OBDH_6

VER-OP-MODE
/ INFO-OP-MODE

Nominal Operation Mode

Housekeeping Datum
Transmission

wait_600 seconds

PREP-HK
/ CMD-REC

TX-DATA-SCI-End
/ SCI-DATA or NO-DATA

OBDH_7

SWPDC_2

Transmission

Several TX-DATA-HK
/ Several HK-DATA or NO-DATA

PDC_11

PDC_12

wait_two time MAX-TRANSM-DELAY

OBDH_10
demand_retransmission

PDC_10
not receive_command

PDC_13
abort_communication

SWPDC_3
wait_new OBDH

OBDH_9

always maintain temporarily store_last datum response

OBDH_8
stop_scientific datum acquisition

Figure 4.14 - SOLIMVA’s normal scenario 142: Nominal Operation Mode

Table 4.14 - Unfolding normal scenario 109. Caption: Min/Max = Minimum/Maximum
allowed memory address; LessMin/GreatMax = Less/Greater than Mini-
mum/Maximum allowed memory address; InRng = Address between Min and
Max (In Range); LessPrev = Less than the last memory address previously
loaded with executable code

Factors Levels

IniAdd InRng LessPrev Min Max LessMin GreatMax

CSC Ok Inv

CKS Ok Inv

of a LD-PRG command, and this number varies from N to 0 (this being the last

command). So SWPDC checks whether a command received has the correct CSC,

120

that is if after the command whose CSC is N , the next received command has CSC

equals to N − 1, and so on until the receipt of the last command (CSC = 0). This

is a flow control mechanism similar to mechanisms used in data link layer protocols

in computer networks. A Checksum (CKS) value shall be sent by the OBDH after

all LD-PRG commands. Hence, SWPDC checks whether this received checksum is

equal to the recalculated checksum after receiving and loading all new executable

code into PDC’s Data Memory. Only if the recalculated and received checksums are

identical is that the executable code will be actually executed.

When running the combinatorial designs algorithm with strengtℎ = 2, 12 factor

combinations are generated which are grouped in 6 unfolded scenarios. Unfolded

scenario 109.3 is obtained by the interpretation of the following factor combinations:

{Min, Ok, Ok}, {Min, -, Inv}. Thus, this unfolded scenario has two associated

test objectives. The first one covers what the expert intended to scenario 8. In

other words, the factor combination {Min, Ok, Ok} drives the test designer to add

requirements to address the successful operation of loading a new program. Thus,

within the selected requirements the initial memory address in the first LD-PRG

command is the minimum allowed memory address (8000h; new programs are loaded

only on page 0 of the Data Memory). If other LD-PRG commands are needed, initial

memory addresses are all consistent where, for example, no code will be loaded into

memory area previously loaded. Moreover, the sequence of CSC related to all LD-

PRG commands is also coherent and the recalculated and received checksums are

identical.

The second test objective comes from the interpretation of {Min, -, Inv}. The

observations just made related to initial memory address and CSC are also valid

in this second test objective (behavior is the same). The difference is that the

recalculated and received checksums are supposed to be unequal (note the Inv level)

and then the new program is not in fact executed. This test objective relates to

Robustness testing.

The set of NL requirements that characterize unfolded scenario 109.3 is shown in

Table 4.15. The combinatorial designs direct the test designer to add requirements

in accordance with the factor combinations. NL requirement SRS015 was added due

to factor combination {Min, Ok, Ok} as well as NL requirements RB008, RB009,

RB010, RB011, and RB012 were chosen due to factor combination {Min, -, Inv}.

Figure 4.15 shows the COMPOSITE state Nominal Operation Mode for SOLIMVA’s

unfolded scenario 109.3. The sequence of transitions {be capable, STOP-DT-ACQ,

121

Table 4.15 - Set of NL requirements that characterize unfolded scenario 109.3. Caption:
Req = Requirement; Id = Identification

Req Id Req Description

SRS001 The PDC shall be powered on by the Power Conditioning Unit.

SRS002 The PDC shall be in the Initiation Operation Mode after being powered on. The

SWPDC shall then accomplish a POST. If PDC presents any irrecoverable problem,

this computer shall remain in the Initiation Operation Mode and such a problem

shall not be propagated to the OBDH.

SRS003 If PDC does not present any irrecoverable problem, after the initiation process, the

PDC shall automatically enter into the Safety Operation Mode.

POCP001 The PDC can only respond to requests (commands) from OBDH after the PDC

has been energized for at least 1 minute. If OBDH sends commands within less

than 1 minute, the OBDH shall not receive any response from PDC.

RB001 The OBDH shall send VER-OP-MODE to PDC.

RB002 The PDC shall switch each Event Pre-Processor (EPP Hx, x = 1 or 2) on or off

independently, when the OBDH sends distinct commands to perform such actions.

PECP001 Each EPP Hx can only respond to requests (commands) from PDC after each EPP

Hx has been energized for at least 30 seconds. If PDC sends commands within less

than 30 seconds to a certain EPP Hx, the PDC shall not receive any response from

this EPP Hx.

RB003 The OBDH shall send CH-OP-MODE-NOMINAL to PDC.

RB001 The OBDH shall send VER-OP-MODE to PDC.

SRS015 The SWPDC shall be capable to load and execute new programs in the Nominal

Operation Mode. First, the OBDH shall send STOP-DT-ACQ so that the SWPDC

can interrupt the acquisition of scientific data. After this command, the PDC is

expected to receive LD-PRG-MIN-OK and, after that, the OBDH shall send Several

LD-PRG-INRNG-OK. Then, the OBDH shall submit EXEC-CKS-OK to PDC so

that the loaded program is executed. At the end of the process of loading and

executing a new program, the OBDH shall send RSTART-DATA-ACQ to PDC so

that PDC can restart acquiring scientific data from EPP Hxs.

RB008 The OBDH shall send STOP-DT-ACQ to PDC.

RB009 The OBDH shall send LD-PRG-MIN-OK to PDC.

RB010 The OBDH shall send Several LD-PRG-INRNG-OK to PDC.

RB011 The OBDH shall send EXEC-CKS-INV to PDC.

RB012 The OBDH shall send RSTART-DATA-ACQ to PDC.

RB004 The OBDH shall send CH-OP-MODE-SAFETY to PDC. After that, the PDC shall

be in the Safety Operation Mode.

RB002 The PDC shall switch each Event Pre-Processor (EPP Hx, x = 1 or 2) on or off

independently, when the OBDH sends distinct commands to perform such actions.

RB005 After switching both EPPHxs off via PDC, the OBDH shall switch the PDC off

via the Power Conditioning Unit.

interrupt acquisition, LD-PRG-MIN-OK, Several LD-PRG-INRNG-OK, EXEC-

CKS-OK, RSTART-DATA-ACQ, restart acquire scientific datum} addresses the

122

test objective of successful loading which was derived from the interpretation of

factor combination {Min, Ok, Ok}. This other sequence of transitions {STOP-

DT-ACQ, LD-PRG-MIN-OK, Several LD-PRG-INRNG-OK, EXEC-CKS-INV,

RSTART-DATA-ACQ} is related to the test objective which realizes what is the

behavior of SWPDC when the recalculated and received checksums are different

and thus the interpretation of factor combination {Min, -, Inv} was responsible for

this fact.

OBDH_6 SWPDC_2

VER-OP-MODE
/ INFO-OP-MODE

Nominal Operation Mode

OBDH_7

LD-PRG-MIN-OK
/ CMD-REC

OBDH_10

PDC_10

Several LD-PRG-INRNG-OK
/ Several CMD-REC

EXEC-CKS-OK
/ LD-STATUS-01-OK

OBDH_8

be_capable

OBDH_14

OBDH_11 OBDH_12

restart acquire_scientific datum

OBDH_15

SWPDC_3

STOP-DT-ACQ
/ CMD-REC

interrupt_acquisition

OBDH_9 PDC_11

RSTART-DATA-ACQ
/ CMD-REC

STOP-DT-ACQ
/ CMD-REC

OBDH_13

LD-PRG-MIN-OK
/ CMD-REC

Several LD-PRG-INRNG-OK
/ Several CMD-REC

EXEC-CKS-INV
/ LD-STATUS-01-ERROR

OBDH_16

RSTART-DATA-ACQ
/ CMD-REC

Figure 4.15 - SOLIMVA’s unfolded scenario 109.3: Nominal Operation Mode

123

The model shown in Figure 4.15 is not fully coherent with the actual behavior

related to the loading of new programs. But the problem is not due to the SOLIMVA

methodology/SOLIMVA tool, but that is because the Software Requirements Spec-

ification was not updated, and it is therefore incomplete in relation to the final

version of the SWPDC software product. So this is a problem of requirements

evolution/traceability. Since this specification is a key reference document for the

use of the methodology, then this justifies the incoherence. SOLIMVA’s normal

scenarios 72, 142 and unfolded scenario 109.3 all have a main Statechart model as

well as COMPOSITE states Safety Operation Mode and Safety Operation Mode 2.

However, these models are quite similar to the ones generated for normal scenario

71 (Figures 4.2, 4.5, 4.4).

In Table 4.13, expert’s scenarios 11 and 16 are “marked”as Bad strategy. Indeed, the

test objective related to expert’s scenario 11 is covered by expert’s scenarios 12 to

15. Similarly, the test objective associated with expert’s scenario 16 is addressed by

expert’s scenarios 17 to 20. In case of the SOLIMVA methodology, the Dump Data

service proposed in expert’s scenarios 9 to 20 is covered by unfolding normal scenario

73. Continuing with the comparison between the expert’s approach and SOLIMVA,

consider expert’s scenario 12 with the following test objectives: “Dump Data of Data

Memory (Page 0) in the Nominal Operation Mode”,“Robustness taking into account

problems (inconsistent values) within commands sent to PDC (command)”, and

“Robustness addressing problem of incomplete reception of commands (reception)”.

The models related to expert’s scenario 12 are shown in Figures 4.16, 4.17.

In the COMPOSITE state NomM DmpPg0 (Figure 4.17), the sequence of transi-

tions {P DMP-DataP0-7FFFH-BFFFH, TX DATA-Dmp} relates to the test ob-

jective “Robustness taking into account problems (inconsistent values) within com-

mands sent to PDC (command)”. P DMP-DataP0-7FFFH-BFFFH is an abbrevia-

tion for the following command defined in the PDC-OBDH Communication Protocol

Specification: PREPARE DUMP DATA FROM PAGE 0 OF DATA MEMORY,

WITH INITIAL ADDRESS = 7FFFH AND FINAL ADDRESS = BFFFH. How-

ever, as shown in Figure 4.1, the minimum memory address allowed for all pages of

the Data Memory is 8000h. Thus, this command must not be processed by SWPDC

due to the incorrect value of the initial address, i.e. lower than the minimum memory

address allowed, and the expected result is a timeout. If a TRANSMIT DUMP DATA

(TX DATA-Dmp) is then sent, SWPDC must respond NO DATA (NO DATA).

The sequence of transitions {P DMP-DataP0-8000H-BFFFH, TX DATA-Dmp 14-

124

PDCOff IniM_POST
switchPDCOn
/ start60s SafeM_

Entered

tsinc

SafeM_EPPsOff

VER_OP_MODE
/ INFO_OP_MODE

SafeM_EPP1On
EPP2Off

ACT_HW-EPP1On
/ CMD_REC

SafeM_EPP1On
EPP2On

ACT_HW-EPP2On
/ CMD_REC

Idle CountingTime
tr [In (SafeM_WaitEPPsReady)]

endtime[In (SafeM_Entered) ∨ In (SafeM_WaitEPPsReady)]
/ tsinc

tsinc

tr [In (IniM_POST)]

SafeM_WaitToNominal

CH_OP_MODE-Nominal
/ CMD_REC

switchPDCOff

Timing

Initiation

Expert's Scenario 12

SafeM_
WaitEPPsReady

start30s

ACT_HW-EPP1Off
/ CMD_REC

POSTOk
SafeM_
VerOp

NomM_DmpPg0

SafeM_
EPPsOffSD

SafeM_EPP1On
EPP2OffSD

ACT_HW-EPP2Off
[In (NomM_EndPg0)]
/ CMD_REC

∞

Figure 4.16 - Expert’s scenario 12: main Statechart model

SOURCE: Adapted from SANTIAGO JÚNIOR et al. (2010)

1, TX DATA-Dmp 0, TX DATA-Sci} relates to the test objective “Dump Data of

Data Memory (Page 0) in the Nominal Operation Mode”. Now, the initial address

has an acceptable value (8000h is equal to the minimum memory address allowed)

and data can be dumped normally from page 0. Then, SWPDC responds with Dump

Data (DMP DATA-RSC14-1 1111 and DMP DATA-RSC0 830).

The test objective “Robustness addressing problem of incomplete reception of

commands (reception)” is modeled by the following sequence of transitions:

{P DMP-DataP0-8000H-BFFFH, TX DATA-Dmp 14-1, TX DATA-Dmp 0,

RET ANSW, TX DATA-Sci}. Note the expected result timeout due to the test

input data TRANSMIT LAST DUMP DATA (TX DATA-Dmp 0). As in expert’s

125

NomM_
BeginPg0

NomM_
WaitDmpSqEr

VER_OP_MODE
/ INFO_OP_MODE

NomM_
WaitPrepDmp1

NomM_
EndPg0

NomM_DmpPg0

NomM_
PrepDmpR1

NomM_
TxDmpR1

TX_DATA-Sci
/ NO_DATA

TX_DATA-Dmp
/ NO_DATA

TX_DATA-Sci
/ NO_DATA

P_DMP-DataP0-7FFFH-BFFFH
/ timeout

TX_DATA-Dmp
/ NO_DATA

P_DMP-DataP0-8000H-BFFFH
/ CMD_REC

NomM_
PrepDmpR2

NomM_
TxDmpR2

TX_DATA-Dmp_14-1
/ DMP_DATA-RSC14-1_1111

NomM_
PrepHkR1

P_HK
/ CMD_REC

TX_DATA-Dmp
/ NO_DATA

NomM_
TxDmpR3

TX_DATA-Dmp_0
/ DMP_DATA-RSC0_830

NomM_
PrepDmpR3

P_DMP-DataP0-8000H-BFFFH
/ CMD_REC

NomM_
TxDmpR4

TX_DATA-Dmp_14-1
/ DMP_DATA-RSC14-1_1111

NomM_
TxDmpR5

TX_DATA-Dmp_0
/ timeout

NomM_
TxDmpR6

RET_ANSW
/ DMP_DATA-RSC0_830

NomM_
WaitPrepDmp2

Figure 4.17 - Expert’s scenario 12: NomM DmpPg0

SOURCE: Adapted from SANTIAGO JÚNIOR et al.
(2010)

scenario 8, the test designer assumed that a problem occurred and only part of

the command was received by SWPDC. The OBDH can then send a command

to RETRANSMIT THE LAST DATA RESPONSE (RET ANSW). Also like

the COMPOSITE state NomM HkData in expert’s scenario 8 (Figure 4.12),

there is a minor defect in the model. The correct sequence of test input

data/expected result to address this test objective should be: {P DMP-DataP0-

8000H-BFFFH/CMD REC, TX DATA-Dmp 14-1/DMP DATA-RSC14-1 1111,

TX DATA-Dmp 0/timeout, RET ANSW/DMP DATA-RSC1 1111, TX DATA-

Dmp 0/DMP DATA-RSC0 830, TX DATA-Sci/NO DATA}. The same three test

objectives apply to all other types of PDC’s memory, i.e. Program Memory (expert’s

126

scenario 10) and the remaining pages of the Data Memory (expert’s scenarios 13,

14, 15, 17, 18, 19, 20). The models for these other expert’s scenarios are quite

similar to the ones for expert’s scenario 12.

The SOLIMVA methodology covers expert’s scenario 12 as follows. First, according

to Table 4.5, unfolded scenario 73.2 (note DtP0 in every factor combination) is

the one that relates to the Dump Data service from page 0 of the Data Memory.

The set of factor combinations that is interpreted for generating unfolded scenario

73.2 is: {DtP0, InRng, Min}, {DtP0, Min, InRng}, {DtP0, Max, LessMin}, {DtP0,

LessMin, Max}, {DtP0, GreatMax, InRng}, {DtP0, Min, GreatMax}. All factor

combinations except the second ({DtP0, InRng, Min}, {DtP0, Max, LessMin},
{DtP0, LessMin, Max}, {DtP0, GreatMax, InRng}, {DtP0, Min, GreatMax}) drive

the test designer to add requirements in which inconsistent values of initial and/or

final memory addresses are set. In other words, {DtP0, InRng, Min} implies that the

initial memory address is In Range (between the Minimum and Maximum allowed

memory addresses), and the final memory address is the Minimum allowed memory

address. Thus, the initial address is greater than the final address and this is an

incorrect setting. The conclusion is that these five factor combinations relate to the

test objective “Robustness taking into account problems (inconsistent values) within

commands sent to PDC (command)”.

Nevertheless, the second factor combination ({DtP0, Min, InRng}) is consistent and

it addresses the test objective“Dump Data of Data Memory (Page 0) in the Nominal

Operation Mode”. When translating the Abstract Test Suite into the Executable Test

Suite, the test designer can substitute Min for 8000h (which is the only possible

value for Min) and InRng for BFFFh, which is one of many possible values for

InRng. Then, the same initial and final memory addresses proposed in the model

for expert’s scenario 12 can be selected.

The set of NL requirements that characterize unfolded scenario 73.2 is shown in

Table 4.16. As previously stated, the combinatorial designs direct the test designer

to add requirements in accordance with the factor combinations. NL requirement

SRS022 has the command PREPARE DUMP DATA FROM PAGE 0 OF DATA

MEMORY, WITH INITIAL ADDRESS = INRNG AND FINAL ADDRESS = MIN

(PREP-DMP-DTP0-INRNG-MIN). This requirement was added due to factor com-

bination {DtP0, InRng, Min}. NL requirements SRS023, SRS024, SRS025, SRS026,

and SRS027 were added due to factor combinations {DtP0, Min, InRng}, {DtP0,

Max, LessMin}, {DtP0, LessMin, Max}, {DtP0, GreatMax, InRng}, {DtP0, Min,

127

GreatMax}, respectively.

Table 4.16 - Set of NL requirements that characterize unfolded scenario 73.2. Caption: Req

= Requirement; Id = Identification

Req Id Req Description

SRS001 The PDC shall be powered on by the Power Conditioning Unit.

SRS002 The PDC shall be in the Initiation Operation Mode after being powered on. The

SWPDC shall then accomplish a POST. If PDC presents any irrecoverable problem,

this computer shall remain in the Initiation Operation Mode and such a problem

shall not be propagated to the OBDH.

SRS003 If PDC does not present any irrecoverable problem, after the initiation process, the

PDC shall automatically enter into the Safety Operation Mode.

POCP001 The PDC can only respond to requests (commands) from OBDH after the PDC

has been energized for at least 1 minute. If OBDH sends commands within less

than 1 minute, the OBDH shall not receive any response from PDC.

RB001 The OBDH shall send VER-OP-MODE to PDC.

RB002 The PDC shall switch each Event Pre-Processor (EPP Hx, x = 1 or 2) on or off

independently, when the OBDH sends distinct commands to perform such actions.

PECP001 Each EPP Hx can only respond to requests (commands) from PDC after each EPP

Hx has been energized for at least 30 seconds. If PDC sends commands within less

than 30 seconds to a certain EPP Hx, the PDC shall not receive any response from

this EPP Hx.

RB003 The OBDH shall send CH-OP-MODE-NOMINAL to PDC.

RB001 The OBDH shall send VER-OP-MODE to PDC.

SRS022 Memory Dump data transmission shall start with PREP-DMP-DTP0-INRNG-

MIN. In this case, the SWPDC shall not stop scientific data acquisition from

EPP Hxs. After that, the OBDH can send One TX-DATA-DMP to PDC. The

transmission shall be ended with TX-DATA-SCI-End.

SRS023 Memory Dump data transmission shall start with PREP-DMP-DTP0-MIN-

INRNG. In this case, the SWPDC shall stop scientific data acquisition from

EPP Hxs. After that, the OBDH can send Several TX-DATA-DMP to PDC. The

transmission shall be ended with TX-DATA-SCI-End.

SRS024 Memory Dump data transmission shall start with PREP-DMP-DTP0-MAX-

LESSMIN. In this case, the SWPDC shall not stop scientific data acquisition from

EPP Hxs. After that, the OBDH can send One TX-DATA-DMP to PDC. The

transmission shall be ended with TX-DATA-SCI-End.

(Continues)

128

Table 4.16 - Conclusion

Req Id Req Description

SRS025 Memory Dump data transmission shall start with PREP-DMP-DTP0-LESSMIN-

MAX. In this case, the SWPDC shall not stop scientific data acquisition from

EPP Hxs. After that, the OBDH can send One TX-DATA-DMP to PDC. The

transmission shall be ended with TX-DATA-SCI-End.

SRS026 Memory Dump data transmission shall start with PREP-DMP-DTP0-

GREATMAX-INRNG. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send One TX-DATA-DMP

to PDC. The transmission shall be ended with TX-DATA-SCI-End.

SRS027 Memory Dump data transmission shall start with PREP-DMP-DTP0-MIN-

GREATMAX. In this case, the SWPDC shall not stop scientific data acquisition

from EPP Hxs. After that, the OBDH can send One TX-DATA-DMP to PDC. The

transmission shall be ended with TX-DATA-SCI-End.

RB004 The OBDH shall send CH-OP-MODE-SAFETY to PDC. After that, the PDC shall

be in the Safety Operation Mode.

RB002 The PDC shall switch each Event Pre-Processor (EPP Hx, x = 1 or 2) on or off

independently, when the OBDH sends distinct commands to perform such actions.

RB005 After switching both EPPHxs off via PDC, the OBDH shall switch the PDC off

via the Power Conditioning Unit.

Figures 4.18 and 4.19 show the COMPOSITE state Nominal Operation Mode for

SOLIMVA’s unfolded scenario 73.2. For this unfolded scenario, the main Statechart

model is quite similar to the one generated for normal scenario 71 (Figure 4.2) as

well as are similar the COMPOSITE states Safety Operation Mode (Figure 4.5) and

Safety Operation Mode 2 (Figure 4.4). The following sequences of transitions

∙ {PREP-DMP-DTP0-INRNG-MIN, not stop scientific datum acquisition,

One TX-DATA-DMP, TX-DATA-SCI-End},

∙ {PREP-DMP-DTP0-MAX-LESSMIN, not stop scientific datum acquisi-

tion, One TX-DATA-DMP, TX-DATA-SCI-End},

∙ {PREP-DMP-DTP0-LESSMIN-MAX, not stop scientific datum acquisi-

tion, One TX-DATA-DMP, TX-DATA-SCI-End},

∙ {PREP-DMP-DTP0-GREATMAX-INRNG, not stop scientific datum ac-

quisition, One TX-DATA-DMP, TX-DATA-SCI-End},

129

∙ {PREP-DMP-DTP0-MIN-GREATMAX, not stop scientific datum acqui-

sition, One TX-DATA-DMP, TX-DATA-SCI-End},

deal with situations where inconsistent values of initial and/or final memory ad-

dresses are accounted for. They were created as a result of the addition of the require-

ments due to all factor combinations except the second (Table 4.5). In these cases,

all “expected results” related to commands PREPARE DUMP DATA FROM PAGE

0 OF DATA MEMORY (PREP-DMP-DTP0) are Timeout because of the wrong

setting of addresses. These sequences of requirements address the test objective

“Robustness taking into account problems (inconsistent values) within commands

sent to PDC (command)”.

On the other hand, the sequence of transitions {PREP-DMP-DTP0-MIN-INRNG,

stop scientific datum acquisition, Several TX-DATA-DMP, TX-DATA-SCI-End} is

consistent and it addresses the test objective “Dump Data of Data Memory (Page

0) in the Nominal Operation Mode”. The second factor combination was responsible

for such sequence of transitions.

However, the test objective “Robustness addressing problem of incomplete reception

of commands (reception)” is not covered not only by unfolded scenario 73.2 but

also by any other unfolded scenario for other PDC’s memories (73.1, 73.3, 73.4,

etc.). In order to solve this problem, factor combination 143 ({Inv, Nom, Dmp,

-}) can be used. Its interpretation defines normal scenario 143 and it deals with

the incomplete reception of commands but considering all PDC’s memories, i.e. the

Program Memory and all pages of the Data Memory. This approach concentrates

in a single scenario the aforementioned test objective instead of modeling in every

scenario for each PDC’s memory as the expert proposed. A sample of the set of NL

requirements that characterize normal scenario 143 is shown in Table 4.17.

In Table 4.17, NL requirements SRS017, POCP021, SRS013 relate to the incomplete

reception of commands when dumping data from the Program (PRG) Memory

while SRS023, POCP021, SRS013 refer to page 0 of the Data Memory (DtP0).

For the other pages of the Data Memory, it is enough to change the first of the

three requirements and repeat the other two. Figure 4.20 shows a piece of the

COMPOSITE state Nominal Operation Mode for normal scenario 143 in which it is

possible to see the transitions that cover the test objective “Robustness addressing

problem of incomplete reception of commands (reception)” when dealing with page

0 of the Data Memory (DtP0).

130

OBDH_6
VER-OP-MODE
/ INFO-OP-MODE

Nominal Operation Mode

SWPDC_2

PREP-DMP-DTP0-INRNG-MIN
/ Timeout

not stop_scientific datum acquisition

TX-DATA-SCI-End
/ SCI-DATA or NO-DATA

Memory Dump Datum
Transmission

OBDH_7 Transmission

One TX-DATA-DMP
/ DMP-DATA or NO-DATA

Memory Dump Datum
Transmission_2

SWPDC_3

PREP-DMP-DTP0-MIN-INRNG
/ CMD-REC

OBDH_8
stop_scientific datum acquisition

Transmission_2

Several TX-DATA-DMP
/ Several DMP-DATA or NO-DATA

Memory Dump Datum
Transmission_3

TX-DATA-SCI-End
/ SCI-DATA or NO-DATA

SWPDC_4

PREP-DMP-DTP0-MAX-LESSMIN
/ Timeout

OBDH_9

not stop_scientific datum acquisition

Transmission_3

One TX-DATA-DMP
/ DMP-DATA or NO-DATA

Memory Dump Datum
Transmission_4

TX-DATA-SCI-End
/ SCI-DATA or NO-DATA

SWPDC_5

PREP-DMP-DTP0-LESSMIN-MAX
/ Timeout

OBDH_10
not stop_scientific datum acquisition

Transmission_4

One TX-DATA-DMP
/ DMP-DATA or NO-DATA

Figure 4.18 - SOLIMVA’s unfolded scenario 73.2: Nominal Operation Mode (Part 1)

131

Nominal Operation Mode (continuation 2)

TX-DATA-SCI-End
/ SCI-DATA or NO-DATA

Memory Dump Datum
Transmission_5

SWPDC_6

PREP-DMP-DTP0-GREATMAX-INRNG
/ Timeout

Transmission_5

One TX-DATA-DMP
/ DMP-DATA or NO-DATA

Transmission_4

TX-DATA-SCI-End
/ SCI-DATA or NO-DATA

not stop_scientific datum acquisition
OBDH_11

Memory Dump Datum
Transmission_6

PREP-DMP-DTP0-MIN-GREATMAX
/ Timeout

SWPDC_7 OBDH_12
not stop_scientific datum acquisition

Transmission_6

One TX-DATA-DMP
/ DMP-DATA or NO-DATA

OBDH_13

TX-DATA-SCI-End
/ SCI-DATA or NO-DATA

Figure 4.19 - SOLIMVA’s unfolded scenario 73.2: Nominal Operation Mode (Part 2)

132

Table 4.17 - Sample of the set of NL requirements that characterize normal scenario 143.
Caption: Req = Requirement; Id = Identification

Req Id Req Description

... ...

SRS017 Memory Dump data transmission shall start with PREP-DMP-PRG-INRNG-

INRNG. In this case, the SWPDC shall stop scientific data acquisition from

EPP Hxs. After that, the OBDH can send Several TX-DATA-DMP to PDC. The

transmission shall be ended with TX-DATA-SCI-End.

POCP021 The PDC may not receive a command sent in its entirety. After identifying the

beginning of a command frame, the PDC shall wait two times MAX-TRANSM-

DELAY for the rest of the command. If this stipulated time expires, a timeout shall

occur, the PDC shall abort the communication, the command shall be discarded,

an event report shall be generated, and the PDC shall wait for a new OBDH’s

command.

SRS013 The SWPDC shall always maintain temporarily stored the last data response sent

to the OBDH because the OBDH can demand the retransmission of this last data

response.

SRS023 Memory Dump data transmission shall start with PREP-DMP-DTP0-MIN-

INRNG. In this case, the SWPDC shall stop scientific data acquisition from

EPP Hxs. After that, the OBDH can send Several TX-DATA-DMP to PDC. The

transmission shall be ended with TX-DATA-SCI-End.

POCP021 The PDC may not receive a command sent in its entirety. After identifying the

beginning of a command frame, the PDC shall wait two times MAX-TRANSM-

DELAY for the rest of the command. If this stipulated time expires, a timeout shall

occur, the PDC shall abort the communication, the command shall be discarded,

an event report shall be generated, and the PDC shall wait for a new OBDH’s

command.

SRS013 The SWPDC shall always maintain temporarily stored the last data response sent

to the OBDH because the OBDH can demand the retransmission of this last data

response.

... ...

133

Nominal Operation Mode (continuation 2)

SWPDC_4

PREP-DMP-DTP0-MIN-INRNG
/ CMD-REC

stop_scientific datum acquisition

TX-DATA-SCI-End
/ SCI-DATA or NO-DATA

Memory Dump Datum
Transmission_2

OBDH_9 Transmission_2

Several TX-DATA-DMP
/ Several DMP-DATA or NO-DATA

PDC_15 PDC_16
wait_two time MAX-TRANSM-DELAY

Memory Dump Datum
Transmission_3

demand_retransmission

PDC_14

not receive_command

PDC_17

abort_communication

SWPDC_5

wait_new OBDH

OBDH_10
always maintain temporarily store_last datum response

Figure 4.20 - SOLIMVA’s normal scenario 143: a piece of the COMPOSITE state Nominal
Operation Mode

134

Comparisons with other expert’s scenarios are similar to those presented in this

section. Therefore, it was demonstrated how the SOLIMVA methodology adequately

covered the test objectives associated with the expert’s scenarios. As previously men-

tioned, the SOLIMVA methodology proposed a better strategy with test objectives

clearly separated according to the directives of the combinatorial designs.

4.1.2 Characteristics of Executable Test Cases

The second goal of the comparison was also achieved. For the sake of demonstra-

tion, comparative analysis will be made involving two expert’s scenarios. Consider

expert’s scenario 5 whose main Statechart model is shown in Figure 4.21. As already

discussed, this scenario is covered by SOLIMVA’s normal scenario 71 whose models

were previously shown (Figures 4.2, 4.3, 4.5, 4.4). Choosing the all-transitions test

criterion, there is only one Executable Test Case that composes the Executable Test

Suite based on the expert’s model:

{switchPDCOn/start60s, POSTOk/null, endtime/null, VER OP -

MODE/INFO OP MODE, ACT HW-EPP1On/CMD REC, ACT HW-

EPP2On/CMD REC, start30s/null, endtime/null, CH OP MODE-

Nominal/CMD REC, VER OP MODE/INFO OP MODE, start10s/null,

endtime/null, TX DATA-Sci/SCI DATA, start10s/null, endtime/null,

TX DATA-Sci/SCI DATA, start10s/null, endtime/null, TX DATA-

Sci/SCI DATA, start10s/null, endtime/null, TX DATA-Sci/SCI DATA,

start10s/null, endtime/null, TX DATA-Sci/SCI DATA, start10s/null,

endtime/null, TX DATA-Sci/SCI DATA, start10s/null, endtime/null,

TX DATA-Sci/SCI DATA, start10s/null, endtime/null, TX DATA-

Sci/SCI DATA, start10s/null, endtime/null, TX DATA-Sci/SCI DATA,

start10s/null, endtime/null, TX DATA-Sci/SCI DATA, ACT HW-

EPP2Off/CMD REC, ACT HW-EPP1Off/CMD REC, switchPDCOf-

f/null}.

In order to compare the Executable Test Cases of both approaches, consider Ta-

ble 4.18. Columns Expert and SOLIMVA show the test steps of the Executable

Test Cases based on the expert’s and SOLIMVA’s strategies, respectively. Notice

that all test steps of the single Executable Test Case of the expert’s approach

were satisfactorily covered by the three Executable Test Cases by employing the

SOLIMVA methodology. Moreover, SOLIMVA provides several benefits over the

expert’s approach. First, the test steps {start30s/null, endtime/null} of the expert’s

135

approach were covered by a more detailed set of test steps. These test steps were

based on NL requirement PECP001 (Table 4.7):

PECP001 - Each EPP Hx can only respond to requests (commands) from

PDC after each EPP Hx has been energized for at least 30 seconds. If

PDC sends commands within less than 30 seconds to a certain EPP Hx,

the PDC shall not receive any response from this EPP Hx.

PDCOff IniM_POST
switchPDCOn
/ start60s SafeM_

Entered

tsinc

SafeM_EPPsOff

VER_OP_MODE
/ INFO_OP_MODE

SafeM_EPP1On
EPP2Off

ACT_HW-EPP1On
/ CMD_REC

SafeM_EPP1On
EPP2On

ACT_HW-EPP2On
/ CMD_REC

Idle CountingTime
tr [In (SafeM_WaitEPPsReady)]

endtime[In (SafeM_Entered) ∨ In (SafeM_WaitEPPsReady) ∨ In(NomM_WaitSci1)
∨ In(NomM_WaitSci2) ∨ In(NomM_WaitSci3) ∨ In(NomM_WaitSci4)
∨ In(NomM_WaitSci5) ∨ In(NomM_WaitSci6)∨ In(NomM_WaitSci7)
∨ In(NomM_WaitSci8) ∨ In(NomM_WaitSci9) ∨ In(NomM_WaitSci10)]
/ tsinc

tsinc

tr [In (IniM_POST)]

SafeM_WaitToNominal

CH_OP_MODE-Nominal
/ CMD_REC

switchPDCOff

Timing

Initiation

Expert's Scenario 5

SafeM_
WaitEPPsReady

start30s

ACT_HW-EPP1Off
/ CMD_REC

POSTOk
SafeM_
VerOp

NomM_SciData

SafeM_
EPPsOffSD

SafeM_EPP1On
EPP2OffSD

ACT_HW-EPP2Off
[In (NomM_EndSciData)]
/ CMD_REC

tr [In(NomM_WaitSci1) ∨ In(NomM_WaitSci2) ∨ In(NomM_WaitSci3)
∨ In(NomM_WaitSci4) ∨ In(NomM_WaitSci5) ∨ In(NomM_WaitSci6)
∨ In(NomM_WaitSci7) ∨ In(NomM_WaitSci8) ∨ In(NomM_WaitSci9)
∨ In(NomM_WaitSci10)]

∞

Figure 4.21 - Expert’s scenario 5: main Statechart model

SOURCE: Adapted from SANTIAGO JÚNIOR et al. (2010)

136

Table 4.18 - A comparison between expert’s and SOLIMVA’s Executable Test Suites:
expert’s scenario 5 and SOLIMVA’s normal scenario 71. Caption: #ETC-
E/-S = number of Executable Test Case within the Executable Test Suite
obtained from expert’s (E) and SOLIMVA’s (S) approaches

#ETC-E Expert #ETC-S SOLIMVA

1 switchPDCOn/start60s 1, 2 Action1, Action3

1 POSTOk/null 2 Action2

1 endtime/null 2 Action3

1 VER OP MODE/INFO OP -

MODE

2 VER-OP-MODE/INFO-OP-

MODE

1 ACT HW-EPP1On/CMD REC 2 ACT-HW-EPPH1ON/CMD-

REC

1 ACT HW-EPP2On/CMD REC 2 ACT-HW-EPPH2ON/CMD-

REC

1 start30s/null, endtime/null 2 PREP-TST/CMD-REC,

Action4, TX-DATA-TST/NO-

DATA, TX-DATA-TST/NO-

DATA, TX-DATA-SCI/NO-

DATA, Action5

1 CH OP MODE-Nominal/CMD -

REC

2 CH-OP-MODE-

NOMINAL/CMD-REC

1 start10s/null, endtime/null, TX -

DATA-Sci/SCI DATA

2 Action4, TX-DATA-SCI/SCI-

DATA

1 ACT HW-EPP2Off/CMD REC 2 ACT-HW-EPPH2OFF/CMD-

REC

1 ACT HW-EPP1Off/CMD REC 2 ACT-HW-EPPH1OFF/CMD-

REC

1 switchPDCOff/null 3 Action7

- - 1 Action6

- - 2 VER-OP-MODE/Timeout

- - 2 Action5, PREP-HK/CMD-

REC, TX-DATA-HK/HK-

DATA, TX-DATA-SCI/NO-

DATA

- - 2 CH-OP-MODE-

SAFETY/CMD-REC, VER-

OP-MODE/INFO-OP-MODE

In case of the expert’s approach, all that should be done is to start a timer and

wait 30 seconds. After this time interval, the PDC can begin to request data (Scien-

tific, Test, Diagnosis) from EPP Hxs under OBDH request. However, the Abstract

Test Cases derived by applying the SOLIMVA methodology contain the following

abstract input/output pairs from PECP001: {only respond request/null + have be

137

energize least 30 seconds/null + send command/null + not receive response/null}
(Table 4.9). When looking at these input/output pairs, the test designer realized

that there are more relevant behaviors to be considered in the Executable Test

Case, say the fact that if an EPP Hx receives commands within less than 30

seconds, the PDC shall not receive any response from this EPP Hx. Although this

requirement is more related to EPP Hxs, it is important to verify whether PDC

(SWPDC) acts adequately in such a situation. Then, instead of only waiting 30

seconds to start interacting with EPP Hxs, the test designer translated the abstract

input/output pairs into a set of executable test input data/expected result aiming

at the transmission of Test (TST) Data (one of the three types of data generated

by EPP Hxs) within less than 30 seconds after each EPP Hx has been powered on

(ACT-HW-EPPH1ON, ACT-HW-EPPH2ON). As shown in Table 4.18, when the

OBDH asks PDC to transmit Test Data (TX-DATA-TST) the expected result is

NO DATA (NO-DATA) because EPP Hxs are not yet available for communication.

This improvement in the Executable Test Case due to the SOLIMVA methodology

shows that looking at the Abstract Test Cases is more interesting rather than

looking at a set of NL requirements in deliverables because the Abstract Test Cases

provide a concise notation and emphasize the most relevant NL sentences, and some

command/responses of Communication Protocol Specifications (in this particular

case study) so that the test designer can derive more suitable Executable Test Cases.

Although all test steps of the expert’s Executable Test Case were addressed by

SOLIMVA’s Executable Test Suite, the opposite is not true. One very important test

step missed in the expert’s Executable Test Case is Action6 which deals with severe

problems during the PDC initiation (initialization) process. This test step relates to

the translation of the self transition be#then accomplish post#present irrecoverable

problem#/null in the Initiation Operation Mode state (Figures 4.2, 4.7, 4.9). As

presented in Figure 4.21, no self transition exists in the state that represents the

Initiation Operation Mode (IniM POST) in the expert’s model. Then, one must not

expect that any expert’s Executable Test Case covers this behavior. The automated

reading of NL requirements and the translation from the Abstract Test Suite into

the Executable Test Suite make the SOLIMVA methodology an interesting solution

to minimize problems related to the incomplete creation of models for Model-Based

Testing.

Another situation that is not present in the expert’s Executable Test Suite is verify-

ing the behavior of PDC if a command is sent by the OBDH within less than 1 minute

since PDC has been energized (VER-OP-MODE/Timeout). This behavior relates to

138

NL requirement POCP001 (Table 4.7). Furthermore, it is interesting to check some

Housekeeping Data ({Action5, PREP-HK/CMD-REC, TX-DATA-HK/HK-DATA,

TX-DATA-SCI/NO-DATA}) before entering into the Nominal Operation Mode in

order to request Scientific Data. Finally, the expert’s model did not consider the fact

that in order to switch PDC off, it is recommended (there are requirements related

to this recommendation) to put PDC in the Safety Operation Mode ({CH-OP-

MODE-SAFETY/CMD-REC, VER-OP-MODE/INFO-OP-MODE}). Hence, states

SafeM EPP1OnEPP2OffSD and SafeM EPPsOffSD in Figure 4.21 are incorrectly

named as being in the Safety Operation Mode (SafeM). Although this last issue

might not be a huge problem for Statechart model-based test case generation (more

explanation about this in Section 4.3), again this shows that the SOLIMVA method-

ology presents advantages over the expert’s (manual) approach.

The comparative analysis is similar if the Executable Test Suites derived from

expert’s scenario 5 and SOLIMVA’s normal scenario 71 and generated according

to the all-simple-paths test criterion are considered. Likewise the all-transitions

test criterion in the expert’s approach, the Executable Test Suite due to the all-

simple-paths test criterion is composed of only one Executable Test Case and this

test case has exactly the same test steps shown earlier in this section. As shown

in Table 4.11, the all-simple-paths Executable Test Suite generated according to

the models for SOLIMVA’s normal scenario 71 is composed of two Executable Test

Cases. Executable Test Cases 1 and 2 of the all-simple-paths suite have the same test

steps of Executable Test Cases 2 and 3 of the all-transitions Executable Test Suite,

respectively. But, the first Executable Test Case ({Action1, Action6}) of the all-

transitions suite does not belong to the all-simple-paths suite. This happens due to

the models generated by the SOLIMVA tool and the all-simple-paths test criterion.

This implies that the all-simple-paths Executable Test Suite does not predict that

the IUT can be stimulated in situations where severe problems occur during the

PDC initiation process since Action6 is not present. In this case, the Executable

Test Suite due to the SOLIMVA methodology is not better than the one from the

expert’s strategy. However, all the other advantages of SOLIMVA over the expert’s

approach previously presented for the all-transitions criterion are also advantages

for the all-simple-paths test criterion.

Consider expert’s scenario 4 whose main Statechart model was presented in

Figure 4.6. This scenario is addressed by SOLIMVA’s normal scenario 50

(Figures 4.7, 4.8) and 17 (Figures 4.9, 4.10, 4.11). Table 4.19 shows the Executable

Test Suites due to both approaches and considering the all-transitions test criterion.

139

Table 4.19 - Executable Test Suites due to expert’s scenario 4, SOLIMVA’s normal
scenarios 50 and 17, and the all-transitions test criterion

Approach Executable Test Cases

Expert - 4 {switchPDCOn/start60s, POSTOk/null, endtime/null, VER OP MOD-

E/INFO OP MODE, CH SW PAR-Hk 60s/CMD REC, start600s/null,

endtime/null, PREP HK/CMD REC, TX DATA-Hk/HK DATA-

RSC0, va HK DATA/er POST-PowerOn, ACT HW-Reset/CMD REC,

start60s/null, POSTOk/null, endtime/null, VER OP MODE/INFO OP -

MODE, start60s/null, endtime/null, PREP HK/CMD REC, TX DATA-

Hk/HK DATA-RSC0, va HK DATA/er POST-Reset, switchPDCOff/null}

SOLIMVA - 50 {Action1, Action6}, {Action1, Action2, VER-OP-MODE/Timeout, Action3,

VER-OP-MODE/INFO-OP-MODE, Action5, PREP-HK/CMD-REC, TX-

DATA-HK/HK-DATA, TX-DATA-SCI/NO-DATA, Action10}, {Action7}

SOLIMVA - 17 {Action1, Action6}, {Action1, Action2, VER-OP-MODE/Timeout, Action3,

VER-OP-MODE/INFO-OP-MODE, ACT-HW-RESET/CMD-REC},
{Action1, Action2, VER-OP-MODE/Timeout, Action3, VER-OP-

MODE/INFO-OP-MODE, Action5, PREP-HK/CMD-REC, TX-DATA-

HK/HK-DATA, TX-DATA-SCI/NO-DATA, Action9}, {Action7}

The amount of Executable Test Cases that compose the Executable Test Suites are

1, 3, 4 for expert’s scenario 4, SOLIMVA’s normal scenarios 50 and 17, respectively.

Table 4.20 shows a comparison among the Executable Test Suites shown in Ta-

ble 4.19. Observe that column #ETC-S shows the number of Executable Test Case

within the Executable Test Suite derived by applying the SOLIMVA methodology

but also, in parentheses, the normal scenario to which the Executable Test Case is

related to. For instance, the test step switchPDCOn/start60s of the first (unique)

test case due to the expert’s approach is covered by Action1, Action3 which are

test steps of Executable Test Cases 1 and 2 of both normal scenarios (50 and

17). Moreover, checking event reports within Housekeeping Data in order to realize

whether SWPDC correctly updated information related to the reset (Action9) and

power on (Action10) processes are important actions to be accomplished during

execution of the test cases.

One test step of the expert’s Executable Test Case was not addressed by SOLIMVA’s

Executable Test Cases: the test step whose test input data is CHANGE SOFTWARE

PARAMETERS - SET THE TIME TO GENERATE HOUSEKEEPING DATA

TO THE MINIMUM VALUE (CH SW PAR-Hk 60s). The minimum value of this

parameter is 60 seconds while the default value is 600 seconds. The expert changed

140

this parameter to the minimum value because he/she needs to verify, in this single

scenario, the contents of Housekeeping Data twice: first time to see if SWPDC

properly carried out activities related to the power on (va HK DATA/er POST-

PowerOn) process and a second time to see the behavior of SWPDC related to the

reset (va HK DATA/er POST-Reset) process. This change aims to decrease the

waiting time for a Housekeeping Data frame is fully ready to be transmitted to the

OBDH in the second time, i.e. rather than waiting 600 seconds the OBDH needs to

wait only 60 seconds. Housekeeping Data is then supposed to be transmitted twice

in this scenario (TX DATA-Hk/HK DATA-RSC0 in Table 4.19).

However, the SOLIMVA methodology suggests dividing expert’s scenario 4 into two

other scenarios, normal scenarios 50 and 17. Due to this separation, in each normal

scenario Housekeeping Data is supposed to be transmitted to the OBDH only once

(TX-DATA-HK/HK-DATA in Table 4.19). Then, the test designer intentionally did

not bother to change this parameter to the minimum value (60 seconds) due to the

fact that only one transmission of Housekeeping Data was predicted per scenario.

However, if he/she wanted to have the same effect as expert’s scenario 4, it was

necessary just to have added the following NL requirement before resetting PDC in

SOLIMVA’s normal scenario 17:

POCP003 - The OBDH shall send CH-SW-PHK-MIN to PDC.

Table 4.20 - A comparison between expert’s and SOLIMVA’s Executable Test Suites:

expert’s scenario 4 and SOLIMVA’s normal scenarios 50 and 17. Caption:

#ETC-E/-S = number of Executable Test Case within the Executable Test

Suite obtained from expert’s (E) and SOLIMVA’s (S) approaches

#ETC-E Expert #ETC-S SOLIMVA

1 switchPDCOn/start60s 1 (50,17),

2 (50,17)

Action1, Action3

1 POSTOk/null 2 (50,17) Action2

1 endtime/null 2 (50,17) Action3

1 VER OP MODE/INFO OP -

MODE

2 (50,17) VER-OP-MODE/INFO-OP-

MODE

1 CH SW PAR-Hk 60s/CMD REC - -

(Continues)

141

Table 4.20 - Conclusion

#ETC-E Expert #ETC-S SOLIMVA

1 start600s/null, endtime/null,

PREP HK/CMD REC,

TX DATA-Hk/HK DATA-RSC0

2 (50) Action5, PREP-HK/CMD-

REC, TX-DATA-HK/HK-

DATA, TX-DATA-SCI/NO-

DATA

1 va HK DATA/er POST-PowerOn 2 (50) Action10

1 ACT HW-Reset/CMD REC 2 (17) ACT-HW-RESET/CMD-REC

1 start60s/null 3 (17) Action3

1 POSTOk/null 3 (17) Action2

1 endtime/null 3 (17) Action3

1 VER OP MODE/INFO OP -

MODE

3 (17) VER-OP-MODE/INFO-OP-

MODE

1 start60s/null, endtime/null,

PREP HK/CMD REC,

TX DATA-Hk/HK DATA-RSC0

3 (17) Action5, PREP-HK/CMD-

REC, TX-DATA-HK/HK-

DATA, TX-DATA-SCI/NO-

DATA

1 va HK DATA/er POST-Reset 3 (17) Action9

1 switchPDCOff/null 3 (50),

4 (17)

Action7

- - 1 (50,17) Action6

- - 2 (50,17),

3 (17)

VER-OP-MODE/Timeout

All remaining test steps of the expert’s Executable Test Case were addressed by

SOLIMVA’s Executable Test Suites. As in the previous analysis, some important

test steps presented in SOLIMVA’s Executable Test Cases are not in the expert’s

Executable Test Case: Action6 which deals with severe problems during the PDC

initiation (initialization) process; VER-OP-MODE/Timeout to verify the behavior

of PDC if a command is sent by the OBDH within less than 1 minute since PDC

has been energized.

For the all-simple-paths test criterion, the comparative analysis is like the previous

case involving expert’s scenario 5 and SOLIMVA’s normal scenario 71. In the expert’s

strategy, the Executable Test Suite due to the all-simple-paths test criterion is

composed of only one Executable Test Case and this test case has exactly the same

test steps of the test case due to the all-transitions test criterion. The all-simple-

142

paths Executable Test Suite generated according to the models for SOLIMVA’s

normal scenario 50 is composed of two Executable Test Cases: Executable Test

Cases 1 and 2 of the all-simple-paths suite have the same test steps of Executable

Test Cases 2 and 3 of the all-transitions Executable Test Suite, respectively. For

SOLIMVA’s normal scenario 17, the all-simple-paths suite consists of two Executable

Test Cases too, 1 and 2, which are identical to Executable Test Cases 3 and 4 of the

all-transitions suite, respectively. Again, the first Executable Test Case ({Action1,

Action6}) of the all-transitions suite is not in the all-simple-paths Executable Test

Suite and therefore the Executable Test Suite due to the SOLIMVA methodology is

not better than the expert’s approach, with regard to investigating the behavior of

SWPDC upon the occurrence of severe problems during the initialization of PDC.

The other advantage of SOLIMVA over the expert’s approach is also valid for the

all-simple-paths test criterion.

The conclusion is that the Executable Test Cases derived in accordance with the

SOLIMVA methodology not only possessed similar characteristics with the expert’s

Executable Test Cases but also predicted behaviors that did not exist in the expert’s

strategy. Then, the models automatically created by the SOLIMVA methodology and

by the SOLIMVA tool are suitable for generating test cases. The suitability of the

models are relevant because the test criteria used for test case generation based on

FSMs and/or Statecharts are basically state-transition traversal rules. If the model

is poorly developed, the Executable Test Cases might dictate a sequence of stimuli

that are incoherent and in many situations impossible to be executed taking into

account the real system.

4.2 A second case study: Satellite Control System

Threats to external validity (BASILI et al., 1996) exist with respect to version 1.0

of the SOLIMVA methodology. Threats to external validity imply limitations to

generalizing the results. The methodology has been applied to only one case study

(SWPDC) which is not enough and by a single professional. However, recall that the

characteristics of the SWPDC software product are representative of an important

class of complex software products in space application domain, more precisely

in the Space Segment (ECSS, 2008). In addition, for a different class of software

products in the space domain, it is feasible to apply the SOLIMVA methodology

and the amount of rework to do that tends to be lower than in other application

domains due to general similarities of the software products. For instance, the

concept of operation mode is common to both the Space Segment and Ground

143

Segment systems/subsystems. As shown in the SWPDC case study, PDC’s operation

modes were elements of the Name (N) set, they were also in the ordered pairs of the

Hierarchy (STM .Y) function, and they were selected to be levels for the combinatorial

designs algorithm.

This section shows guidelines to apply the SOLIMVA methodology to a second case

study of the space domain related to the Ground Segment. The Satellite Control

System (SATCS) is intended to be a product line to provide a common Ground

Segment software infrastructure for controlling satellites. This infrastructure is com-

posed of several software elements such as components, class libraries, frameworks,

and databases which will be customized to comply with the operation requirements

for each space mission of INPE. Furthermore, the design of SATCS proposes a

logical architecture template to be used as a standard in the design of its subsystems

(CARDOSO et al., 2008). For activities related to the control of a particular satellite,

a customized version of the SATCS software product will be installed in the Centro

de Controle de Satélites (CCS - Satellite Control Center) of INPE and, if necessary,

it will also be installed in ground stations as a spare unit. Figure 4.22 shows the

functional architecture of SATCS.

Note that in the CCS Node, SATCS can be run on multiple computers connected

via a Local Area Network. Moreover, the number of computers where the SATCS

application will be run is not fixed depending on the satellite operational phase.

One of the constituents of the logical architecture of the SATCS software product

is the Commanding (CMD) framework (subsystem). CMD implements functions

for preparing, validating, sending, verifying, and logging of command messages.

These functions apply to any entity that can be commanded such as a satellite

(telecommand) or a ground station (remote command) for which the command

messages can be defined.

The transmission of commands can be performed in three operation modes: Manual,

Automatic, and Supervised. In the Manual Operation Mode, the transmission of

commands is entirely controlled by the satellite’s operator. In the Automatic Oper-

ation Mode, all transmissions of commands are executed automatically based on the

Flight Operation Plan (FOP). The Supervised Operation Mode also accomplishes

the transmission of commands based on the FOP, as with the Automatic Operation

Mode. The difference is that the satellite’s operator must confirm each operation

before it can be executed. If an error occurs in Supervised or Automatic Operation

Modes, CMD should go back to the Manual Operation Mode and the satellite’s

144

Mission
Center

Satellite Subsystem
Team

SATCS
Application

SATCS
Application

CCS Node

SATCS
Application

SATCS
Application

Ground Station Node

Intranet

Private Link

Data Distribution
Node

Router

Router

Satellite
Dish

Figure 4.22 - Functional architecture of SATCS

SOURCE: Adapted from INPE.DSS (2010)

operator must decide whether or not to return to the Supervised or Automatic

Operation Modes. Changes in operation modes can be: from Manual to Automatic

and vice versa, and from Manual to Supervised and vice versa. But it is not possible

to change from the Automatic Operation Mode to the Supervised Operation Mode

and the opposite, from Supervised to Automatic.

Suppose that a test designer wants to apply SOLIMVA considering as a system

145

the CMD subsystem. Hence, the Name (N) set can be composed of: N = {CMD,

Manual Operation Mode, Automatic Operation Mode, Supervised Operation Mode,

...}. One possible selection of factors and levels for the CMD/SATCS case study is

shown in Table 4.21. The meanings of factors and levels are as follows:

a) OpMode factor: This factors represents the CMD’s operation modes: Man-

ual (Man), Automatic (Auto), and Supervised (Super);

b) ConfOpt factor: Regardless of the operation mode, CMD has two config-

urations (Conf): Satellite (Sat) and Test (Test). In the Satellite configu-

ration, commands are really transmitted to the satellite while in the Test

configuration commands are not sent to the satellite, i.e. they are only

sent to the ground station. The purpose of this configuration is to support

communication tests with the ground station. In addition, there are also

configuration options (Opt): no checking associated with a command is

performed, i.e. Normal situation (Norm); a command must be verified

before its transmission (PreVer). If the real-time values of the related

telemetries are not the expected ones, the command is not transmitted;

verification whether a command was correctly transmitted (Tx) by means

of a telemetry value received during real-time operation; and verification

whether an immediate command was executed (Ex) by means of values of

the related telemetries received during real-time operation. Hence, ConfOpt

is a factor that combines configuration with configuration option. Thus,

the SatNorm level means that the command is indeed transmitted to the

satellite and no checking is performed. Similar interpretations apply to the

other levels;

c) Editing factor: This factor is related to several tasks that can be performed

with the queue of commands: insert a single command (InsCmd), insert

a group of commands (InsGrp), insert a sequence of commands (InsSeq),

insert commands from the FOP (InsFOP), update the date/time to send a

command (UpTCmd), update the date/time to send a set of commands by

giving a uniform increment in their times (UpTInc), and delete commands

(DelCmd).

In Table 4.21, note the Inv level to address Robustness testing. When running the

combinatorial designs algorithm with strengtℎ = 2, 48 factor combinations were

produced and thus 48 normal scenarios were derived. Table 4.22 shows 10 of these

146

Table 4.21 - Factors and levels for the CMD/SATCS case study

Factors Levels

OpMode Man Auto Super Inv

ConfOpt SatNorm SatPreVer SatTx SatEx TestNorm Inv

Editing InsCmd InsGrp InsSeq InsFOP UpTCmd UpTInc DelCmd Inv

48 SOLIMVA’s normal scenarios. In order to generate the Executable Test Cases,

the activities of the SOLIMVA methodology as discussed in the previous chapter

must be followed. That is, generating test cases for this second case study by using

the SOLIMVA methodology would simply be a repetitive process.

4.3 Final remarks about this chapter

This chapter presented the application of version 1.0 of the SOLIMVA methodology

and supporting tools (SOLIMVA tool and GTSC environment) to the SWPDC

(SANTIAGO et al., 2007) case study, a software product related to the Space Segment

(ECSS, 2008). The SOLIMVA methodology was compared with a previous manual

approach developed by an expert in the SWPDC software product. The SOLIMVA

methodology demonstrated several advantages over the approach of the specialist.

Also, guidelines have been shown to apply SOLIMVA to a second case study related

to the Ground Segment (CARDOSO et al., 2008). The application of SOLIMVA

therefore to this second case study is also feasible.

This section presents additional and important remarks about version 1.0 of the

SOLIMVA methodology and the SOLIMVA tool. Each activity of the SOLIMVA

methodology requires some sort of manual intervention but most of these activities

have also a degree of automation. However, as mentioned in Chapter 1, Software

Testing automation is in fact a semi-automated process which still relies heavily on

manual tasks performed by professionals. With respect to the activities of version

1.0 of the SOLIMVA methodology (Figure 3.3), the degree of manual intervention

and automation is as follows:

a) Define and Input Dictionary, Update Dictionary. As previously mentioned,

the test designer needs only to define and input, via Graphical User In-

terface of the SOLIMVA tool, the Name (N) set, the Reactiveness (R)

function, and the Hierarchy (STM .Y) function. The other sets of the Dic-

tionary (Control, Self Transition) and any other auxiliary sets, for instance

the sets that help in the generation of the BSAO tuples (Section 3.3.1), do

147

Table 4.22 - CMD/SATCS case study: normal scenarios due to the factors and levels of
Table 4.21. Caption: #Scn = Scenario number

Factor Combination #Scn Scenario

{Man, SatNorm, InsCmd} 1 Insert a single command to be transmitted in the Manual

Operation Mode, with configuration = Satellite and

configuration option = Normal

{Man, SatPreVer, InsGrp} 2 Insert a group of commands to be transmitted in the

Manual Operation Mode, with configuration = Satellite

and configuration option = Pre-Verification

{Man, TestNorm,
UpTCmd}

5 Update the date/time to send a command. The com-

mand will be transmitted in the Manual Operation

Mode, with configuration = Test and configuration

option = Normal

{Auto, SatTx, -} 9 Insert commands from the FOP to be transmitted in

the Automatic Operation Mode, with configuration =

Satellite and configuration option = Transmission

{Auto, TestNorm, -} 11 Insert commands from the FOP to be transmitted in the

Automatic Operation Mode, with configuration = Test

and configuration option = Normal

{Super, SatPreVer, -} 14 Insert commands from the FOP to be transmitted in

the Supervised Operation Mode, with configuration =

Satellite and configuration option = Pre-Verification

{Super, TestNorm, -} 17 Insert commands from the FOP to be transmitted in the

Supervised Operation Mode, with configuration = Test

and configuration option = Normal

{Inv, SatNorm, -} 19 Change the operation mode from Supervised to Auto-

matic or from Automatic to Supervised, with configu-

ration = Satellite and configuration option = Normal

(Robustness testing)

{Inv, SatTx, -} 21 Change the operation mode from Manual to Supervised

or from Manual to Automatic when the time for trans-

mitting the first command of the queue of commands has

expired, with configuration = Satellite and configuration

option = Transmission (Robustness testing)

{-, SatEx, Inv} 47 Update the date/time to send a command with configu-

ration = Satellite and configuration option = Execution,

but without firstly selecting the command with these

characteristics in the queue of commands (Robustness

testing)

not need to be changed and do not require manual intervention. Besides,

the test designer does such a definition entirely in NL and thus no formalism

is imposed to him/her;

148

b) Define Scenarios. The test designer must select factors and levels and

interpret the factor combinations to derive scenarios. However, the factor

combinations are automatically generated by an open source tool, TConfig

(UNIVERSITY OF OTTAWA, 2008);

c) Select and Input NL Requirements. This is done manually by the test

designer. But, handling of NL requirements is automatically accomplished

by the SOLIMVA tool;

d) Generate Model, Clear Requirements and Model. These two activities are

completely and automatically performed by the SOLIMVA tool. The test

designer needs only to start these activities via Graphical User Interface

of the SOLIMVA tool;

e) Generate Abstract Test Cases. This is automatically accomplished by the

GTSC environment;

f) Generate Executable Test Cases. This is done by the test designer.

The SOLIMVA methodology requires basically three types of efforts from the test

designer. First, it is the creation of a Dictionary which defines the application do-

main. However, from the point of view of test case generation addressing system and

acceptance testing, in several situations the name of states in the Statechart models

are not very relevant. What matters is the input/output pairs within the transitions

in the Statechart model that will be translated into test input data/expected result in

the Executable Test Suite. Hence, the cardinality of the Name set does not need to be

high. Moreover, as SOLIMVA uses the “divide and conquer” approach, i.e. splitting

the interactions with the IUT into smaller scenarios, it is not mandatory to define

an extensive Hierarchy function (ordered pairs) in order to predict different types

of COMPOSITE states. Hence, cardinalities of the domain (Y.IP) and codomain

(Y.OP) of STM .Y do not need to be high either. As an example, in order to address

all 20 scenarios proposed by the expert for the SWPDC case study, N has cardinality

equal to 9 while the cardinality of Y.IP and Y.OP is equal to 8 for each set. Therefore,

very small cardinalities.

The Reactiveness function might or might not be huge. It depends on the way

the deliverables are written. For instance, the SWPDC’s Software Requirements

Specification has several NL requirements where commands defined in the PDC-

OBDH Communication Protocol Specification are explicitly mentioned. Commands

149

such as PREPARE HOUSEKEEPING DATA which were abbreviated to PREP-

HK, and TRANSMIT HOUSEKEEPING DATA abbreviated to TX-DATA-HK. In

such situations, the test designer may prefer to add the ordered pair (command,

response) in the Reactiveness function in order to make it easier the translation

from the Abstract Test Suite into the Executable Test Suite. The explanation for

this fact is that, since the ordered pair is in the Reactiveness function, it is very

probable that they appear in the Statechart (abstract) model and thus they will be

part of the Abstract Test Cases. Since commands are executable then the translation

from the abstract perspective into the executable one is simple. In the SWPDC case

study, the cardinality of both the domain, R.IE, and codomain, R.OE, of R is equal

to 94.

However, if a requirements specification for space or other application domain has

little explicit mention to low level commands or name of methods/routines then

the Reactiveness function may not have many ordered pairs. In this case, the input

events of the transitions of the Statechart model are pieces of NL sentences such

as only respond request, have be energize least 1 minute, and the test designer shall

translate them into executable test input data/expected result. Finally, the Dictionary

is important because the lack of domain knowledge limits the applicability of systems

based on unrestricted NL requirements (AMBRIOLA; GERVASI, 2006).

The second type of effort is the need to translate Abstract Test Suites into Executable

Test Suites. However, it is more interesting for the test designer to analyze a set of

abstract input/output pairs within the Abstract Test Cases and identify test input

data/expected results of the Executable Test Cases rather than trying to find out

what are the elements of a Executable Test Case directly from NL requirements

documents. Besides, most of the translations accomplished for one scenario are

reusable for other scenarios.

One may assert that the need to translate Abstract Test Suites into Executable

Test Suites is a disadvantage of the SOLIMVA methodology. The point is that if

the model is precise enough, some Model-Based Testing tools, including the GTSC

tool, enable the generation of directly Executable Test Cases. Then, there would

be no need to make such a translation. However, if NL requirements deliverables

like the ones in the SWPDC case study are considered then it is important to

realize that if a model has enough information so that a Model-Based Testing tool

can generate Executable Test Cases it is because the test designer has translated

from the NL requirements into the notation accepted by the tool before using the

150

tool itself. Based on published literature and also taking into account commercial

software products, it is very unlikely that there is a Model-Based Testing tool that

can accept NL requirements documents and can, without any assistance from the

user, generate directly Executable Test Suites. In other words, the translation from

the abstract level into the executable level is manually done by the test designer

before or after using the Model-Based Testing tool. In this PhD thesis, the decision

was to make such a translation after using GTSC because the intention was to use

NL requirements as closely as possible in their original form due to the fact that

this is a more realistic approach.

The last type of effort is the definition of scenarios by using combinatorial designs.

This is without any doubt the most demanding effort. The test designer must

not only define factors and their respective levels but also to interpret the factor

combinations to create the scenarios. He/she must decide whether a level must or

must not be discarded in a certain factor combination and provide a set of scenarios

that can cover most of the relevant interactions with the IUT. However, this is one of

the main roles of a test designer within a Verification and Validation team and such a

professional must have a significant knowledge of the application domain to perform

scenarios identification. But, knowledge of the application domain is mandatory: it is

very hard to envisage a test designer producing coherent/effective test cases with no

or little expertise in the application domain. In short, the SOLIMVA methodology

essentially requires knowledge of the application domain from the test designer.

Another important observation refers to the strategy of separation of test objectives

proposed by the SOLIMVA methodology as shown in Section 4.1. The question

is whether the fact of disjoining behaviors, related to test objectives, as proposed

by the methodology will not result in sets of Executable Test Cases that do not

take into account each individual behavior. This particularly relates to Robustness

testing. The approach of combinatorial designs coupled with the expertise of the test

designer in the application domain can avoid this kind of situation. For example,

recall that the three test objectives of the expert’s scenario 12, two of them related to

Robustness testing, were covered by SOLIMVA as follows: two of the test objectives

were addressed by unfolded scenario 73.2, and one by normal scenario 143. As

a matter of fact, for instance, there are 35 factor combinations derived by the

combinatorial designs algorithm with Inv as the level for the command (Cmd)

factor. Therefore, there are 35 normal scenarios to address problems like inconsistent

values within the command frames, incomplete reception of commands or any other

robustness feature the test designer might wish. These 35 scenarios spread over

151

different PDC’s operation modes (OpMode), Services, ways of initializing PDC

(StartMode).

Although the SOLIMVA methodology proposes differently, the test designer may not

want to separate test objectives and/or to neglect the interpretation of a level within

a factor combination. Considering the SWPDC case study, the factor combination

170 is: {Inv, Inv, Hk, Reset}. One interpretation would generate normal scenario

170 as follows: “verification of behavior of SWPDC when receiving commands with

inconsistent values or receiving commands incompletely, changing PDC’s operation

mode to an unspecified operation mode, generation, formatting, and transmission

of Housekeeping Data, and verification of the reset process of PDC.” The many

unrelated test objectives denote a bad approach. But, the decision is up to the test

designer.

Regarding scalability, the number of normal and unfolded scenarios derived by the

test designer can be huge if too many factors and/or levels were selected. It is the

responsibility of the test designer to choose an appropriate number of factors and

levels so that not many scenarios are created. For instance, the level HwSwHnd

is related to handling of hardware and software parameters. This level could be

broken into two, one for hardware parameters and other for software parameters.

Joining these two features into one level decreases the number of scenarios. Although

the number of scenarios and consequently Statechart models and Executable Test

Suites can be huge, it is nowadays very common the use of frameworks and/or tools

to automate the execution of test cases (SANTIAGO et al., 2008a).

It is not in the scope of this work to conduct a study on cost and effectiveness of test

suites generated by Model-Based Testing approaches. Particularly, the effectiveness

of model-based test suites generated by Statecharts and FSMs is heavily dependent

on two aspects. First, the model must be suitable enough in order to derive the

generation of coherent Executable Test Suites. In the SWPDC case study, the

models created by the SOLIMVA tool were even superior in some respects than

the models manually developed by an expert. The second point is the choice of

the test criteria. This is an open issue in the academic community. Comparisons

of fault detection effectiveness of some FSM (SIDHU; LEUNG, 1989; SOUZA, 2010)

and Statechart (ANTONIOL et al., 2002; BRIAND et al., 2004) test criteria have been

published but it seems that there is no definite answer with respect to this issue.

The SOLIMVA methodology does not address this second point.

Note that in Section 4.1.2, the term “characteristics” of Executable Test Suites

152

has been carefully chosen over efficiency since the latter has its own meaning in

the context of Software Testing, that is, the ability of a test suite in finding de-

fects in source code. However, it is possible to infer some observations on the

test criteria for Statecharts mentioned in this work. Due to the models generated

by the SOLIMVA tool and the definition of the all-simple-paths test criterion,

this criterion demonstrated to be not as good as the all-transitions test criterion.

One crucial situation was not in the all-simple-paths Executable Test Suite, i.e.

occurence of severe problems during initialization of PDC. Assuming that there may

be redundancies in some equipments of subsystems in a satellite, if an equipment

exhibits a serious problem that would endanger its functioning it can be replaced

with any copy of itself on board of the satellite or such equipment can be operated in

a degraded mode. But in no hypothesis this problem in the equipment can propagate

and cause significant problems in other subsystems so that the mission can be

compromised. So do not test the behavior of the PDC/SWPDC in situations of

serious problems during the startup of PDC, where in this case the PDC must

continue in the Initiation Operation Mode, is a serious flaw.

In addition, in SOLIMVA’s normal scenario 17 to address the reset process, the

all-simple-paths test suite is not suitable at all to meet the test objective. Two

Executable Test Cases compose the Executable Test Suite but within them there

is no behavior (command) to reset PDC itself. So it is not possible to perceive the

behavior of SWPDC during a reset process because PDC is not led to a reset. This

situation is even worse and alert to the fact that it is necessary to evaluate not only

the cost and efficiency of sets of test cases generated according to test criteria but

even the achievement of test objectives in applying the test cases in real and complex

projects. Of course, one can not conclude that the all-simple-paths test criterion is

worse than the all-transitions criterion but these observations give rise to further

analysis. In fact, theoretically, all-transitions and all-simple-paths are incomparable

(SOUZA, 2000).

It is interesting to notice that different test criteria may suggest different inter-

pretations when running the set of test cases. For instance, consider SOLIMVA’s

normal scenario 71 and the Executable Test Suites shown in Table 4.11. The all-

paths-k-C0-configuration suite is composed of a single Executable Test Case. This

test case is a kind of merge of test cases 1 and 2 of the all-transitions Executable

Test Suite. When running these Executable Test Suites, the tester can interpret in

a different way Action6. For the all-transitions Executable Test Suite and according

to test case 1, he/she will switch PDC on (Action1) and a severe and permanent

153

problem during initialization of PDC will be simulated (Action6) so that PDC is

expected to remain in the Initiation Operation Mode. Then, PDC is turned off and on

again and the second test case considers the normal behavior of processing where no

problem during initialization of PDC occurred. For the all-paths-k-C0-configuration

Executable Test Suite, PDC is switched on (Action1) only once and a severe but

transient problem during initialization of PDC will be simulated (Action6). This

means that the problem occurred but was transient. PDC has remained in the

Initiation Operation Mode but since the problem no longer occurs, then the normal

flow of processing could be performed (Action2, VER-OP-MODE/Timeout, ...).

A question that might be raised is why in both the expert’s and SOLIMVA’s models

the general behavior is: switch the computer (PDC) on, do something, switch the

computer off. This is unfeasible in practice because in many Executable Test Cases

of a Executable Test Suite it is necessary to turn the computer on and off and, if all

the Executable Test Suites derived for all scenarios are considered, this will almost

certainly make unfeasible the execution of test cases in a real and complex project.

The explanation for this fact is to make each scenario self-contained and thus, the

Executable Test Suites are also self-contained. In other words, any scenario can be

selected as being the first to have its test cases executed since all models assume

that the computer will be turned on. Thus, the Verification and Validation team

has the flexibility to begin running test cases from any scenario: not necessarily the

Executable Test Suite derived for scenario number 1 must be the first to be executed.

Suppose that for a very trivial application only 9 normal scenarios were derived

(neither simple nor unfolded scenarios were created). If the execution order of

scenarios (Executable Test Suites) is 5, 6, 3, 9, 1, 2, 4, 7 and 8, then the initial

test steps (which involve turning the system on, perform initialization processing)

of test cases of the test suite of normal scenario 5 which are also common to normal

scenario 6 are considered as already carried out (pre-conditions) when running the

test suite of normal scenario 6. Therefore it is not necessary to switch the system

off, turn it back on again, run the initial test steps so that the Executable Test Suite

of normal scenario 6 can be executed: the process continues from the steps that are

not common to the initial test steps of test cases of the test suite of normal scenario

5. The same analysis applies to scenarios 6 → 3, 3 → 9 and so on. Naturally, some

test suites of certain scenarios require that the computer is turned on/off more than

once given the characteristics of the test suites themselves (see explanation above of

the all-transitions Executable Test Suite of SWPDC’s normal scenario 71). But this

need not be repeated for all scenarios.

154

The algorithm for automated detection of BSAO tuples (Figure 3.10) is not general

enough to work out with all NL sentences. However, it is important to stress

that there are guidelines to develop NL requirements in space application product

development. For instance, ECSS has a standard to write Technical Requirements

Specifications (ECSS, 2009). Among other features, this standard provides “recom-

mendations for the wording of requirements” stating how to write requirements, how

modal verbs should be used, and terms to be avoided within the NL requirements.

Directives like this and experience in space application projects led the design and

implementation of the algorithm for generating BSAO tuples.

However, even if the algorithm for generating BSAO tuples fails, the automated re-

finement based on domain information (Section 3.3.2.1) helps to eliminate incorrect

tuples. Consider again NL requirement POCP021:

POCP021 - The PDC may not receive a command sent in its entirety.

After identifying the beginning of a command frame, the PDC shall wait

two times MAX-TRANSM-DELAY for the rest of the command. If this

stipulated time expires, a timeout shall occur, the PDC shall abort the

communication, the command shall be discarded, an event report shall be

generated, and the PDC shall wait for a new OBDH’s command.

In normal scenario 143, one of the tuples created due to this requirement is:

∙ Behavior: ;

∙ Subject: command;

∙ Action: 111-be 112-discard;

∙ Object: event report.

A problem exists because “event report” is not Object but Subject of the phrase “an

event report shall be generated” (recall the observations about Subject, Action, and

Object of BSAO tuples made in Sections 3.3.1 and 3.3.1.1). However, the refinement

based on domain information gets rid of the influence of this tuple so that no

state/transition due to such a tuple appears in the final Statechart models. For

the SWPDC case study, the cases in which there were incorrect BSAO tuples were

satisfactorily treated by the aforementioned refinement.

The SOLIMVA methodology and the SOLIMVA tool are limited by possible defects

within the incorporated (version 3.0 of the Stanford POS Tagger (TOUTANOVA et

155

al., 2003), version 11.01 of the Java WordNet::Similarity (UNIVERSITY OF SUSSEX,

2010)) and external (version 2.1 of TConfig (UNIVERSITY OF OTTAWA, 2008)) tool-

s/packages that were used. For instance, as any other POS tagger tool, the Stanford

POS Tagger is not 100% free of failures. Its output is the basis for identifying the

BSAO tuples. Consider the following requirement:

The SWPDC shall format scientific data from each EPP Hx (x = 1 or 2).

Version 3.0 of the Stanford POS Tagger recognizes “format” as a common noun,

singular or mass (POS tag “NN”) instead of a verb, base form (POS tag “VB”).

This is a problem that the SOLIMVA methodology/SOLIMVA tool must not try to

solve. It is not in the scope of this work to develop a new POS tagging algorithm

and tool to identify lexical categories of words: there are many of them available,

and the idea was to use a publicly available POS tagger (Stanford) to help with the

primary goal which is to generate the Statechart models from NL aiming at system

and acceptance model-based test case generation.

Similarly, undiscovered defects in version 11.01 of the Java WordNet::Similarity

package will impact on the WSD refinement (Section 3.3.2.2) as it may generate

incorrect values of weights on the edges of the sense dependency graph. Problems

in version 2.1 of the TConfig tool will also affect the identification of scenarios

(Section 3.2).

The following advantages should be emphasized if a test designer decides to apply

version 1.0 of the SOLIMVA methodology and the SOLIMVA tool rather than

relying on a completely manual ad hoc strategy like the expert’s approach discussed

in Section 4.1:

a) Compared to other formal methods, FSMs and Statecharts are relatively

easy to understand. The SOLIMVA methodology aims to avoid that a test

designer, who is not even experienced with these simple modeling tech-

niques, needs to develop the models from scratch. It should be noted that

professionals from aerospace application domain and graduate students

find it difficult in translating NL software requirements specifications into

Statecharts or FSMs in order to address system and acceptance testing.

The SOLIMVA methodology requires the definition of the application do-

main, by means of a Dictionary, and scenarios from the user. However, the

methodology and the SOLIMVA tool provide a“first”model so that the test

156

designer can start working. If the test designer does not feel comfortable

with the model, he/she can try to improve it (manual refinement);

b) As pointed out previously, the translation from the abstract level into the

executable level is somehow manually accomplished by the test designer

before or after using a Model-Based Testing tool. The SOLIMVA method-

ology proposes to make such a translation after using the tool (GTSC) in

order to use NL requirements as closely as possible in their original form

due to the fact that this is a more realistic approach. In addition, verifying

a set of input/output pairs within the Abstract Test Cases rather than

directly looking at NL requirements documents is a more feasible way to

perform the translation from the Abstract Test Suite into the Executable

Test Suite. Moreover, the Abstract Test Cases provide a concise notation

and emphasize the most relevant NL sentences, allowing the test designer

to generate more suitable Executable Test Suites;

c) The SOLIMVA methodology and the SOLIMVA tool allow to automat-

ically start reading NL requirements. This fact added to the translation

from the Abstract Test Suite into the Executable Test Suite make the

methodology an interesting solution to minimize problems related to the

incomplete/inconsistent creation of models for Model-Based Testing;

d) SOLIMVA suggests a precise, systematic and mathematical-based solution

to identify scenarios for system and acceptance test case generation by

means of combinatorial designs. In the end, the methodology attempts to

answer a very important question in a Verification and Validation process:

until when should the system be tested? Since the SOLIMVA methodology

allows to identify the total and exact number of scenarios (simple, normal,

unfolded), and consequently Executable Test Suites for system and accep-

tance testing, then this would be the upper limit;

e) The separation of test objectives proposed by SOLIMVA results in a set of

scenarios with goals more closely related and therefore a better strategy is

achieved.

On the other hand, if version 1.0 of the SOLIMVA methodology and the SOLIMVA

tool are compared to some approaches presented in Chapter 2, the following advan-

tages can be listed:

157

a) Ease of use. As mentioned in Section 3.2, the SOLIMVA methodology does

not require any knowledge in formal methods and their respective notations

to define the application domain from the user, like CIRCE (AMBRIOLA;

GERVASI, 2006) and CARL (GERVASI; ZOWGHI, 2005) do. Moreover, the

definition of the application domain as proposed in SOLIMVA seems to be

far more simpler than the one presented in Text Analyzer (SNEED, 2007);

b) Writing of NL requirements. The SOLIMVA tool provides a certain free-

dom to the user to write NL requirements, but its approach is not unre-

stricted NL, like NL-OOPS (MICH, 1996), because it is necessary to define

the application domain by means of a Dictionary. Thus, the SOLIMVA

tool tends not to have the problems of limited applicability that are as-

sociated with unrestricted NL approaches. In addition, the design of the

SOLIMVA tool is such that it is not necessary that the requirements are

written strictly complying with predefined standards of writing as with

very restricted controlled NL such as ACE (FUCHS et al., 1999; FUCHS et

al., 2000);

c) Identification of scenarios. The SOLIMVA methodology proposes a formal

manner, by means of combinatorial designs, to identify scenarios for sys-

tem and acceptance test case generation. Other methodologies, like CoFI

(AMBRÓSIO et al., 2007), do not adopt a mathematical-based solution in

order to achieve such a purpose, and this fact might limit the strength of

such proposals;

d) Semantics. From the perspective of model generation based on NL sen-

tences, in some tools the user is required to manually provide explicit

definitions for concepts. For instance, in CIRCE, the user provides such

explicit definitions by means of definitions, an element of the requirements

document model of the tool. In this case, it is possible to assert that the

semantics of the model is somehow manually provided by the user. A

similar observation can be made with respect to Text Analyzer when the

user must identify keywords in the text. In the SOLIMVA tool, a proposal

to automate the identification of the semantics related to the generated

model was implemented by adapting a WSD algorithm in order to identify

self transitions in the resulting Statechart model;

e) Automation. Although many publications presented in Chapter 2 support

the automated translation from NL requirements into another notation,

158

others do not have such a characteristic, for instance Kim and Sheldon

(2004) and Liang and Palmer (1994) proposals. This is another important

feature of the SOLIMVA tool;

f) Starting from NL requirements. Some publications, like the one of Fraser et

al. (1991), aim to bridge the gap between informal and formal requirements

specification languages. However, they do not begin to approach directly

from NL requirements as the SOLIMVA methodology does;

g) Mathematical formalism. In order to generate the test cases, the SOLIMVA

methodology and the SOLIMVA tool translate the NL requirements into

a formal method, the Statecharts language. The MOR Editor (LU et al.,

2008) lacks mathematical formalism.

As mentioned in Section 3.1, four deliverables were consulted to apply version 1.0

of the SOLIMVA methodology to the SWPDC case study: Requirements Base-

line, Software Requirements Specification, PDC-OBDH Communication Protocol

Specification, and PDC-EPPs Communication Protocol Specification. However, all

documents developed within the scope of the QSEE project, including these four

deliverables, were made in the Portuguese language. Therefore, these four selected

documents were translated into the English language due to wide acceptance of En-

glish worldwide and thus being one of the languages most commonly used to prepare

documents in software projects. In addition, INPE has international cooperation

for the development of satellites and this results in that basically all documents

associated with the development of software projects for satellites are also prepared

in English. The mapping between the documents’ titles in English and Portuguese

is shown in Table 4.23.

Table 4.23 - Mapping between the documents’ titles in English and Portuguese

Title in English Title in Portuguese

Requirements Baseline Requisitos de Base (INPE.CEA, 2006d)

Software Requirements
Specification

Especificação Técnica
do Software (INPE.CEA, 2006a)

PDC-OBDH Communication
Protocol Specification

Protocolo de Comunicação
PDC-OBDH (INPE.CEA, 2006c)

PDC-EPPs Communication
Protocol Specification

Protocolo de Comunicação
PDC-EPPs (INPE.CEA, 2006b)

159

A total of 97 requirements, collected from the four documents, were used in order

to generate the Statechart models and the Executable Test Cases to cover the 20

scenarios of the expert. Of course, it is possible to find more than 97 requirements

in these four documents. However, only those requirements necessary to make it

possible to cover the expert’s scenarios were considered. Requirements were collected

as follows: 12 from the Requirements Baseline, 64 from the Software Requirements

Specification, 20 from the PDC-OBDH Communication Protocol Specification, and

1 from the PDC-EPPs Communication Protocol Specification.

Logically, some of these requirements have been somehow created in NL. But there

are also UML diagrams such as sequence diagrams and activity diagrams in these

deliverables. Thus, some of these 97 requirements were extracted from these dia-

grams and converted into NL requirements. However, “new” NL requirements had

to be created by the test designer in order to generate coherent test cases. These

requirements were not present in any of the documents, including the Software

Requirements Specification, consulted to apply SOLIMVA. So, for instance, when

it states that 64 requirements were “collected” from the Software Requirements

Specification this means that some of these NL requirements really existed and

were used. However, some other requirements did not exist and they were therefore

created. If the Software Requirements Specification was more complete, it would

not be necessary to create such NL requirements as they would already be in the

document. Appendix A presents all 97 NL requirements as well as some additional

considerations are made on this matter.

The lack of information (requirements) in software specifications is a well known

problem: incompleteness. Next chapter proposes an approach to address this severe

defect present in software specifications.

160

5 AN APPROACH TO DETECT INCOMPLETENESS IN SOFTWARE

SPECIFICATIONS

As stated at the end of the previous chapter, the test designer created some NL

requirements in order to generate test cases considering the SWPDC case study.

Consider the following two requirements of the SWPDC’s Software Requirements

Specification:

∙ Housekeeping Data should be generated automatically and continuously

by SWPDC every 600 seconds (default value).

∙ The time for generating Housekeeping Data may be changed by means of

command sent by the OBDH. The minimum value of time for generating

Housekeeping Data is 60 seconds while the maximum value is 1,000 seconds,

with resolution in second.

When reading these requirements, the test designer might wonder when, in fact,

Housekeeping Data can be received for the first time by the OBDH. So, questions

might be:

Is that right after one minute from when the PDC has been energized which

is the time that must elapse for the OBDH can effectively communicate with

the PDC (NL requirement POCP001)? Therefore, would it be possible to

receive Housekeeping Data right after this time by means of commands?

The answer to both questions is no. Only after at least 600 seconds have been elapsed,

which is the default value for the period (time interval) in which Housekeeping

Data are generated, the PDC can send Housekeeping Data to the OBDH. This

explanation is not clearly described in the deliverables consulted to apply version

1.0 of the SOLIMVA methodology. Thus, the test designer literally created a new

NL requirement to deal with this situation:

SRS004 - The OBDH should wait 600 seconds before asking for a House-

keeping Data frame.

In fact, the ideal behavior for the OBDH to get Housekeeping Data is: wait the cur-

rent time (60, 80, 200, 600 seconds, or whatever other admissible value) to generate

161

Housekeeping Data and after that, send the commands related to transmission of

such data (PREPARE HOUSEKEEPING DATA, one or more TRANSMIT HOUSE-

KEEPING DATA, etc.). This is not clear in the documentation too. Of course,

after PDC is operating for a long period, Housekeeping Data will be continuously

generated and eventually it may not be necessary to wait any time for receiving

Housekeeping Data. However, it is always advisable that the OBDH wait, at least,

the current time to generate Housekeeping Data, not only in the first but also in

other attempts, before requesting the data themselves to provide time for data being

generated.

When discussing expert’s scenario 12 (Section 4.1.1), it was stated that the command

P DMP-DataP0-7FFFH-BFFFH (PREPARE DUMP DATA FROM PAGE 0 OF

DATA MEMORY, WITH INITIAL ADDRESS = 7FFFH AND FINAL ADDRESS

= BFFFH) must not be processed by SWPDC because the initial memory address is

lower than the minimum memory address allowed for all pages of the Data Memory.

However, this was a customer’s (INPE) requirement, but that was not described in

any documents. There is no clear indication about this requirement and therefore

one can not know what is the behavior that SWPDC must have (if the command

must or must not be processed) just by looking at the documentation generated

for the SWPDC software product. This information is missing in both documents

generated early within the software development lifecycle, such as the SWPDC’s

Software Requirements Specification, and documents generated in later stages of

the lifecycle, such as the SWPDC’s User Manual.

These are just some examples of a very serious problem that is present in software

specifications1: incompleteness. As explained, since software specifications are

created early within the software development lifecycle, their defects affect the

next software artifacts, including source code, to be developed. For instance, test

designers take into account software requirements specifications to develop system

and acceptance test cases. Developers consider software requirements specifications

and related artifacts to create software design documents and, ultimately, develop the

source code. Thus, the existence of defects such as incompleteness almost certainly

will generate source code that does not meet the undisclosed goals of the customer,

and may result in the generation of incoherent system and acceptance test cases.

1In this chapter, the term “software specifications” is used to encompass not only software
requirements specifications but also other relevant artifacts, such as communication protocol
specifications, consulted for the analysis of incompleteness. In addition, there is often an initial
behavioral modeling of the software in software requirements specifications.

162

This chapter presents an extension of version 1.0 of the SOLIMVA methodology in

order to address the secondary goal of this PhD thesis: detecting incompleteness

in software specifications. Model Checking (BAIER; KATOEN, 2008) combined with

k-permutations of n values of variables and specification patterns (DWYER et al.,

1999) were used to tackle this problem. Thus, this extension generated version 2.0 of

the SOLIMVA methodology. The new and most important activity of version 2.0 of

SOLIMVA was applied to the SWPDC case study. In this chapter when used without

any explicit indication of the version number, the terms “SOLIMVA methodology”

and “SOLIMVA” refer to version 2.0 of the SOLIMVA methodology.

5.1 Description of version 2.0 of the SOLIMVA methodology

Version 2.0 of the SOLIMVA methodology with the new activities created to address

the problem of incompleteness in software specifications is shown in Figure 5.1.

The new activities are Analyze Incompleteness and Improve Specifications. It is

important to note that the same activities, with the same features, present in version

1.0 of the SOLIMVA methodology (Figure 3.3) are also present in version 2.0 of the

methodology. Moreover, with regard to the activities that already exist in version 1.0,

the workflow is essentially the same in version 2.0 of the SOLIMVA methodology. The

only difference is that the execution of these new activities (Analyze Incompleteness

and Improve Specifications) should proceed in parallel with the Define and Input

Dictionary activity where the Dictionary starts to be defined.

The most important activity to deal with the problem of incompleteness is Analyze

Incompleteness which will be described in Section 5.1.1. It is by means of this

activity that incompleteness defects are truly detected. Once incompleteness defects

are detected, the quality of the assessed software specifications can be improved

by completing the documents when necessary. This is the Improve Specifications

activity shown in Figure 5.1. Therefore the Improve Specifications activity does not

relate effectively to the second objective of this PhD thesis, which is only the detec-

tion of incompleteness defects in software specifications. However, in order to make

the methodology most appropriate to certain processes for improving the quality

of documents, such activity was incorporated into version 2.0 of the SOLIMVA

methodology (more on this topic in Section 5.3).

Before proceeding with the description of the activity related to detection of in-

completeness it is important to define what is meant by an incomplete software

specification. The definition below is in accordance with the IEEE Guide to Software

Requirements Specifications (IEEE, 1984). However, only the characteristics defined

163

Define and Input Dictionary

Define Scenarios

Select and Input NL Requirements

Generate Model

Clear Requirements
and Model [manual refinement]

Generate Abstract Test Cases

Generate Executable Test Cases

[more scenarios]

 [else]

Update Dictionary
[dictionary update]

 [else]

Analyze Incompleteness

Improve Specifications

 [incomp detected]

[else]

 [end of scenarios]

Figure 5.1 - Version 2.0 of the SOLIMVA methodology. Caption: incomp = incompleteness
defect

by this IEEE standard that are most related to this work are mentioned in this

definition.

164

Definition 5.1. A software specification is complete if it possesses the following

qualities:

∙ Inclusion of all significant requirements, whether relating to functionality,

performance, design constraints, attributes or external interfaces;

∙ Definition of the responses of the software to all realizable classes of input

data in all realizable classes of situations. Note that it is important to

specify the responses to valid and invalid input values.

If a software specification does not satisfy any aspect of the these two qualities then

this specification is considered incomplete. By the definition given above, it is evident

that it is extremely difficult to have a complete software specification especially if

complex software products such as software embedded in satellite computers are

taken into account. The combination of requirements, valid and invalid input data,

conditions results in a high number of possibilities to be considered so it is very

difficult to predict all of these situations.

There are some definitions of defects’ severity in the literature. However, in the

context of this PhD thesis, a new proposal for defects’ severity will be defined and

used as follows.

Definition 5.2. Severity of an incompleteness defect found in software specifications

is:

∙ Low: development team and/or Verification and Validation team can easily

deal with the lack of information;

∙ Medium: development team and/or Verification and Validation team pro-

duce solutions that are not the best but that may be acceptable in the

“desirable” features of the software product;

∙ High: development team and/or Verification and Validation team produce

solutions that are far outside of the “desirable” characteristics of the soft-

ware product, and this may result in incorrect source code and/or test

cases generated inconsistently.

Observe that this definition of severity is in fact an estimate of what may occur in

the event that the incompleteness defect is not detected and eliminated from the

165

software specification. For example, in the case of High severity, most likely source

code will be developed with some defects because such an implementation will not

be, at the end, in accordance with what the customer actually wants (because it

was not clear in the documentation). Moreover, it is likely that test cases are poorly

designed with, for example, incorrect expected results.

5.1.1 The Analyze Incompleteness activity

The proposal to identify incompleteness in software specifications is summarized in

Figure 5.2. The process presented in Figure 5.2 is very much like the traditional

process to apply Model Checking (BAIER; KATOEN, 2008). However, there are im-

portant changes of philosophy which differ the way Model Checking is applied within

the Analyze Incompleteness activity. As stated in Section 2.1.2.1, in the traditional

approach, properties are generated based on requirements documents and they are

formalized using some sort of temporal logic. In the context of software development,

software specifications and their requirements are the basis to generate properties.

On the other hand, in the traditional process, the finite-state model (transition

system) describes the behavior of the system. However, the goal of this approach is

to detect defects in software specifications and then there is no sense to use software

specifications and their requirements as being the truth to be followed. Indeed, they

are the objects of analysis to see whether there are problems of incompleteness.

Therefore, software specifications and their requirements are used not to develop

properties but rather to develop the model of the system. This explain why the

analyst takes a look at software specifications (Study Software Specifications sub-

activity) to develop the model of the system (Model the System sub-activity) in

Figure 5.2.

However, it is necessary to generate the properties preferably in a way independent

of the requirements in the software specifications. This is achieved by combining

specification patterns (DWYER et al., 1999) with 2-permutations of n values of char-

acteristics (Use Specification Patterns + 2-Permutations of n Analysis sub-activity).

Similarly, specification patterns are not used in the traditional manner where, based

on a requirement, a pattern and the scope within the pattern that mostly character-

ize such requirement are identified and properties are then generated in LTL, CTL.

A different interpretation of pattern/pattern scope is provided aiming at detecting

incompleteness defects (this will be discussed later). Of course, properties are also

formalized (Formalize Properties sub-activity) in this proposal.

The model of the system is simulated prior to Model Checking (Simulate the Model

166

Use Specification Patterns
+ 2-Permutations of n Analysis

Simulate the Model

Apply Model Checking

Generate/Update Report
of Detected Incompleteness

Defects

 [else]

[model's defects]

Study Software
Specifications

Model the System

Formalize Properties

Figure 5.2 - Sub-activities of the Analyze Incompleteness activity

sub-activity) in order to get rid of modeling defects. Eliminating simple modeling

defects before any form of thorough checking occurs may reduce the time-consuming

verification effort (BAIER; KATOEN, 2008). When there is no more remaining defect

in the model and all properties are created, Model Checking is applied (Apply

Model Checking sub-activity). Detected incompleteness defects are then reported

in a certain type of document (Generate/Update Report of Detected Incompleteness

Defects sub-activity).

The process shown in Figure 5.2 is a simplified view of the Analyze Incompleteness

activity. Moreover, this process assumes that the formalization of properties and the

generation/simulation of the model are done in parallel which implies that there

must be more than one professional in the organization that has expertise in Model

Checking, which is not always the reality. Figure 5.3 shows, in form of an activity

167

diagram, a more detailed and sequential view of the Analyze Incompleteness activity

while Figure 5.4 shows this same perspective in form of a procedure. In the sequence,

the explanations about the Analyze Incompleteness activity are given taking into

account the form of procedure that describes the activity (Figure 5.4).

Generate/Update Report
of Detected Incompleteness

Defects

Identify Primary Characteristic (prim)
and Values (valprim)

Generate and Simulate Model

Identify Secondary Characteristics (sec)
and Values (valsec)

Select valprim (Model Generation)

Apply Model Checking
and Analyze Detection of Incompleteness

[more propertyAbs]

Formalize Property
(AbsPat/GlobSc)

 [end of propertyAbs]

Select sec for
2-Permutations of n Analysis

Define Clusters of Selected valsec

Apply 2-Permutations of n

Formalize Property
(SoftRespPat/GlobSc - PrecPat/GlobSc)

[more propertiesSoftResp/Prec]

Apply Model Checking
and Analyze Detection of Incompleteness

 [end of propertiesSoftResp/Prec]

[more clusters]

[more valprim]

 [end of valprim]

[more sec][end of sec]

 [end of clusters]

Figure 5.3 - More detailed and sequential view of the Analyze Incompleteness activity:
activity diagram

First, it must be chosen a primary characteristic (prim) and its values (valprimi; line

1). A primary characteristic is an attribute obtained from software specifications that

identifies the main states of the software product. For instance, in space application

software, the operation mode is a good candidate to be a primary characteristic.

The analyst must then select some valprimi in order to generate finite-state models

(line 2). For each selected valprimi, secondary characteristics (secj), which are other

attributes of software specifications, and their values (valsecjk) must be obtained

(line 4). Then, a finite-state model for each selected valprimi must be generated and

168

input : software specifications
output: report of detected incompleteness defects

1 Identify a primary characteristic (prim) and its values (valprimi, 1 ≤ i ≤ l);
2 Select some valprimi for model generation;
3 foreach selected valprimi do
4 Identify secondary characteristics (secj , 1 ≤ j ≤ m) and their values (valsecjk, 1 ≤ k ≤ n);
5 Generate and simulate a model for valprimi;
6 foreach valsecjk do
7 Formalize property according to AbsPat/GlobSc: propertyAbsjk;
8 end
9 forall the propertyAbsjk do

10 Apply Model Checking;
11 if (propertyAbsjk = false ∧ expected = false) ∨ (propertyAbsjk = true ∧ expected = true) then
12 No incompleteness defect detected;
13 else
14 if (propertyAbsjk = false ∧ expected = true) ∨ (propertyAbsjk = true ∧ expected = false)

then
15 Incompleteness defect detected;
16 end

17 end

18 end
19 Select some secj for 2-permutations of n analysis;
20 foreach selected secj do
21 Define clusters (clusterp, 1 ≤ p ≤ q) of selected valsecjk;
22 foreach clusterp do
23 Apply 2-permutations of n;
24 foreach permutation t not addressed by previous clusters do
25 Formalize property according to SoftRespPat/GlobSc: propertySoftRespt;
26 Formalize property according to PrecPat/GlobSc: propertyPrect;

27 end
28 forall the propertySoftRespt/propertyPrect pair do
29 Apply Model Checking;
30 if (propertySoftRespt = false) ∨ (propertySoftRespt = true ∧ propertyPrect = true)

then
31 Incompleteness defect detected;
32 else
33 if (propertySoftRespt = true ∧ propertyPrect = false) then
34 No incompleteness defect detected;
35 end

36 end

37 end

38 end

39 end
40 Generate/Update report of detected incompleteness defects;

41 end

Figure 5.4 - More detailed and sequential view of the Analyze Incompleteness activity:
procedure

169

also simulated to determine and correct possible defects which arise by translating

the software specifications into the model (line 5). Note that a model generated

for a certain valprimi may not contain all the other valprimi. This depends on

the valprimi that was selected. For example, if l = 5, i.e. prim has 5 values, and

if valprim3 was selected so that a model will be generated, then it is possible that

only valprim3, valprim1, and valprim4 can be considered in the model for valprim3.

Similarly, the secondary characteristics (secj) and their values (valsecjk) may vary

depending on valprimi.

Specification patterns come into picture to formalize properties in CTL for

each valsecjk and according to the Absence Pattern and Globally Scope

(propertyAbsjk; line 7). Each property is generated as follows:

∀□¬(prim = valprimi ∧ secj = valsecjk).

Thus, if the model does not satisfy this property (false) this means that valsecjk is

present in the software specifications regarding valprimi; otherwise, if the property

is satisfied (true) then it is not present. However, this interpretation of being or not

present in the software specifications will be better explained in Section 5.2. But, the

analyst must predict in advance whether the property must or must not be satisfied

(expected; lines 11 and 14). In other words, if valsecjk must appear in the software

specifications then the expected result is “the property must not be satisfied”

(false). On the other hand, if valsecjk must not appear, the expected result is

“the property must be satisfied” (true). The following definition determines when

an incompleteness defect is detected due to the Absence Pattern and Globally Scope.

Definition 5.3. Detection of incompleteness defect due to the Absence Pattern

and Globally Scope: an incompleteness defect is detected if there is a discrepancy

between the satisfaction or non-satisfaction of the property by the model and the

expected result. That is, if the property is satisfied and it was not expected to be

satisfied or vice versa.

After that, some secj must be selected for 2-permutations of n analysis (line 19)

and, for each chosen secj, clusters (clusterp) of selected valsecjk are determined

(line 21). Application of 2-permutations of n is then accomplished for each clusterp

(line 23), and each permutation t = {t1, t2} will derive two types of CTL properties.

The first property is based on the Soft Response Pattern and Globally Scope

(propertySoftRespt; line 25). This new pattern/pattern scope is a variation of the

170

Response Pattern and Globally Scope (Section 2.1.2.1) proposed by Dwyer et al.

(1999). The definition of the Soft Response Pattern and Globally Scope with the

corresponding CTL formula is as follows.

Definition 5.4. Soft Response Pattern and Globally Scope: a state/event p

should be followed in some path by a state/event q within the entire program/model

execution. CTL formula: ∀□(p→ ∃♢q).

Soft Response Pattern and Globally Scope is not as demanding in terms of satisfac-

tion compared to the original Response Pattern and Globally Scope. In other words,

it is easier for a model to satisfy Soft Response Pattern than the original Response

Pattern. This is because the Soft Response Pattern and Globally Scope requires that

if p occurs then there is some path (∃ path quantifier) in which q occurs following

p. So it does not require that to happen for all the paths (∀ path quantifier) as

the original Response Pattern demands, and thus Soft Response Pattern is not as

demanding as the Response Pattern. Each property is then generated as follows:

∀□((prim = valprimi ∧ secj = valsect1)→

∃♢(prim = valprimi ∧ secj = valsect2)).

Observe that valsect1 means that this is the valsecjk which is the first element of

permutation t as well as valsect2 is the valsecjk which is the second element of t. The

second property is according to the Precedence Pattern and Globally Scope

(propertyPrect; line 26). The property is:

¬∃[¬(prim = valprimi ∧ secj = valsect1) ∪ ((prim = valprimi ∧

secj = valsect2) ∧ ¬(prim = valprimi ∧ secj = valsect1))].

After all properties are formalized, Model Checking is applied (line 29). If

propertySoftRespt is not satisfied then an incompleteness defected is detected.

If valsect1 is present in a model that represents the software specifications then

the Soft Response Pattern and Globally Scope requires that there is some path

in which valsect2 is also present in such a model following valsect1. The values of

secondary characteristics (valsecjk) that form a certain clusterp must have some

kind of behavioral relationship and, therefore, it is expected that if valsect1 of a

permutation t is present in a model that represents the software specifications then

in some path valsect2 should also be present. Therefore, the interpretation is that

if this property does not hold then the software specifications were not complete

171

enough to predict such behavior, i.e. valsect2 occurs as a “response” to valsect1.

Hence an incompleteness defect is detected.

Being propertySoftRespt satisfied then the result depends on propertyPrect. If

propertyPrect is also satisfied then an incompleteness defect is also detected. The

reasoning behind this is that if propertyPrect is satisfied it is because, in a model

that represents the software specifications, valsect1 always occurs before (precede)

valsect2 and this shows that the software specifications were not complete enough

to predict the opposite, namely, valsect2 occurs before valsect1. However, the

non-satisfaction of propertyPrect indicates that no incompleteness defect exists.

The definition below summarizes when an incompleteness defect is detected due to

the combination of these two pattern/pattern scopes.

Definition 5.5. Detection of incompleteness defect due to the Soft Response Pat-

tern and Globally Scope/Precedence Pattern and Globally Scope: an incompleteness

defect is detected if propertySoftRespt is not satisfied or if both propertySoftRespt

and propertyPrect are satisfied.

As shown in Figure 5.4, the main actions of the Analyze Incompleteness activity

(lines 3 to 41) must be accomplished for each generated model (for each selected

valprimi).

5.2 Case study: SWPDC software product

The new and most important activity (Analyze Incompleteness) of version

2.0 of the SOLIMVA methodology was applied to the SWPDC case study

(SANTIAGO et al., 2007). The following deliverables were evaluated to detect

incompleteness: SWPDC’s Software Requirements Specification and PDC-

OBDH Communication Protocol Specification. The primary characteristic

(prim) is the PDC’s operation mode (opmode) which has four possible values:

valprim = {initiation, safety, nominal, diagnosis}.

The analysis was performed considering only the main operation mode of PDC, the

Nominal Operation Mode (valprim3 = nominal). Then, four secondary character-

istics were selected. Thus, sec = {service, cmd, resp, action} where:

∙ service represents services supported by SWPDC (5 values);

∙ cmd are commands defined in the PDC-OBDH Communication Protocol

Specification (46 values; some of these values are related to aspects of

172

robustness of SWPDC);

∙ resp are responses defined in the PDC-OBDH Communication Protocol

Specification (16 values; some of these values are related to aspects of

robustness of SWPDC);

∙ action represents some actions that SWPDC shall perform (3 values).

Table 5.1 shows the characteristics and their values for developing the finite-state

model for valprim3 = nominal. As noted earlier, not all valprimi were considered

to develop the model. Based on the software specifications, the goal was to model

the behavior considering only the Nominal Operation Mode which is an operation

mode that PDC can be long after the Initiation Operation Mode (initiation). Thus,

it is not very relevant to include the Initiation Operation Mode in this model.

Table 5.1 - Characteristics and values for developing the finite-state model for valprim3 =
nominal

Characteristics Values

prim = opmode valprim = {safety, nominal, diagnosis}
sec1 = service valsec1 = {sci, hk, dmp, load, noserv}
sec2 = cmd valsec2 = {chOM, stDA, reDA, txSci, txHk, txDmp, txDg, txTst, re-

tAnsw, prepHk, prepDmp, prepDg, prepTst, ldDat, exPrg, chPHkTm,

chPIniPtr, chPSmpTm, txSciEBuf, txHkEBuf, txDmpEBuf, ldDatIn-

vAddr, ldDatInvCSC, exPrgInvCKS, chPHkTmInvdat, chPSmpTmInvdat,

chPIniPtrInvdat, prepDmpInvMemSelect, prepDmpInvIniAddr, prepDmp-

InvFinAddr, prepDmpInvAddrInterv, txDmpInvtype, txDmpInvlen, txDmp-

Invcks, prepDmpInvtype, prepDmpInvlen, prepDmpInvcks, ldDatInvtype,

ldDatInvlen, ldDatInvcks, chPHkTmInvtplncks, chPIniPtrInvtplncks, ch-

PSmpTmInvtplncks, txSciinc, txHkinc, txDmpinc}
sec3 = resp valsec3 = {cmdRec, noData, sciData, hkData, dmpData, dgData, tstData,

ldStatOk, ldStatErrCKS, ldStatErrCSC, ldStatErrAddr, timeout, sciDatainc,

hkDatainc, dmpDatainc, noresp}
sec4 = action valsec4 = {inidtacq, stopdtacq, noaction}

Note that in the secondary characteristic cmd, the values are abbreviations for

commands defined in the PDC-OBDH Communication Protocol Specification. Thus,

cℎOM is an abbreviation for the command CHANGE OPERATION MODE. But,

there are several values that are related to aspects of robustness of SWPDC. For

instance, in the service for loading new programs on the fly into PDC’s Data Memory,

173

exPrgInvCKS refers to the cases where the checksum recalculated of the new

executable code and the received checksum are unequal and then the new program

should not be executed (Section 4.1.1). On the other hand, cℎPHkTmInvdat is

a command to CHANGE SOFTWARE PARAMETERS - TIME INTERVAL TO

GENERATE HOUSEKEEPING DATA. But, the new time interval is an invalid

value, i.e. it is out of range of possible values for this parameter. There are also

values that cover situations where a command is not entirely received by SWPDC,

e.g. txSciinc which means that, for some reason, not all the bytes that make up the

command TRANSMIT SCIENTIFIC DATA came to PDC.

Likewise, the values of the secondary characteristic resp are abbreviations for the

responses defined in the PDC-OBDH Communication Protocol Specification such as

cmdRec which is the COMMAND CORRECTLY RECEIVED response. Robustness

is also in order: ldStatErrCKS means STATUS OF THE LOADING PROCESS -

CHECKSUM ERROR which is the expected response for exPrgInvCKS. In addi-

tion, some values also address the opposite situation, i.e. PDC received a command

but it was the response that PDC sent that was not completely received by the

OBDH. For example, sciDatainc is the incomplete reception of a SCIENTIFIC

DATA response.

The model generated for valprim3 = nominal has 71 reachable states. Figure 5.5

shows a small part of this model. The NuSMV (FONDAZIONE BRUNO KESSLER

/ CARNEGIE MELLON UNIVERSITY / UNIVERSITY OF GENOVA / UNIVERSITY OF

TRENTO, 2011) was the Model Checker selected for use. In each state, there are the

values that the characteristics (variables) take. For instance, in the upper leftmost

state: opmode = nominal, service = sci, cmd = txSci, resp = sciDatainc, and

action = inidtacq.

The atomic propositions in the transition system (finte-state model) depend on

the properties under consideration (BAIER; KATOEN, 2008). However, a very simple

choice is to let each value of each characteristic acts as an atomic proposition. Hence,

nominal is considered an atomic proposition, it can be true or false, as well as all

other values of the characteristics. In this sense, the set of atomic propositions, AP ,

is:

AP = {safety, nominal, diagnosis, sci, ℎk, . . . , cℎOM, stDA, . . . ,

cmdRec, noData, . . . , inidtacq, stopdtacq, noaction}.

174

<nominal, sci, txSci,
 sciDatainc, inidtacq>

<nominal, sci, retAnsw,
 sciData, inidtacq>

<nominal, dmp, prepDmp,
 cmdRec, stopdtacq>

<nominal, dmp, txDmp,
 dmpDatainc, stopdtacq>

<nominal, dmp, retAnsw,
 dmpData, stopdtacq>

<nominal, dmp, txDmp,
 dmpData, stopdtacq>

<nominal, hk, prepHk,
 cmdRec, stopdtacq>

<nominal, sci, txSci,
 sciData, inidtacq>

<nominal, sci, txSciEBuf,
 noData, inidtacq>

<nominal, dmp, txDmpEbuf,
 noData, stopdtacq>

Figure 5.5 - A small part of the finite-state model for valprim3 = nominal

The labeling function, L, for each state s is obtained directly. L(s) intuitively stands

for exactly those atomic propositions a ∈ AP which are satisfied by state s (BAIER;

KATOEN, 2008). Therefore,

L(< nominal, sci, txSci, sciDatainc, inidtacq >) = {nominal, sci, txSci,

sciDatainc, inidtacq}.

After generating and simulating the model, 70 CTL properties were generated

according to the Absence Pattern and Globally Scope. For instance, in order to verify

whether the command TRANSMIT SCIENTIFIC DATA (txSci) and the response

HOUSEKEEPING DATA (ℎkData) are present in the software specifications, these

CTL properties were created:

∀□¬(opmode = nominal ∧ cmd = txSci),

∀□¬(opmode = nominal ∧ resp = ℎkData).

175

This template of CTL property was repeated for each valsecjk where 1 ≤ j ≤
4. By applying Model Checking, 5 incompleteness defects were detected due to

propertyAbsjk as shown in Table 5.2. The impact’s attributes of the Orthogonal

Defect Classification (ODC) (CHILLAREGE et al., 1992) are Installability and Docu-

mentation for these 5 incompleteness defects, and defects’ severity range from Low

to High.

Table 5.2 - Incompleteness defects due to the Absence Pattern and Globally Scope.
Caption: Exp = Expected; Install = Installability; Docum = Documentation;
R = set of reachable states

Property Exp Impact Severity Unknown Behavior

Absjk = true false Install Medium ldDatInvAddr /∈ R ⇒ situations where the

address within a ldDat command is invalid

Absjk = true false Install High exPrgInvCKS /∈ R ⇒ situations where the

Checksum of the entire new executable code

within an exPrg command sent to SWPDC

does not match the Checksum recalcutated

by SWPDC after loading the entire new ex-

ecutable code

Absjk = true false Docum Low prepDmpInvIniAddr /∈ R⇒ situations where

the initial memory address within a prepDmp

command is invalid

Absjk = true false Docum Low prepDmpInvFinAddr /∈ R ⇒ situations

where the final memory address within a

prepDmp command is invalid

Absjk = false true Docum Low noresp ∈ R ⇒ responses for prepTst and

prepDg commands in the Nominal Operation

Mode are not completely known

Observe that the first four incompleteness defects occurred due to the fact that

it was expected that propertyAbsjk was violated. However, such a property was

satisfied. It is very important to understand the reason why the incompleteness defect

was detected. In these cases, any of the values (ldDatInvAddr, exPrgInvCKS,

...) were not present in any state of the set of reachable states. However, this

does not necessarily mean that there is no information about such values in the

software specifications. For instance, it is clear in the PDC-OBDH Communication

Protocol Specification that if the exPrgInvCKS command is sent to PDC then

the expected response is ldStatErrCKS. But, what it is not clear it is how exactly

SWPDC behaves in case there is a discrepancy between the received and recalculated

checksums when trying to load a new program (executable code) into PDC’s Data

176

Memory.

The last incompleteness defect in Table 5.2 was due to the otherwise, i.e.

propertyAbsjk should be satisfied and it was not the case. Transmission of Test

and Diagnosis Data is not allowed in the Nominal Operation Mode. However, it is

not clear what is the behavior of SWPDC if it receives commands to PREPARE

TEST DATA (prepTst) and PREPARE DIAGNOSIS DATA (prepDg). Thus, NO

CLEAR RESPONSE (noresp) appears in reachable states where prepTst and

prepDg are also satisfied.

In order to generate CTL properties in accordance with the Soft Response and

Precedence Patterns some secondary characteristics must be chosen. The most rele-

vant secondary characteristic was selected: the commands that the OBDH can send

to PDC (sec2 = cmd). Five clusters of selected valsec2k were then defined and 2-

permutations of n was applied considering each of these 5 clusters. Table 5.3 shows

the details of the clustering process.

Table 5.3 - Details of the clusters of selected valsec2k for sec2 = cmd. Caption: #Cl =
Cluster number; Det = Determinant factor; TtPerm = Total of Permutations;
Sci = Scientific; Load = Loading; Hk = Housekeeping; Dmp = Dump

#Cl Det Cluster TtPerm

1 Sci {txSci, retAnsw, txSciEBuf, txSciinc} 12

2 Load {stDA, reDA, ldDat, exPrg, ldDatInvCSC, ldDatInvcks} 30

3 Hk {txSci, txHk, retAnsw, prepHk, txHkEBuf, txHkinc} 30

4 Dmp {txSci, txDmp, retAnsw, prepDmp, txDmpEBuf, prepDmpInvMem-

Select, prepDmpInvAddrInterv, txDmpInvlen, prepDmpInvcks}
72

5 Other {chPHkTm, chPSmpTmInvdat, chPIniPtrInvtplncks} 6

The total number of permutations produced by 2-permutations of n values of char-

acteristics for each clusterp is shown in the column TtPerm. Note that there is a

determinant factor (column Det) that drives the creation of each cluster. In the first

four clusters, these determinant factors are services supported by SWPDC: Scientific

(Sci), Loading new programs (Load), Housekeeping (Hk), and Dump (Dmp). The

fifth cluster (cluster5) was generated due to other general features. Therefore, in

the first cluster (cluster1) the selected valsec2k are commands/situations related to

acquisition, formatting, and transmission of Scientific Data: TRANSMIT SCIEN-

TIFIC DATA (txSci), RETRANSMIT THE LAST DATA RESPONSE (retAnsw),

TRANSMIT SCIENTIFIC DATA WHEN THE SCIENTIFIC DATA BUFFER IS

177

EMPTY OR IT DOES NOT HAVE ENOUGH DATA TO FORM A RESPONSE

(txSciEBuf), and INCOMPLETE RECEPTION OF TRANSMIT SCIENTIFIC

DATA COMMAND (txSciinc).

Based on each permutation t = {t1, t2} a pair of CTL properties was generated:

propertySoftRespt/propertyPrect. For instance, for cluster1, 2-permutations of n

produced the following 12 permutations:

{txSci, retAnsw}, {txSci, txSciEBuf}, {txSci, txSciinc},

{retAnsw, txSci}, {retAnsw, txSciEBuf}, {retAnsw, txSciinc},

{txSciEBuf, txSci}, {txSciEBuf, retAnsw}, {txSciEBuf, txSciinc},

{txSciinc, txSci}, {txSciinc, retAnsw}, {txSciinc, txSciEBuf}.

Thus, the first permutation t = {txSci, retAnsw} generated the following pair of

CTL properties:

∀□((opmode = nominal ∧ cmd = txSci)→

∃♢(opmode = nominal ∧ cmd = retAnsw)),

¬∃[¬(opmode = nominal ∧ cmd = txSci) ∪ ((opmode = nominal ∧

cmd = retAnsw) ∧ ¬(opmode = nominal ∧ cmd = txSci))].

On the other hand, the twelfth permutation t = {txSciinc, txSciEBuf} generated:

∀□((opmode = nominal ∧ cmd = txSciinc)→

∃♢(opmode = nominal ∧ cmd = txSciEBuf)),

¬∃[¬(opmode = nominal ∧ cmd = txSciinc) ∪ ((opmode = nominal ∧

cmd = txSciEBuf) ∧ ¬(opmode = nominal ∧ cmd = txSciinc))].

This process was then repeated based on all other permutations not only in cluster1

but also in the remaining clusters. In total, 146 CTL properties according to the Soft

Response Pattern and Globally Scope, and 146 CTL properties in accordance with

the Precedence Pattern and Globally Scope were formalized. Due to the fact that

some pairs of valsec2k are present in various clusters, some permutations appear in

more than one cluster. For example, txSci and retAnsw are in cluster1, cluster3,

and cluster4. In these clusters, the same permutations t = {txSci, retAnsw} and

t = {retAnsw, txSci} are derived. Of course, it is necessary to create pairs of

propertySoftRespt/propertyPrect only once: in the case of a permutation has

178

already generated properties in a previous cluster, it is not necessary to generate

them in a subsequent cluster.

By applying Model Checking, 16 incompleteness defects due to the properties for-

malized according to the Soft Response Pattern and Globally Scope and Precedence

Pattern and Globally Scope were detected, as shown in Tables 5.4 (first 8 incom-

pleteness defects) and 5.5 (last 8 incompleteness defects). Usability and Installability

are the impact’s attributes of ODC (CHILLAREGE et al., 1992) related to all these

incompleteness defects and defects’ severity are Low and High.

Table 5.4 - First 8 incompleteness defects due to the Soft Response Pattern and Globally

Scope/Precedence Pattern and Globally Scope. Caption: Usab = Usability;

Install = Installability; cmd = command

Property1 Property2 Impact Severity Unknown Behavior

SoftRt = true Pret = true Usab Low txSci ≺ txSciinc ⇒ a cmd to trans-

mit Sci Data is incompletely received

(txSciinc) by SWPDC, and this cmd is

sent before a cmd to transmit Sci Data

that is completely received (txSci)

SoftRt = true Pret = true Install Low stDA ≺ ldDat⇒ a cmd to load part of

a new executable code into PDC’s Data

Memory (ldDat) is sent before a cmd to

stop Sci Data acquisition (stDA)

SoftRt = true Pret = true Install Low stDA ≺ exPrg ⇒ a cmd to execute a

new executable code which was suppos-

edly uploaded into PDC’s Data Memory

(exPrg) is sent before a cmd to stop Sci

Data acquisition (stDA)

SoftRt = true Pret = true Install Low stDA ≺ ldDatInvCSC ⇒ a cmd to

load part of a new executable code

into PDC’s Data Memory and which

has an invalid Command Sequence Con-

trol (ldDatInvCSC) is sent before a

command to stop Sci Data acquisition

(stDA)

(Continues)

179

Table 5.4 - Conclusion

Property1 Property2 Impact Severity Unknown Behavior

SoftRt = true Pret = true Install Low stDA ≺ ldDatInvcks ⇒ a cmd to

load part of a new executable code into

PDC’s Data Memory and which has

an invalid Checksum (ldDatInvcks) is

sent before a cmd to stop Sci Data

acquisition (stDA)

SoftRt = true Pret = true Install High ldDat ≺ exPrg ⇒ a cmd to execute a

new executable code which was suppos-

edly uploaded into PDC’s Data Memory

(exPrg) is sent before a cmd to load part

of a new executable code (ldDat)

SoftRt = true Pret = true Install High ldDat ≺ ldDatInvCSC ⇒ a cmd to

load part of a new executable code into

PDC’s Data Memory and which has

an invalid Command Sequence Control

(ldDatInvCSC) is sent before a cmd

to load part of a new executable code

(ldDat)

SoftRt = true Pret = true Install High ldDat ≺ ldDatinvcks ⇒ a cmd to

load part of a new executable code into

PDC’s Data Memory and which has an

invalid Checksum (ldDatInvcks) is sent

before a cmd to load part of a new

executable code (ldDat)

In column Unknown Behavior, ≺ means precedence. For instance, stDA ≺ ldDat

means the stDA command always precedes the ldDat command and then the

detailed behavior of SWPDC if the opposite situation occurs, i.e. ldDat precedes

stDA is not known. As pointed out in Section 5.1.1, properties formalized in accor-

dance with the Soft Response Pattern and Globally Scope (SoftRt) are easier to be

satisfied if compared to the original Response Pattern and Globally Scope. Thus,

all incompleteness defects shown in Tables 5.4 and 5.5 were, in fact, detected due

to the satisfaction of properties formalized according to the Precedence Pattern and

Globally Scope (Pret).

180

Table 5.5 - Last 8 incompleteness defects due to the Soft Response Pattern and Globally

Scope/Precedence Pattern and Globally Scope. Caption: Usab = Usability;

Install = Installability; cmd = command

Property1 Property2 Impact Severity Unknown Behavior

SoftRt = true Pret = true Usab Low txHk ≺ txHkinc ⇒ a cmd to trans-

mit Hk Data is incompletely received

(txHkinc) by SWPDC, and this cmd is

sent before a cmd to transmit Hk Data

that is completely received (txHk)

SoftRt = true Pret = true Usab Low prepHk ≺ txHk ⇒ a cmd to transmit

Hk Data (txHk) is sent before a cmd

to prepare Hk Data to be transmitted

(prepHk)

SoftRt = true Pret = true Usab Low prepHk ≺ txHkEBuf ⇒ a cmd to

transmit Hk Data is sent but the Hk

Data buffer is empty (txHkEBuf) be-

fore a cmd to prepare Hk Data to be

transmitted (prepHk)

SoftRt = true Pret = true Usab Low prepHk ≺ txHkinc ⇒ a cmd to trans-

mit Hk Data is incompletely received

(txHkinc) by SWPDC, and this cmd is

sent before a cmd to prepare Hk Data

to be transmitted (prepHk)

SoftRt = true Pret = true Usab Low txDmp ≺ txDmpInvlen ⇒ a cmd to

transmit Dmp Data and which has an

invalid length (txDmpInvlen) is sent

before a cmd to transmit Dmp Data

(txDmp)

SoftRt = true Pret = true Usab Low prepDmp ≺ txDmp ⇒ a cmd to trans-

mit Dmp Data (txDmp) is sent before

a cmd to prepare Dmp Data to be

transmitted (prepDmp)

(Continues)

181

Table 5.5 - Conclusion

Property1 Property2 Impact Severity Unknown Behavior

SoftRt = true Pret = true Usab Low prepDmp ≺ txDmpEBuf ⇒ a cmd to

transmit Dmp Data is sent but the Dmp

Data buffer is empty (txDmpEBuf)

before a cmd to prepare Dmp Data to

be transmitted (prepDmp)

SoftRt = true Pret = true Usab Low prepDmp ≺ txDmpInvlen ⇒ a cmd

to transmit Dmp Data and which has

an invalid length (txDmpInvlen) is sent

before a cmd to prepare Dmp Data to be

transmitted (prepDmp)

All detected defects based on the three patterns/pattern scopes which have been

classified as being of High severity are related to the service Loading new program

(executable code) into PDC’s Data Memory on the fly. This service was really

poorly documented in the software specifications. In addition, all defects found can

also be classified according to the impact’s attribute Documentation. However, in

some cases impact’s attributes Installability and Usability best classified the defects

found. In total, 362 CTL properties were formalized and 21 incompleteness defects

were detected. Therefore, 5.8% of the formalized properties detected incompleteness

defects. Table 5.6 summarizes the application of the SOLIMVA methodology to

address incompleteness in software specifications considering the SWPDC case study.

5.3 Final remarks about this chapter

This chapter presented an extension of version 1.0 of the SOLIMVA methodology

to address the secondary objective of this PhD thesis. This extension generated

version 2.0 of the SOLIMVA methodology. The new and most important activity

of version 2.0 of SOLIMVA was applied to the SWPDC case study (SANTIAGO

et al., 2007) in order to detect incompleteness defects in software specifications.

This section provides additional discussion about some approaches related to the

problem of incompleteness which were presented in Chapter 2. The differences and

the contribution of the approach proposed by the SOLIMVA methodology are also

highlighted.

CIRCE (AMBRIOLA; GERVASI, 2006; AMBRIOLA; GERVASI, 1997) detects incomplete-

182

Table 5.6 - Summary of the application of the SOLIMVA methodology to address
incompleteness in software specifications: SWPDC case study

Feature Quantity

Reachable States in the Model 71

Clusters for sec2 = cmd 5

Properties: Absence Pattern and Globally Scope 70

Properties: Soft Response Pattern and Globally Scope 146

Properties: Precedence Pattern and Globally Scope 146

Properties: Total 362

Impact’s Attribute of Defect: Installability 9

Impact’s Attribute of Defect: Documentation 3

Impact’s Attribute of Defect: Usability 9

Defect’s Severity: Low 16

Defect’s Severity: Medium 1

Defect’s Severity: High 4

Defects: Total 21

ness defects by searching for unsued data (variables that are never modified) and data

coming from nowhere in Data Flow Diagrams. Kim and Sheldon (2004) proposed

to search for absorbing states/activities in Statecharts/Activity Charts. Park et al.

(2000) claimed that their tool allows an analyst to improve completeness of a single

NL document but what it really supports is the detection of inconsistency defects

between NL requirements and duplication of requirements. Between documents,

their tool supports traceability but not detection of incompleteness defects.

The SCR formal method and its respective toolset have been used to detect a

few missing cases in requirements specifications (EASTERBROOK; CALLAHAN, 1998;

HEITMEYER et al., 1998). The formal language RSML and related tools were also

able to identify incompleteness defects in software requirements specifications but a

significant number of spurious defects were reported (HEIMDAHL; LEVESON, 1996).

Yu et al. (2008) proposed an approach to detect incompleteness based on a condition

guard tree but their approach does not seem to be scalable as the case study

presented was very simple.

The combination of the UPPAAL Model Checker and the CoFI testing method-

ology (AMBRÓSIO et al., 2007; PONTES et al., 2009b) is another attempt to address

the issue of incompleteness but such a combination resembles techniques already

proposed in the literature: Software Reading Techniques such as PBR (BASILI et al.,

1996). Although their studies try, Model Checking is not really applied to detect

incompleteness defects because there is no effective verification of the model against

183

the properties. Moreover, not only in previous studies (PONTES et al., 2009b; PONTES

et al., 2009a) but also in a more recent work (PONTES et al., 2010), the authors did

not provide guidelines to formalize the properties.

Regarding the detection of incompleteness defects in software specifications, version

2.0 of the SOLIMVA methodology has four important characteristics:

a) Software specifications and their requirements are used not to develop

properties but rather to develop the model of the system. This is explained

because the purpose is to identify defects in software specifications;

b) Precise guidelines are provided to formalize properties by combining spec-

ification patterns with 2-permutations of n values of characteristics. More-

over, the properties are generated in a manner independent of the require-

ments in the software specifications;

c) The philosophy of Model Checking is respected because the properties and

the model are generated from different sources;

d) Specification patterns are not also used in the traditional way. A different

interpretation for pattern/pattern scope is provided aiming at detecting

incompleteness defects.

The activities of version 1.0 of the SOLIMVA methodology shown in Figure 3.3,

which are also present in version 2.0 of the methodology, are typically performed

by professionals of the Verification and Validation team such as a test designer.

However, the Analyze Incompleteness and Improve Specifications activities can be

accomplished by several other professionals of other teams. In a Waterfall software

development lifecycle model as adopted in QSEE project (Figure 3.2), a process for

improving the quality of deliverables (documents) in general can be as described

below:

a) The deliverables which are related to a particular formal technical review

(SRR, PDR, ...) starts to be developed. For example, for the PDR of

QSEE project, the PDC-OBDH Communication Protocol Specification was

developed by the customer and suppliers developed Software Requirements

Specifications;

b) The secretary of the formal technical review communicates to all partici-

pants the beginning of the review by providing general guidelines for the

184

process including dates of submission of documents to the secretary, and

dates of the formal technical review meetings;

c) The deliverables are finished and sent to the secretary of the formal tech-

nical review. The secretary then delivers all documents to all participants

of the review;

d) Each participant of the formal technical review evaluates the deliverables in

order to detect problems such as ambiguity, inconsistency, and incomplete-

ness. With respect to incompleteness, if the SOLIMVA methodology was

applied to assess software specifications, ideally each professional would

perform the Analyze Incompleteness activity as described in this chapter

by using Model Checking, specification patterns and 2-permutations of n

values of characteristics. Thus, the Analyze Incompleteness activity would

be performed by professionals of various other teams and not only of the

Verification and Validation team;

e) A Review Item Discrepancy (RID) is created for each detected problem.

RID is a document which informs, among others, the identification of the

document, in which local (page, section) of the document the problem was

found, who is the author of the RID, what is the status of the RID (ac-

cepted, rejected, etc.), the description of the problem. In this context, the

report of detected incompleteness defects mentioned in Figure 5.4 is indeed

a set of RIDs created due to incompleteness in software specifications;

f) All participants of the review send their respective RIDs to the secretary

before the formal technical review meetings;

g) During the formal technical review meetings which are held in the presence

of all those involved in the process, RIDs are discussed. A RID whose status

is considered as accepted will mean that those responsible for the creation

of the deliverable must implement, after the formal technical review meet-

ings, the suggestions for improving the document which were proposed

during the meetings and updated in the RID. For software specifications,

this improvement would be carried out by the Improve Specifications ac-

tivity of the SOLIMVA methodology.

Version 2.0 of the SOLIMVA methodology demonstrated its efficiency by the de-

tection of 21 incompleteness defects in the SWPDC case study. But just as in the

case of applying version 1.0 of the methodology (Chapter 4), threats to external

185

validity (BASILI et al., 1996) also exist with respect to version 2.0 of SOLIMVA.

The methodology has been applied to only one case study (SWPDC) which is not

enough and by a single professional. In addition, the effort to apply Model Checking

is relatively high because it demands for qualified professional and time for applying

the method. The SOLIMVA methodology proposes a precise manner to formalize

properties, but the amount of properties can be quite high if several models were

developed and many secondary characteristics and their values were considered to

generate properties. The time required to simulate each model in order to eliminate

defects in modeling is also usually high in real and complex projects.

In any case, the contribution made by the SOLIMVA methodology is relevant

because it uses state of the art techniques to address a problem still very common

in developing software systems and, as stated earlier, the approach proved to be

efficient.

One of the weaknesses of Model Checking is that there is no guarantee of com-

pleteness, i.e. only stated requirements are checked (BAIER; KATOEN, 2008). In a

sense, in the SOLIMVA methodology, Model Checking helps to fight this weakness

of Model Checking itself as it (Model Checking) is a crucial part of SOLIMVA for

the detection of incompleteness in software specifications.

Due to the fact that all activities of version 1.0 of the SOLIMVA methodology,

with the same features, are also present in version 2.0, logically that all the advan-

tages, limitations of version 1.0 of the methodology also apply to version 2.0 of the

SOLIMVA methodology, with respect to the generation of model-based system and

acceptance test cases considering NL requirements deliverables.

Next chapter presents the conclusions and future directions for this PhD thesis.

186

6 CONCLUSIONS

Because of the importance of software in modern society, the academic community

and industry has been dedicating efforts so that software products of high quality

are developed. Defects in artifacts (source code, documentation, etc.) developed for

a certain software product may cause minor annoyances, such as the user does not

have access to his/her e-mail account for a period of one day, but may have much

more serious consequences like causing damage to the environment or causing loss of

human lives (LEVESON; TURNER, 1993). Although some authors argue that it is an

exaggeration to talk about software crisis (EMAM; KORU, 2008), some studies have

found that the cost due to failures in software is around 50 to 80 billion dollars a

year (GALORATH INCORPORATED, 2008).

As mentioned in the Introduction (Chapter 1), two objectives, one primary and

one secondary, should have been achieved by the solutions proposed in this PhD

thesis. Discussion of the solutions presented by this PhD thesis to achieve these

goals are presented below. In this chapter, the terms “SOLIMVA methodology” and

“SOLIMVA” refer to version 2.0 of the SOLIMVA methodology as this version has

all proposed activities to achieve the two objectives of this PhD thesis.

6.1 Solution to achieve the primary objective

The primary objective was to generate model-based system and acceptance test cases

considering NL requirements deliverables. Recall that in system and acceptance

testing, the entire software product is considered in order to generate test cases.

Some researchers state that UML is currently the de facto standard for modeling

(object-oriented) software, and its use is increasing in the development of critical

systems such as aerospace applications (ZOUGHBI et al., 2011). However and despite

all the problems related to NL, its simplicity still makes it attractive for stakeholders

to contribute in the preparation of documents (or parts of documents) of software

products such as software requirements specifications. In addition, NL is strongly

related to UML use case models since the narrative part of the model is made

using NL. Therefore, one way or other, in greater or lesser extent, NL is still widely

used to develop software requirements specifications or other artifacts created for

documenting requirements (MICH et al., 2004).

This primary goal was achieved by the SOLIMVA methodology (Chapter 3). In order

to support the SOLIMVA methodology, a tool, also called SOLIMVA, was designed

and implemented, and such a tool makes it possible to automatically translate

187

NL requirements into Statechart models (abstract models). After generating these

models, the GTSC environment (SANTIAGO et al., 2008b) is used to generate Abstract

Test Cases which are later translated into Executable Test Cases. The SOLIMVA

methodology relies on state of the art techniques such as Model-Based Testing

(Statechart-based testing) and combinatorial designs (MATHUR, 2008), as well as

incorporated into the SOLIMVA tool are other state of the art techniques such as

Part Of Speech Tagging (TOUTANOVA et al., 2003) and Word Sense Disambiguation

(NAVIGLI, 2009). In summary, the solution proposed by SOLIMVA to achieve the

primary objective of this PhD thesis is an attempt to bridge the gap between the

state of the art and the state of the practice. This is an important approach towards

a wider use of the theory proposed by the academic community in real projects in

the industry, and in institutes of research and development.

The SOLIMVA methodology and the SOLIMVA tool were applied (Chapter 4) to

SWPDC, a space application software product whose characteristics are represen-

tative of an important class of complex software in the Space Segment. SOLIMVA

was compared with a previous manual approach developed by an expert under two

aspects: coverage of test objectives and characteristics of Executable Test Cases.

About coverage of test objectives, the SOLIMVA methodology not only covered the

test objectives associated with the expert’s scenarios but also proposed a better

strategy with test objectives clearly separated according to the directives of combi-

natorial designs. Executable Test Cases derived in accordance with the SOLIMVA

methodology not only possessed similar characteristics with the expert’s Executable

Test Cases but also predicted behaviors that did not exist in the expert’s strategy.

Then, the models automatically created by the SOLIMVA methodology and by the

SOLIMVA tool are suitable for generating test cases.

Among other advantages of the SOLIMVA methodology and the SOLIMVA tool

over the approach of the specialist are:

a) The user must first perform some tasks such as creating a Dictionary

and the identification of scenarios. However, the SOLIMVA tool generates

the model (abstract) automatically. This functionality is very important

because it implies that the user does not have to worry about translating

NL requirements into a formal language (Statecharts) and does not need

to have expertise in modeling software;

b) By allowing NL requirements to be read automatically along with the

fact of proposing the translation from the Abstract Test Suite into the

188

Executable Test Suite, the SOLIMVA methodology and the SOLIMVA

tool have the potential to minimize problems related to the incomplete/in-

consistent creation of models for Model-Based Testing;

c) SOLIMVA suggests a precise, systematic and mathematical-based solu-

tion to identify scenarios for system and acceptance test case generation

by means of combinatorial designs. The result of this approach is that

SOLIMVA suggests a response to a very important issue in a Verification

and Validation process that is: how many different ways should the IUT be

stimulated considering all test suites? In other words, until when should

the system be tested? From a practical standpoint, this information is

really relevant because complex systems allow users an enormous amount

of possibilities of interaction (scenarios). In determining the maximum

amount of scenarios, the methodology provides a clear directive to answer

this question.

Summarizing what was mentioned at the end of Chapter 4, the SOLIMVA method-

ology and the SOLIMVA tool have some benefits over other research such as:

a) The SOLIMVA methodology provides a formal manner, by means of com-

binatorial designs, to identify scenarios for model-based system and accep-

tance test case generation;

b) SOLIMVA is supported by a formal method (Statecharts language) but it

does not require skills related to formal notations in order to define the

application domain from the user;

c) Despite the limitations of the algorithm for generating BSAO tuples (Fig-

ure 3.10), the SOLIMVA tool provides a certain freedom to the user to

write NL requirements, but its approach is not unrestricted NL because it is

necessary to define the application domain by means of a Dictionary. Thus,

the SOLIMVA tool tends not to have the problems of limited applicability

that are associated with unrestricted NL approaches. In addition, the

design of the SOLIMVA tool is such that it is not necessary that the

requirements are written strictly complying with predefined standards of

writing as with very restricted controlled NL approaches;

d) The SOLIMVA tool has a solution to automate the identification of self

transitions in the resulting Statechart model by adapting a Word Sense

Disambiguation algorithm;

189

e) SOLIMVA begins to generate the models and hence the Executable Test

Suites directly from NL requirements.

Still on the solution proposed by the SOLIMVA methodology to achieve the primary

objective, guidelines to apply SOLIMVA to a second case study, CMD/SATCS

(CARDOSO et al., 2008), of the space domain related to the Ground Segment were

also presented. The feasibility of applying the methodology to this second complex

case study was demonstrated, where generating test cases would only be a repetitive

process.

6.2 Solution to achieve the secondary objective

As emphasized in Chapter 1, quality of requirements plays an important role in the

successful creation of other artifacts of the software development lifecycle. Defects

in software requirements specifications like incompleteness are propagated to other

artifacts and, therefore, undermine the development process and the final quality of

the software product.

The secondary objective of this work relates to a severe problem in software specifi-

cations: incompleteness. This secondary goal was also achieved by the SOLIMVA

methodology (Chapter 5). State of the art techniques, such as Model Checking

(CLARKE; EMERSON, 2008; QUEILLE; SIFAKIS, 2008; BAIER; KATOEN, 2008) and

specification patterns (DWYER et al., 1999), combined with k-permutations of n

values of variables were used to address this secondary goal. The SOLIMVA method-

ology was applied to the SWPDC software product (SANTIAGO et al., 2007) in order

to detect incompleteness defects in software specifications.

Two patterns/pattern scopes proposed by Dwyer et al. (1999) (Absence Pattern

and Globally Scope, Precedence Pattern and Globally Scope) and a third new

pattern/pattern scope (Soft Response Pattern and Globally Scope), being a variation

of other pattern/pattern scope defined by Dwyer et al. (1999) (Response Pattern

and Globally Scope), were used to detect incompleteness defects. A finite-state model

was developed for the main operation mode of PDC, the Nominal Operation Mode,

and such a model had 71 reachable states. Using CTL, 70 properties were formalized

according to the Absence Pattern and Globally Scope, 146 properties according to

the Soft Response Pattern and Globally Scope, and 146 properties in accordance

with the Precedence Pattern and Globally Scope.

In total, 362 CTL properties were formalized and 21 incompleteness defects were

190

detected in accordance with the following distribution:

a) Impact’s attributes of ODC: Installability = 9, Documentation = 3, Us-

ability = 9;

b) Defect’s severity: Low = 16, Medium = 1, High = 4.

The efficiency of the SOLIMVA methodology was thus demonstrated by the in-

completeness defects detected. Regarding the detection of incompleteness defects in

software specifications, some important features of the SOLIMVA methodology are:

a) Since the aim is to detect defects in software specifications, software spec-

ifications and their requirements are used not to develop properties but

rather to develop the model of the system;

b) SOLIMVA provides clear guidelines to formalize properties by combining

specification patterns with 2-permutations of n values of characteristics.

In addition, the properties are generated in a manner independent of the

requirements in the software specifications;

c) Regarding specification patterns, they are not also used in the traditional

way. A different interpretation for pattern/pattern scope is proposed to

identify incompleteness defects.

All positive aspects presented in this and in the previous section show that the

SOLIMVA methodology and the SOLIMVA tool can make an important contri-

bution to both Software Verification and Validation process and Software Systems

Requirements Engineering.

6.3 Future work

Future developments related to this research are divided into two classes. Regarding

the primary objective of this PhD thesis and the solution proposed by the SOLIMVA

methodology, some directions to follow are:

a) Automated definition of the application domain. Although it was men-

tioned that the lack of information limits the applicability of unrestricted

NL approaches, it is interesting to try to generate the domain information

automatically. In the context of the SOLIMVA methodology, this means

191

generating the Dictionary automatically. As previously proposed in other

studies (RAYSON et al., 1999; RAYSON et al., 2000), statistical NLP tech-

niques may be a solution to this problem. But further investigations are

required;

b) Implementation of a combinatorial designs algorithm. Rather than using

an external tool (TConfig (UNIVERSITY OF OTTAWA, 2008)) for generating

Mixed-Level Covering Arrays, a combinatorial designs algorithm, such as

IPOG (LEI et al., 2007), should be implemented within the SOLIMVA

tool. In the end, this will facilitate the definition of scenarios because by

using the SOLIMVA tool itself it will be possible to generate the factor

combinations;

c) Automated identification of scenarios for system and acceptance testing. In

a much more ambitious solution than the proposal of the previous item, the

identification of scenarios could be done automatically. The user would only

provide the NL artifacts and then the scenarios would be automatically

produced and reported, also in NL, to the user;

d) Automated selection of a set of NL requirements which together character-

ize each scenario. This is also another challenge. Once a scenario has been

identified then the SOLIMVA tool would automatically select the set of

NL requirements which characterize such a scenario and put them in the

correct order. Only the NL deliverables would be provided as input to the

tool;

e) Improvement of the algorithm for generating BSAO tuples. As mentioned

in Chapter 4, the algorithm for automated detection of BSAO tuples (Fig-

ure 3.10) not always produced correct results. Although it was successful

in the case study considered, it is important to improve this algorithm

in order to apply the SOLIMVA methodology and the SOLIMVA tool to

other application domains beyond the space domain. One way towards

this improvement is by using typed dependencies (MARNEFFE; MANNING,

2008);

f) Automated translation from Abstract Test Suites into Executable Test

Suites. As discussed in Chapter 4, the idea behind such a translation was

just to substitute one or more input/output pairs of the Abstract Test

Suite for the corresponding test input data/expected result or actions of

192

the Executable Test Suite. If an automated solution is designed and imple-

mented so that it is possible to group input/output pairs to be translated

into test input data/expected result or actions, then this problem can be

solved. Eventually, data mining methods, such as clustering (WITTEN et

al., 2011), may help in this regard;

g) Application to other case studies. It is very important to investigate the

feasibility of the SOLIMVA methodology in other case studies not only

in the space application domain but also in other domains. For example,

the thorough application of SOLIMVA to the CMD/SATCS (CARDOSO et

al., 2008) software is a natural choice. Besides, it is relevant to conduct

empirical studies with other professionals and analyze the impact of the

introduction of SOLIMVA in other settings;

h) Assessment of scalability. Despite the explanations given in Chapter 4,

scalability seems to be an issue. The SOLIMVA methodology seems to be

appropriate up to complex but medium sized software products. Thus, the

methodology needs to be improved in order to deal with very large software

systems. One way towards this improvement is to optimize (reduce) the

number of generated scenarios by using techniques to merge scenarios or

even to discard some of them;

i) Improvement of the usability of the SOLIMVA tool. The SOLIMVA tool

was developed according to the Object-Oriented Programming paradigm

using the Java programming language (Appendix B has more details on

this topic). The priority in developing the SOLIMVA tool was to create

and implement the algorithms that are, in fact, its main features. Its

Graphical User Interface is relatively simple, as it should be, but it is

necessary to improve usability features such as exception handling. In

addition, the Statechart model is generated in textual notation. Therefore,

it is interesting to show it in graphical form using software such as Graphviz

(GRAPHVIZ.ORG, 2011);

j) Handling documents in the Portuguese language. As mentioned in Chap-

ter 4, all documents developed within the scope of the QSEE project were

made in the Portuguese language. Therefore, the selected documents were

translated into the English language due to wide acceptance of English

worldwide and also due to INPE’s international cooperation. However, it

is important that the SOLIMVA methodology and the SOLIMVA tool can

handle artifacts (documents) drawn up in Portuguese.

193

Regarding the secondary objective of this PhD thesis and the solution proposed by

the SOLIMVA methodology, efforts should be devoted to the following tasks:

a) Automated generation of finite-state models based on software specifica-

tions. Generating a model automatically from software specifications, espe-

cially if such specifications were prepared by making extensive use of NL, is

very complex. So this is another interesting problem to be investigated con-

sidering that the model created is suitable for Model Checking. Regarding

the SOLIMVA methodology, this implies that the primary characteristic,

the secondary characteristics and all their values should automatically be

identified as well as the behavior of the system. From this perspective, it is

assumed that only the artifacts (documents) themselves are provided for

this new version of the SOLIMVA tool;

b) Automated formalization of properties. In the context of SOLIMVA,

this implies to automatically formalize the properties according to the

three patterns/pattern scopes shown in Chapter 5. The definition of

clusters for generating properties due to Soft Response Pattern and

Globally Scope/Precedence Pattern and Globally Scope should also occur

automatically as well as the derivation of permutations;

c) Automated application of Model Checking, detection of incompleteness

defects, and generation/updating of reports. Since models and properties

are automatically generated then it is logical to apply Model Checking

also automatically. For the case of the SOLIMVA methodology, it would

suffice to incorporate the NuSMV Model Checker into the SOLIMVA

tool and make calls to NuSMV from the SOLIMVA tool. The result of

running NuSMV, such as counterexamples, should also be handled by

the SOLIMVA tool. The incompleteness defects should also be detected

automatically, according to the Analyze Incompleteness activity and the

definitions provided in Chapter 5. It would also be remarkable if reports

of detected incompleteness defects were automatically generated/updated

in NL for easy comprehension by professionals;

d) Use of other combinations of patterns/pattern scopes proposed by Dwyer

et al. (1999). Three combinations of patterns/pattern scopes were adopted

by SOLIMVA where one is a new combination. As Dwyer et al. (1999)

proposed 8 patterns and 5 pattern scopes, other combinations should be

194

investigated because they can improve the quality of the approach to detect

incompleteness defects;

e) Application to other case studies. It is very important to apply the solu-

tion proposed by SOLIMVA to detect incompleteness defects in software

specifications to other case studies as well as to conduct empirical studies

to analyze the impact of this proposal in other settings;

f) Assessment of scalability. The effort to apply Model Checking should not

be neglected and therefore it should be assessed the feasibility of applying

SOLIMVA to very large software systems;

g) Addressing inconsistency in software specifications. Another defect in soft-

ware specifications is inconsistency like logical contradiction. It should be

investigated the possibility of effective detection of inconsistency defects

by applying Model Checking.

6.4 Final remarks about this PhD thesis

This section presents concluding remarks about this PhD thesis. The conceptions

of the SOLIMVA methodology and the SOLIMVA tool were based on a fact: in

greater or lesser extent, NL is still widely used to develop software requirements

documents. Naturally, formal methods are a much more appropriate option to not

only prepare requirements documents but also to develop other artifacts of the

software development lifecycle. But, as mentioned in Chapter 1, such methods do

not yet have wide application for the development of systems and software projects

in general.

Woodcock et al. (2009) point out several ways to a greater use in practice of formal

methods for systems development which includes also software development. One of

the directions mentioned refers to increase the level of automation. They mention

that some authors predicted in the past that Formal Verification should be used by

developers as easily as using a compiler. Other authors mentioned that tools need

to be integral parts of development environments, and that the gap between the

tools and the standard production process needs to disappear. This approach means

moving Formal Verification technology from innovators to first adopters. They also

assert that there is an increasing integration between graphical notations and the

mathematical representations required for formal analysis. For example, UML-B is

an integration between UML and Event-B which is a formal method for system-level

modeling and analysis.

195

Basically, all these previous observations can be summarized in the following sen-

tence: formal methods may be widely used for systems development since its adop-

tion does not require considerable efforts on the part of professionals in industry and

in institutes of research and development. In other words, “mere mortals” should feel

that formal methods are relatively easy to use. In this sense, the solution proposed

by the SOLIMVA methodology to generate model-based system and acceptance

test cases considering NL requirements deliverables attempted to follow this line

of reasoning. That is, SOLIMVA enables customers, developers continue to de-

velop the artifacts related to the software product in the manner they feel more

comfortable, in that case in Natural Language. Then, the SOLIMVA methodology

and the SOLIMVA tool transform this user-friendly language into a formal method

(Statecharts language) to support processes of the software development lifecycle

(Verification and Validation, Software Testing). This is another way that has the

potential to spread the adoption of formal methods in practice because its use

actually becomes transparent to the user.

Perhaps there is some exaggeration when the word “automation” is used both by

academia and industry in the context of software development. For example, as men-

tioned in Chapter 1, Software Testing automation is, in practice, a semi-automated

process involving significant human intervention particularly when dealing with

complex software. For considering a Software Testing process as truly automated,

taking into account the main activities of the Software Testing process and assuming

that the generation of system and acceptance test cases is based on models as

considered in the SOLIMVA methodology, the user would only provide for a given

tool a certain set of artifacts (software requirements specification, etc.) developed

in a user-friendly notation (UML, NL, or a combination thereof). So, having these

documents, the tool would:

a) automatically identify all scenarios;

b) automatically generate all models suitable for testing;

c) automatically generate all Executable Test Cases. This step means that test

cases would be automatically translated from a possible abstract level into

the executable level, that all Executable Test Cases due to all models would

be generated automatically including the expected results, that an analysis

would be automatically made to eliminate redundant test cases, and that

the order of execution of the Executable Test Suites derived according to

all scenarios would be accomplished automatically too;

196

d) automatically run all Executable Test Cases according to the order pro-

posed in the previous step;

e) automatically evaluate the results of the execution of test cases (automated

oracle). In this step, the test cases would be automatically associated with

verdicts such as “passed” or “failed”;

f) automatically decide which procedure to take should any verdicts of test

cases are “failed”. The tool could then automatically generate partial test

reports and communicate such test reports for the development team so

that the corrections of the defects found in the source code could be made.

If it is possible to continue the execution of test cases even with in the

presence of some detected defects, then the tool could continue running

or, alternatively, wait for the corrected source code to resume execution.

This decision should also be automatic. For each new corrected version of

the source code, the tool would automatically select a set of test cases for

regression testing;

g) automatically generate all the documentation (test case specifications, test

reports, etc.) associated with the Software Testing process, after all the

test cases were considered successful. Such documentation should be in

language easily understood by the user.

This is one possible interpretation for automation of the entire Software Testing

process. Naturally, this level of automation, sophistication, intelligence, and expertise

is not yet available in tools that support the Software Testing process in any

application domain. But it is certainly interesting that academia and industry can

devote more efforts in order to achieve, if not quite but almost entirely, this level of

automation. Similar efforts towards an increased automation must be dedicated in

the development of formal methods in general.

197

REFERENCES

ABRIAL, J.-R. Formal methods in industry: achievements, problems, future. In:

INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE),

28., 2006, Shanghai, China. Proceedings... New York, NY, USA: ACM, 2006. p.

761–768. 7

AMBRIOLA, V.; GERVASI, V. Processing natural language requirements. In:

INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE

ENGINEERING (ASE), 12., 1997, Incline Village, NV, USA. Proceedings...

Washington, DC, USA: IEEE Computer Society, 1997. p. 36–45. 36, 41, 182

. On the systematic analysis of natural language requirements with CIRCE.

Automated Software Engineering, v. 13, n. 1, p. 107–167, 2006. 36, 37, 38, 39,

41, 150, 158, 182

AMBRÓSIO, A. M.; MATTIELLO-FRANCISCO, F.; SANTIAGO JÚNIOR,

V. A.; SILVA, W. P.; MARTINS, E. Designing fault injection experiments using

state-based model to test a space software. In: LATIN-AMERICAN SYMPOSIUM

ON DEPENDABLE COMPUTING (LADC), 3., 2007, Morelia, México.

Proceedings... Berlin/Heidelberg, Germany: Springer Berlin/Heidelberg, 2007. p.

170–178. (INPE-15078-PRE/9987). Available from:

<http://urlib.net/sid.inpe.br/mtc-m17@80/2007/11.30.16.22>. Access in:

Nov. 30, 2011. 30, 44, 158, 183

AMMANN, P. E.; BLACK, P. E.; MAJURSKI, W. Using model checking to

generate tests from specifications. In: IEEE INTERNATIONAL CONFERENCE

ON FORMAL ENGINEERING METHODS (ICFEM), 2., 1998, Brisbane,

Australia. Proceedings... Washington, DC, USA: IEEE Computer Society, 1998.

p. 46–54. 46

AMMONS, G.; BODIK, R.; LARUS, J. R. Mining specifications. In: ACM

SIGPLAN-SIGACT SYMPOSIUM ON PRINCIPLES OF PROGRAMMING

LANGUAGES (POPL), 29., 2002, Portland, OR, USA. Proceedings... New

York, NY, USA: ACM, 2002. p. 4–16. 3

ANTONIOL, G.; BRIAND, L. C.; DI PENTA, M.; LABICHE, Y. A case study

using the round-trip strategy for state-based class testing. In: IEEE

INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY

199

http://urlib.net/sid.inpe.br/mtc-m17@80/2007/11.30.16.22

ENGINEERING (ISSRE), 13., 2002, Annapolis, MD, USA. Proceedings...

Washington, DC, USA: IEEE Computer Society, 2002. p. 269–279. 30, 152

BAIER, C.; KATOEN, J.-P. Principles of model checking. Cambridge, MA,

USA: The MIT Press, 2008. 975 p. 6, 11, 23, 31, 38, 40, 42, 44, 45, 163, 166, 167,

174, 175, 186, 190

BALCER, M.; HASLING, W.; OSTRAND, T. Automatic generation of test scripts

from formal test specifications. ACM SIGSOFT Software Engeneering

Notes, v. 14, n. 8, p. 210–218, 1989. 29, 31

BALZER, R. Tolerating inconsistency. In: INTERNATIONAL CONFERENCE

ON SOFTWARE ENGINEERING (ICSE), 13., 1991, Austin, TX, USA.

Proceedings... Los Alamitos, CA, USA: IEEE Computer Society Press, 1991. p.

158–165. 8

BASILI, V. R.; GREEN, S.; LAITENBERGER, O.; LANUBILE, F.; SHULL, F.;

SØRUMGÅRD, S.; ZELKOWITZ, M. V. The empirical investigation of

Perspective-Based Reading. Empirical Software Engineering Journal, v. 1,

n. 2, p. 133–164, 1996. 4, 45, 143, 183, 186

BEHRMANN, G.; DAVID, A.; LARSEN, K. G. A tutorial on UPPAAL. In:

BERNARDO, M.; CORRADINI, F. (Ed.). Formal methods for the design of

real-time systems. Berlin/Heidelberg, Germany: Springer Berlin/Heidelberg,

2004. v. 3185, p. 200–236. Lecture Notes in Computer Science (LNCS). 25, 44

BEN-ARI, M. Principles of the Spin model checker. London, UK:

Springer-Verlag, 2008. 216 p. 24

BERRY, D. M.; KAMSTIES, E.; KRIEGER, M. M. From contract drafting to

software specification: linguistic sources of ambiguity. Waterloo, Ontario,

Canada: University of Waterloo, 2003. 80 p. Available from:

<http://se.uwaterloo.ca/˜dberry/handbook/ambiguityHandbook.pdf>.

Access in: Apr. 15, 2009. 8

BERTOLINO, A.; GNESI, S. Use case-based testing of product lines. ACM

SIGSOFT Software Engineering Notes, v. 28, n. 5, p. 355–358, 2003. 30

BHARADWAJ, R.; HEITMEYER, C. L. Model checking complete requirements

specifications using abstraction. Automated Software Engineering, v. 6, n. 1,

p. 37–68, 1999. 42, 43, 44, 46

200

http://se.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf

BINDER, R. V. Testing object-oriented systems: models, patterns, and tools.

USA: Addison-Wesley Professional, 1999. 1248 p. 15, 30

BOWEN, J. P.; HINCHEY, M. G. Seven more myths of formal methods. IEEE

Software, v. 12, n. 4, p. 34–41, 1995. 6

BRESCIANI, P.; PERINI, A.; GIORGINI, P.; GIUNCHIGLIA, F.;

MYLOPOULOS, J. Tropos: an agent-oriented software development methodology.

Autonomous Agents and Multi-Agent Systems, v. 8, n. 3, p. 203–236, 2004.

6

BRIAND, L. C.; LABICHE, Y. A UML-based approach to system testing.

Journal of Software and Systems Modeling, v. 1, n. 1, p. 10–42, 2002. 28

BRIAND, L. C.; LABICHE, Y.; WANG, Y. Using simulation to empirically

investigate test coverage criteria based on Statechart. In: INTERNATIONAL

CONFERENCE ON SOFTWARE ENGINEERING (ICSE), 26., 2004, Edinburgh,

Scotland, UK. Proceedings... Washington, DC, USA: IEEE Computer Society,

2004. p. 86–95. 30, 152

BRYANT, R. E. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, v. 35, n. 8, p. 667–691, 1986. 24

BUCCHIARONE, A.; GNESI, S.; LAMI, G.; TRENTANNI, G.; FANTECHI, A.

QuARS Express - a tool demonstration. In: IEEE/ACM INTERNATIONAL

CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE), 23.,

2008, L’Aquila, Italy. Proceedings... Los Alamitos, CA, USA: IEEE, 2008. p.

473–474. 35

CALLAGHAN, P. An evaluation of LOLITA and related natural language

processing systems. 1998. 212 p. Thesis (PhD in Computer Science) —

University of Durham, Durham, UK, 1998. 37

CARDOSO, P. E.; BARRETO, J. P.; CARDOSO, L. S.; HOFFMANN, L. T. Using

design patterns, components and metadata to design the command and monitoring

frameworks of the INPE’s satellite control system. In: INTERNATIONAL

CONFERENCE ON SPACE OPERATIONS (SPACEOPS), 9., 2008, Heidelberg,

Germany. Proceedings... Reston, VA, USA: American Institute of Aeronautics

and Astronautics, 2008. v. AIAA-2008-3591. 11, 93, 144, 147, 190, 193

201

CHAN, W.; ANDERSON, R. J.; BEAME, P.; BURNS, S.; MODUGNO, F.;

NOTKIN, D.; REESE, J. D. Model checking large software specifications. IEEE

Transactions on Software Engineering, v. 24, n. 7, p. 498–520, 1998. 44

CHILLAREGE, R.; BHANDARI, I. S.; CHAAR, J. K.; HALLIDAY, M. J.;

MOEBUS, D. S.; RAY, B. K.; WONG, M.-Y. Orthogonal defect classification - a

concept for in-process measurements. IEEE Transactions on Software

Engineering, v. 18, n. 11, p. 943–956, 1992. 176, 179

CHOW, T. S. Testing software design modeled by finite-state machines. IEEE

Transactions on Software Engineering, SE-4, n. 3, p. 178–187, 1978. 29

CLARKE, E. M.; EMERSON, E. A. Design and synthesis of synchronization

skeletons using branching time temporal logic. In: GRUMBERG, O.; VEITH, H.

(Ed.). 25 years of model checking. Berlin/Heidelberg, Germany: Springer

Berlin/Heidelberg, 2008. v. 5000, p. 196–215. Lecture Notes in Computer Science

(LNCS). 6, 11, 23, 190

CLARKE, E. M.; LERDA, F. Model checking: software and beyond. Journal of

Universal Computer Science, v. 13, n. 5, p. 639–649, 2007. 23, 24, 38

CRISTIÁ, M.; MONETTI, P. Implementing and applying the Stocks-Carrington

framework for model-based testing. In: BREITMAN, K.; CAVALCANTI, A. (Ed.).

Formal methods and software engineering. Berlin/Heidelberg, Germany:

Springer Berlin/Heidelberg, 2009. v. 5885, p. 167–185. Lecture Notes in Computer

Science (LNCS). 32

CRISTIÁ, M.; SANTIAGO, V.; VIJAYKUMAR, N. L. On comparing and

complementing two MBT approaches. In: LATIN-AMERICAN TEST

WORKSHOP (LATW), 11., 2010, Punta del Este, Uruguay. Proceedings...

Washington, DC, USA: IEEE Computer Society, 2010. p. 1–6. 17, 32

DIAS NETO, A. C. Seleção de técnicas de teste baseado em modelos. 2009.

220 p. Thesis (PhD in Computing and Systems Engineering) — Universidade

Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil, 2009. 2, 18, 34

DIAS NETO, A. C.; SUBRAMANYAN, R.; VIEIRA, M.; TRAVASSOS, G. H.

Characterization of model-based software testing approaches. Rio de

Janeiro, RJ, Brazil, 2007. 114p. Technical report. Available from:

<http://www.cos.ufrj.br/uploadfiles/1188491168.pdf>. Access in: Oct. 11,

2011. 2, 3, 18

202

http://www.cos.ufrj.br/uploadfiles/1188491168.pdf

DICK, J.; FAIVRE, A. Automating the generation and sequencing of test cases

from model-based specifications. In: WOODCOCK, J.; LARSEN, P. (Ed.). FME

’93: industrial-strength formal methods. Berlin/Heidelberg, Germany:

Springer Berlin/Heidelberg, 1993. v. 670, p. 268–284. Lecture Notes in Computer

Science (LNCS). 30

DWYER, M. B.; AVRUNIN, G. S.; CORBETT, J. C. Patterns in property

specifications for finite-state verification. In: INTERNATIONAL CONFERENCE

ON SOFTWARE ENGINEERING (ICSE), 21., 1999, Los Angeles, CA, USA.

Proceedings... New York, NY, USA: ACM, 1999. p. 411–420. 11, 23, 24, 40, 44,

163, 166, 171, 190, 194

EASTERBROOK, S. The difference between verification and validation.

2010. Available from: <http://www.easterbrook.ca/steve/?p=2030>. Access

in: Oct. 24, 2011. 13

EASTERBROOK, S.; CALLAHAN, J. Formal methods for verification and

validation of partial specifications: a case study. Journal of Systems and

Software, v. 40, n. 3, p. 199–210, 1998. 43, 183

EL-FAR, I. K.; WHITTAKER, J. A. Model-based software testing. In:

MARCINIAK, J. J. (Ed.). Encyclopedia of software engineering. USA: Wiley,

2001. 2, 17, 91

EMAM, K. E.; KORU, A. G. A replicated survey of it software project failures.

IEEE Software, v. 25, p. 84–90, 2008. 4, 187

ENGELS, A.; FEIJS, L.; MAUW, S. Test generation for intelligent networks using

model checking. In: BRINKSMA, E. (Ed.). Tools and algorithms for the

construction and analysis of systems. Berlin/Heidelberg, Germany: Springer

Berlin/Heidelberg, 1997. v. 1217, p. 384–398. Lecture Notes in Computer Science

(LNCS). 46

ERNST, M. D.; COCKRELL, J.; GRISWOLD, W. G.; NOTKIN, D. Dynamically

discovering likely program invariants to support program evolution. IEEE

Transactions on Software Engineering, v. 27, n. 2, p. 99–123, 2001. 3

EUROPEAN COOPERATION FOR SPACE STANDARDIZATION (ECSS).

ECSS-E-70-41A: ECSS space engineering - ground systems and operations -

telemetry and telecommand packet utilization. Noordwijk, The Netherlands, 2003.

228 p. 45

203

http://www.easterbrook.ca/steve/?p=2030

. ECSS-S-ST-00C: ECSS system - description, implementation and general

requirements. Noordwijk, The Netherlands, 2008. 34 p. 47, 143, 147

. ECSS-E-ST-10-06C: ECSS space engineering - technical requirements

specification. Noordwijk, The Netherlands, 2009. 31 p. 155

EUROPEAN SPACE AGENCY (ESA). Ariane-5: Learning from flight 501 and

preparing for 502. Paris, France, 1997. ESA Bulletin Nr. 89. Available from:

<http://www.esa.int/esapub/bulletin/bullet89/dalma89.htm>. Access in:

Oct. 8, 2011. 1

FABBRINI, F.; FUSANI, M.; GNESI, S.; LAMI, G. The linguistic approach to the

natural language requirements quality: benefit of the use of an automatic tool. In:

ANNUAL NASA GODDARD SOFTWARE ENGINEERING WORKSHOP, 26.,

2001, Greenbelt, MD, USA. Proceedings... Los Alamitos, CA, USA: IEEE, 2001.

p. 97–105. 35

FANTECHI, A.; GNESI, S.; LAMI, G.; MACCARI, A. Applications of linguistic

techniques for use case analysis. Requirements Engineering, v. 8, n. 3, p.

161–170, 2003. 8, 35, 40

FANTECHI, A.; GNESI, S.; RISTORI, G.; CARENINI, M.; VANOCCHI, M.;

MORESCHINI, P. Assisting requirement formalization by means of natural

language translation. Formal Methods in System Design, v. 4, n. 3, p.

243–263, 1994. 41, 42

FANTECHI, A.; SPINICCI, E. A content analysis technique for inconsistency

detection in software requirements documents. In: WORKSHOP EM

ENGENHARIA DE REQUISITOS (WER), 8., 2005, Porto, Portugal. Anais...

[S.l.], 2005. p. 245–256. 39, 64, 65

FERGUSON, B.; LAMI, G. Automated natural language analysis of

requirements. Carnegie Mellon University, 2005. 39 slides. Available from:

<http:

//www.incose.org/delvalley/data/INCOSE-preview-QuARS_21June05.ppt>.

Access in: Apr. 20, 2009. 4, 35

FONDAZIONE BRUNO KESSLER / CARNEGIE MELLON UNIVERSITY /

UNIVERSITY OF GENOVA / UNIVERSITY OF TRENTO. NuSMV Home

Page. 2011. Available from: <http://nusmv.fbk.eu/>. Access in: June 10, 2011.

25, 174

204

http://www.esa.int/esapub/bulletin/bullet89/dalma89.htm
http://www.incose.org/delvalley/data/INCOSE-preview-QuARS_21June05.ppt
http://www.incose.org/delvalley/data/INCOSE-preview-QuARS_21June05.ppt
http://nusmv.fbk.eu/

FRASER, M. D.; KUMAR, K.; VAISHNAVI, V. K. Informal and formal

requirements specification languages: bridging the gap. IEEE Transactions on

Software Engineering, v. 17, n. 5, p. 454–466, 1991. 41, 159

FROHLICH, P.; LINK, J. Automated test case generation from dynamic models.

In: BERTINO, E. (Ed.). ECOOP 2000 - object-oriented programming.

Berlin/Heidelberg, Germany: Springer Berlin/Heidelberg, 2000. v. 1850, p.

472–491. Lecture Notes in Computer Science (LNCS). 30, 31

FUCHS, N. E.; SCHWERTEL, U.; SCHWITTER, R. Attempto Controlled

English - not just another logic specification language. In: FLENER, P. (Ed.).

Logic-based program synthesis and transformation. Berlin/Heidelberg,

Germany: Springer Berlin/Heidelberg, 1999. v. 1559, p. 1–20. Lecture Notes in

Computer Science (LNCS). 38, 41, 158

FUCHS, N. E.; SCHWERTEL, U.; TORGE, S. A natural language front-end to

model generation. Journal of Language and Computation, v. 1, n. 2, p.

199–214, 2000. 38, 41, 158

GALORATH INCORPORATED. Software project failure costs billions.

Better estimation & planning can help. 2008. Available from:

<http://www.galorath.com/wp/

software-project-failure-costs-billions-better-estimation-planning-can-help.

php>. Access in: Oct. 19, 2011. 187

GANAI, M.; GUPTA, A. SAT-Based scalable formal verification solutions.

New York, NY, USA: Springer Science+Business Media, 2007. 326 p. 23

GARGANTINI, A.; HEITMEYER, C. Using model checking to generate tests

from requirements specifications. ACM SIGSOFT Software Engineering

Notes, v. 24, n. 6, p. 146–162, 1999. 42, 46

GERVASI, V.; ZOWGHI, D. Reasoning about inconsistencies in natural language

requirements. ACM Transactions on Software Engineering and

Methodology, v. 14, n. 3, p. 277–330, 2005. 9, 37, 38, 41, 158

GNESI, S.; LAMI, G.; TRENTANNI, G. An automatic tool for the analysis of

natural language requirements. International Journal of Computer Systems

Science and Engineering, v. 20, n. 1, p. 1–13, 2005. 8, 35, 37

GODBOLE, N. S. Software quality assurance: principles and practice. Oxford,

UK: Alpha Science International, 2006. 419 p. 1

205

http://www.galorath.com/wp/software-project-failure-costs-billions-better-estimation-planning-can-help.php
http://www.galorath.com/wp/software-project-failure-costs-billions-better-estimation-planning-can-help.php
http://www.galorath.com/wp/software-project-failure-costs-billions-better-estimation-planning-can-help.php

GRAPHVIZ.ORG. Graphviz - graph visualization software. 2011. Available

from: <http://www.graphviz.org/>. Access in: Oct. 21, 2011. 193

HALL, A. Seven myths of formal methods. IEEE Software, v. 7, p. 11–19, 1990. 6

HAREL, D. Statecharts: a visual formalism for complex systems. Science of

Computer Programming, v. 8, p. 231–274, 1987. 10, 17, 33, 43

HAREL, D.; PNUELI, A.; SCHMIDT, J. P.; SHERMAN, R. On the formal

semantics of Statecharts (extended abstract). In: IEEE SYMPOSIUM ON LOGIC

IN COMPUTER SCIENCE (LICS), 2., 1987, Ithaca, NY, USA. Proceedings...

Washington, DC, USA: IEEE Computer Society, 1987. p. 54–64. 17, 19, 32, 90, 99

HARTMANN, J.; IMOBERDORF, C.; MEISINGER, M. UML-based integration

testing. In: ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON SOFTWARE

TESTING AND ANALYSIS (ISSTA), 2000, Portland, OR, USA. Proceedings...

New York, NY, USA: ACM, 2000. p. 60–70. 31

HARTMANN, J.; VIEIRA, M.; FOSTER, H.; RUDER, A. A UML-based approach

to system testing. Journal of Innovations in System Software Engineering,

v. 1, p. 12–24, 2005. 28

HEIMDAHL, M. P. E.; LEVESON, N. G. Completeness and consistency in

hierarchical state-based requirements. IEEE Transactions on Software

Engineering, v. 22, n. 6, p. 363–377, 1996. 43, 183

HEITMEYER, C.; KIRBY JR., J.; LABAW, B.; ARCHER, M.; BHARADWAJ,

R. Using abstraction and model checking to detect safety violations in

requirements specifications. IEEE Transactions on Software Engineering,

v. 24, n. 11, p. 927–948, 1998. 42, 183

HIERONS, R. M. Testing from a Z specification. The Journal of Software

Testing, Verification and Reliability, v. 7, n. 1, p. 19–33, 1997. 17, 29

HIERONS, R. M.; BOGDANOV, K.; BOWEN, J. P.; CLEAVELAND, R.;

DERRICK, J.; DICK, J.; GHEORGHE, M.; HARMAN, M.; KAPOOR, K.;

KRAUSE, P.; LüTTGEN, G.; SIMONS, A. J. H.; VILKOMIR, S.; WOODWARD,

M. R.; ZEDAN, H. Using formal specifications to support testing. ACM

Computing Surveys, v. 41, n. 2, p. 1–76, 2009. 33

HOARE, C. A. R. Communicating Sequential Processes. Englewood Cliffs,

NJ, USA: Prentice-Hall, 1985. 238 p. 33

206

http://www.graphviz.org/

HOLT, A.; KLEIN, E.; GROVER, C. Natural language for hardware verification:

semantic interpretation and model checking. In: WORKSHOP ON INFERENCE

IN COMPUTATIONAL SEMANTICS (ICOS-1), 1., 1999, Amsterdam, The

Netherlands. Proceedings... [S.l.], 1999. p. 133–137. 41, 42

HOLZMANN, G. J. The SPIN model checker: primer and reference manual.

USA: Addison-Wesley Professional, 2003. 608 p. 24, 40, 43, 46

HONG, H. S.; KIM, Y. G.; CHA, S. D.; BAE, D. H.; URAL, H. A test sequence

selection method for Statecharts. Software Testing, Verification and

Reliability, v. 10, n. 4, p. 203–227, 2000. 30

HOPCROFT, J. E.; ULLMAN, J. D. Introduction to automata theory,

languages, and computation. Reading, MA, USA: Addison Wesley, 1979. 418

p. 19, 33

HOWDEN, W. E. Reliability of the path analysis testing strategy. IEEE

Transactions on Software Engineering, SE-2, n. 3, p. 208–215, 1976. 30

HUNTER, A.; NUSEIBEH, B. Managing inconsistent specifications: reasoning,

analysis, and action. ACM Transactions on Software Engineering and

Methodology, v. 7, n. 4, p. 335–367, 1998. 38

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS, CIÊNCIAS ESPACIAIS

E ATMOSFÉRICAS (INPE.CEA). Q00-ETS-v03: Especificação Técnica do

Software. São José dos Campos, SP, Brazil, 2006. 82 p. Internal publication. 159

. Q00-PPDEP-v05: Protocolo de Comunicação PDC-EPPs. São José dos

Campos, SP, Brazil, 2006. 8 p. Internal publication. 159

. Q00-PPDOB-v06: Protocolo de Comunicação PDC-OBDH. São José dos

Campos, SP, Brazil, 2006. 28 p. Internal publication. 159

. Q00-RB-v08: Requisitos de Base. São José dos Campos, SP, Brazil, 2006.

29 p. Internal publication. 159

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS, DIVISÃO DE

DESENVOLVIMENTO DE SISTEMAS DE SOLO (INPE.DSS).

DSS-INT-SATCS-PR-005: SATCS Design Description. São José dos Campos,

SP, Brazil, 2010. 33 p. Internal publication. 145

JIANG, J. J.; CONRATH, D. W. Semantic similarity based on corpus statistics

and lexical taxonomy. In: INTERNATIONAL CONFERENCE RESEARCH ON

207

COMPUTATIONAL LINGUISTICS (ROCLING), 10., 1997, Taipei, Taiwan.

Proceedings... [S.l.], 1997. p. 19–33. 27

JURAFSKY, D.; MARTIN, J. H. Speech and language processing: an

introduction to natural language processing, computational linguistics and speech

recognition. Englewood Cliffs, NJ, USA: Prentice-Hall, 2000. 950 p. 25

KIM, H. Y.; SHELDON, F. T. Testing software requirements with Z and

Statecharts applied to an embedded control system. Software Quality Journal,

v. 12, n. 3, p. 231–264, 2004. 39, 41, 159, 183

KO, Y.; PARK, S.; SEO, J.; CHOI, S. Using classification techniques for informal

requirements in the requirements analysis-supporting system. Information and

Software Technology, v. 49, n. 11-12, p. 1128–1140, 2007. 5

KOH, K. Y.; SEONG, P. H. SMV model-based safety analysis of software

requirements. Reliability Engineering and System Safety, v. 94, n. 2, p.

320–331, 2009. 41, 42

KONRAD, S.; CHENG, B. H. C. Real-time specification patterns. In:

INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE),

27., 2005, St. Louis, MO, USA. Proceedings... New York, NY, USA: ACM, 2005.

p. 372–381. 40, 44

. Automated analysis of natural language properties for UML models. In:

BRUEL, J.-M. (Ed.). Satellite events at the MoDELS 2005 conference.

Berlin/Heidelberg, Germany: Springer Berlin/Heidelberg, 2006. v. 3844, p. 48–57.

Lecture Notes in Computer Science (LNCS). 40, 41

LAMI, G.; TRENTANNI, G. An automatic tool for improving the quality of

software requirements. ERCIM News, n. 58, p. 18–19, 2004. 35

LAMSWEERDE, A. van. Requirements engineering in the year 00: a research

perspective. In: INTERNATIONAL CONFERENCE ON SOFTWARE

ENGINEERING (ICSE), 22., 2000, Limerick, Ireland. Proceedings... New York,

NY, USA: ACM, 2000. p. 5–19. 4

LAPRIE, J.-C.; KANOUN, K. Software reliability and system reliability. In: LYU,

M. R. (Ed.). Handbook of software reliability engineering. New York, NY,

USA: McGraw-Hill, 1996. chapter 2, p. 27–69. 13

208

LEACOCK, C.; CHODOROW, M. Combining local context and WordNet

similarity for word sense identification. In: FELLBAUM, C. (Ed.). WordNet: an

electronic lexical database. Cambridge, MA, USA: The MIT Press, 1998.

chapter 11, p. 265–283. 27

LEE, D.; YANNAKAKIS, M. Principles and methods of testing finite state

machines: a survey. Proceedings of the IEEE, v. 84, n. 8, p. 1090–1123, 1996.

17, 29, 33

LEI, Y.; KACKER, R.; KUHN, D. R.; OKUN, V.; LAWRENCE, J. IPOG: A

general strategy for t-way software testing. In: ANNUAL IEEE

INTERNATIONAL CONFERENCE AND WORKSHOPS ON THE

ENGINEERING OF COMPUTER-BASED SYSTEMS (ECBS), 14., 2007,

Tucson, AZ, USA. Proceedings... Washington, DC, USA: IEEE Computer

Society, 2007. p. 549–556. 54, 192

LEI, Y.; TAI, K.-C. In-Parameter-Order: A test generation strategy for pairwise

testing. In: IEEE INTERNATIONAL SYMPOSIUM ON HIGH-ASSURANCE

SYSTEMS ENGINEERING (HASE), 3., 1998, Washington, DC, USA.

Proceedings... Washington, DC, USA: IEEE Computer Society, 1998. p.

254–261. 53

LESK, M. Automatic sense disambiguation using machine readable dictionaries:

how to tell a pine cone from an ice cream cone. In: INTERNATIONAL

CONFERENCE ON SYSTEMS DOCUMENTATION (SIGDOC), 5., 1986,

Toronto, ON, Canada. Proceedings... New York, NY, USA: ACM, 1986. p.

24–26. 27

LEVESON, N. G.; TURNER, C. S. An investigation of the Therac-25 accidents.

Computer, v. 26, n. 7, p. 18–41, 1993. 1, 187

LIANG, J.; PALMER, J. D. A pattern matching and clustering based approach for

supporting requirements transformation. In: IEEE INTERNATIONAL

CONFERENCE ON REQUIREMENTS ENGINEERING (ICRE), 1., 1994,

Colorado Springs, CO, USA. Proceedings... Washington, DC, USA: IEEE

Computer Society, 1994. p. 180–183. 41, 159

LORENZOLI, D.; MARIANI, L.; PEZZÈ, M. Automatic generation of software

behavioral models. In: INTERNATIONAL CONFERENCE ON SOFTWARE

ENGINEERING (ICSE), 30., 2008, Leipzig, Germany. Proceedings... New York,

NY, USA: ACM, 2008. p. 501–510. 3

209

LU, C.-W.; CHANG, C.-H.; CHU, W. C.; CHENG, Y.-W.; CHANG, H.-C. A

requirement tool to support model-based Requirement Engineering. In: ANNUAL

IEEE INTERNATIONAL COMPUTER SOFTWARE AND APPLICATIONS

CONFERENCE (COMPSAC), 32., 2008, Turku, Finland. Proceedings...

Washington, DC, USA: IEEE Computer Society, 2008. p. 712–717. 39, 159

MARCUS, M. P.; MARCINKIEWICZ, M. A.; SANTORINI, B. Building a large

annotated corpus of English: The Penn Treebank. Computational Linguistics,

v. 19, n. 2, p. 313–330, 1993. 65

MARNEFFE, M.-C.; MANNING, C. D. The Stanford typed dependencies

representation. In: INTERNATIONAL CONFERENCE ON COMPUTATIONAL

LINGUISTICS (COLING) - WORKSHOP ON CROSS-FRAMEWORK AND

CROSS-DOMAIN PARSER EVALUATION, 22., 2008, Manchester, United

Kingdom. Proceedings... Stroudsburg, PA, USA: Association for Computational

Linguistics, 2008. p. 1–8. 72, 192

MASIERO, P. C.; MALDONADO, J. C.; BOAVENTURA, I. G. A reachability

tree for Statecharts and analysis of some properties. Information and Software

Technology, v. 36, n. 10, p. 615–624, 1994. 19, 63

MATHUR, A. P. Foundations of software testing. Delhi, India: Dorling

Kindersley (India), Pearson Education in South Asia, 2008. 689 p. 3, 10, 15, 17,

18, 21, 22, 53, 91, 188

McMILLAN, K. L. Symbolic model checking. New York, NY, USA:

Springer-Verlag, 1993. 216 p. 42, 43, 44, 46

MICH, L. NL-OOPS: from natural language to object oriented requirements using

the natural language processing system LOLITA. Natural Language

Engineering, v. 2, n. 2, p. 161–187, 1996. 36, 158

MICH, L.; FRANCH, M.; INVERARDI, P. L. N. Market research for requirements

analysis using linguistic tools. Requirements Engineering, v. 9, n. 1, p. 40–56,

2004. 7, 8, 187

MICH, L.; MYLOPOULOS, J.; ZENI, N. Improving the quality of

conceptual models with NLP tools: an experiment. Trento, Italy:

University of Trento, 2002. 12 p. (DIT-02-0047). 37

210

MILLER, G. A. Nouns in WordNet. In: FELLBAUM, C. (Ed.). WordNet: an

electronic lexical database. Cambridge, MA, USA: The MIT Press, 1998.

chapter 1, p. 23–46. 26

MILLER, G. A.; LEACOCK, C.; TENGI, R.; BUNKER, R. T. A semantic

concordance. In: WORKSHOP ON HUMAN LANGUAGE TECHNOLOGY

(HLT), 1993, Princeton, NJ, USA. Proceedings... Stroudsburg, PA, USA:

Association for Computational Linguistics, 1993. p. 303–308. 81

MORGAN, R.; GARIGLIANO, R.; CALLAGHAN, P.; PORIA, S.; SMITH, M.;

URBANOWICZ, A.; COLLINGHAM, R.; COSTANTINO, M.; COOPER, C.;

LOLITA Group. University of Durham: description of the LOLITA system as used

in MUC-6. In: MESSAGE UNDERSTANDING CONFERENCE (MUC-6), 6.,

1995, Columbia, MD, USA. Proceedings... [S.l.], 1995. p. 71–85. 36, 37

MYERS, G. J. The art of software testing. 2. ed. Hoboken, NJ, USA: John

Wiley & Sons, 2004. 234 p. 14

NASA. NASA Software Assurance: Software Assurance Definitions. 2009.

Available from:

<http://www.hq.nasa.gov/office/codeq/software/umbrella_defs.htm>.

Access in: Oct. 8, 2011. 1

NASA AMES RESEARCH CENTER. Java Pathfinder Home Page. 2011.

Available from: <http://babelfish.arc.nasa.gov/trac/jpf>. Access in: Sept.

27, 2011. 25

NASA JET PROPULSION LABORATORY. NASA Jet Propulsion

Laboratory: Mars Climate Orbiter Mission. 2011. Available from:

<http://www.jpl.nasa.gov/missions/missiondetails.cfm?mission=MCO>.

Access in: Oct. 8, 2011. 1

NATT OCH DAG, J.; REGNELL, B.; CARLSHAMRE, P.; ANDERSSON, M.;

KARLSSON, J. A feasibility study of automated natural language requirements

analysis in market-driven development. Requirements Engineering, v. 7, n. 1,

p. 20–33, 2002. 40

NAVIGLI, R. Word sense disambiguation: A survey. ACM Computing Surveys,

v. 41, n. 2, p. 1–69, 2009. 10, 25, 26, 91, 188

NELKEN, R.; FRANCEZ, N. Automatic translation of natural language system

specifications into temporal logic. In: ALUR, R.; HENZINGER, T. (Ed.).

211

http://www.hq.nasa.gov/office/codeq/software/umbrella_defs.htm
http://babelfish.arc.nasa.gov/trac/jpf
http://www.jpl.nasa.gov/missions/missiondetails.cfm?mission=MCO

Computer aided verification. Berlin/Heidelberg, Germany: Springer

Berlin/Heidelberg, 1996. v. 1102, p. 360–371. Lecture Notes in Computer Science

(LNCS). 41, 42

NETBEANS.ORG. Welcome to NetBeans. 2011. Available from:

<http://netbeans.org/>. Access in: Dec. 28, 2011. 231

NUSEIBEH, B.; EASTERBROOK, S. Requirements engineering: a roadmap. In:

CONFERENCE ON THE FUTURE OF SOFTWARE ENGINEERING, 2000,

Limerick, Ireland. Proceedings... New York, NY, USA: ACM, 2000. p. 35–46. 5,

6, 8

OFFUTT, J.; ABDURAZIK, A. Generating tests from UML specifications. In:

FRANCE, R.; RUMPE, B. (Ed.). UML’99 - the unified modeling language.

Berlin/Heidelberg, Germany: Springer Berlin/Heidelberg, 1999. v. 1723, p.

416–429. Lecture Notes in Computer Science (LNCS). 30

ORACLE. Javadoc tool home page. 2011. Available from:

<http://www.oracle.com/technetwork/java/javase/documentation/

index-jsp-135444.html>. Access in: Dec. 28, 2011. 233

OSTRAND, T. J.; BALCER, M. J. The category-partition method for specifying

and generating functional tests. Communications of the ACM, v. 31, n. 6, p.

676–686, 1988. 15, 28, 29, 31

PARADKAR, A. Towards model-based generation of self-priming and self-checking

conformance tests for interactive systems. In: ACM SYMPOSIUM ON APPLIED

COMPUTING (SAC), 18., 2003, Melbourne, FL, USA. Proceedings... New York,

NY, USA: ACM, 2003. p. 1110–1117. 29

PARK, S.; KIM, H.; KO, Y.; SEO, J. Implementation of an efficient

requirements-analysis supporting system using similarity measure techniques.

Information and Software Technology, v. 42, n. 6, p. 429–438, 2000. 37, 183

PEDERSEN, T.; PATWARDHAN, S.; MICHELIZZI, J. WordNet::Similarity:

measuring the relatedness of concepts. In: ANNUAL CONFERENCE OF THE

NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR

COMPUTATIONAL LINGUISTICS (NAACL), 5., 2004, Boston, MA, USA.

Proceedings... Stroudsburg, PA, USA: Association for Computational

Linguistics, 2004. p. 38–41. 81

212

http://netbeans.org/
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html

PETRENKO, A.; YEVTUSHENKO, N. Testing from partial deterministic FSM

specifications. IEEE Transactions on Computers, v. 54, n. 9, p. 1154–1165,

2005. 18, 29, 90

PIMONT, S.; RAULT, J. C. A software reliability assessment based on a structural

and behavioral analysis of programs. In: INTERNATIONAL CONFERENCE ON

SOFTWARE ENGINEERING (ICSE), 2., 1976, San Francisco, CA, USA.

Proceedings... New York, NY, USA: ACM, 1976. p. 486–491. 29, 31

PONTES, R. P.; ESSADO, M.; VÉRAS, P. C.; AMBRÓSIO, A. M.; VILLANI, E.

A comparative analysis of two verification techniques for DEDS: model checking

versus model-based testing. In: INTERNATIONAL IFAC WORKSHOP ON

DISCRETE-EVENT SYSTEM DESIGN (DESDes), 4., 2009, Valencia, Spain.

Proceedings... Oxford, UK: Elsevier Ltd., 2009. 45, 184

. Model-based refinement of requirement specification: a comparison of two

V&V approaches. In: INTERNATIONAL CONGRESS OF MECHANICAL

ENGINEERING (COBEM), 20., 2009, Gramado, RS, Brazil. Proceedings... Rio

de Janeiro, RJ, Brazil: ABCM, 2009. 44, 45, 183, 184

PONTES, R. P.; VILLANI, E.; AMBRÓSIO, A. M. Modelagem e verificação

formal de software embarcado espacial segundo a norma PUS. In: CONGRESSO

BRASILEIRO DE AUTOMÁTICA (CBA), 18., 2010, Bonito, MS, Brazil.

Proceedings... Campinas, SP, Brazil: Sociedade Brasileira de Automática, 2010.

p. 4779–4786. 45, 184

PORTER, A. A.; VOTTA JR., L. G.; BASILI, V. R. Comparing detection

methods for software requirements inspections: a replicated experiment. IEEE

Transactions on Software Engineering, v. 21, n. 6, p. 563–575, 1995. 4

PRESSMAN, R. S. Software engineering: a practitioner’s approach. 5. ed. New

York, NY, USA: McGraw-Hill, 2001. 860 p. 5

QUEILLE, J.-P.; SIFAKIS, J. Specification and verification of concurrent systems

in CESAR. In: GRUMBERG, O.; VEITH, H. (Ed.). 25 years of model

checking. Berlin/Heidelberg, Germany: Springer Berlin/Heidelberg, 2008. v. 5000,

p. 216–230. Lecture Notes in Computer Science (LNCS). 6, 11, 23, 190

RAPPS, S.; WEYUKER, E. J. Selecting software test data using data flow

information. IEEE Transactions on Software Engineering, SE-11, n. 4, p.

367–375, 1985. 20

213

RAYSON, P.; GARSIDE, R.; SAWYER, P. Language engineering for the

recovery of requirements from legacy documents. Lancaster, UK: Lancaster

University, 1999. 17 p. 192

. Assisting requirements engineering with semantic document analysis. In:

INTERNATIONAL CONFERENCE ON COMPUTER-ASSISTED

INFORMATION RETRIEVAL (RIAO: RECHERCHE D’INFORMATION

ASSISTÉE PAR ORDINATEUR), 6., 2000, Paris, France. Proceedings... [S.l.],

2000. p. 1363–1371. 192

RUSSELL, S. J.; NORVIG, P. Artificial intelligence: a modern approach.

Englewood Cliffs, NJ, USA: Prentice-Hall, 1995. 932 p. 25

SANTIAGO JÚNIOR, V. A.; CRISTIÁ, M.; VIJAYKUMAR, N. L. Model-based

test case generation using Statecharts and Z: a comparison and a combined

approach. São José dos Campos: INPE, 2010. 72 p. (INPE-16677-RPQ/850).

Available from:

<http://urlib.net/sid.inpe.br/mtc-m19@80/2010/02.26.14.05>. Access in:

Apr. 14, 2010. 63, 108, 112, 117, 125, 126, 136

SANTIAGO JÚNIOR, V. A.; VIJAYKUMAR, N. L. Generating model-based test

cases from natural language requirements for space application software. Software

Quality Journal, v. 20, n. 1, p. 77–143, 2012. DOI: 10.1007/s11219-011-9155-6.

2, 47, 93

SANTIAGO, V.; AMARAL, A. S. M.; VIJAYKUMAR, N. L.;

MATTIELLO-FRANCISCO, M. F.; MARTINS, E.; LOPES, O. C. A practical

approach for automated test case generation using Statecharts. In: ANNUAL

INTERNATIONAL COMPUTER SOFTWARE & APPLICATIONS

CONFERENCE (COMPSAC) - INTERNATIONAL WORKSHOP ON TESTING

AND QUALITY ASSURANCE FOR COMPONENT-BASED SYSTEMS

(TQACBS), 30., 2006, Chicago, IL, USA. Proceedings... Los Alamitos, CA,

USA: IEEE Computer Society, 2006. p. 183–188. 31, 63

SANTIAGO, V.; MATTIELLO-FRANCISCO, F.; COSTA, R.; SILVA, W. P.;

AMBROSIO, A. M. QSEE project: an experience in outsourcing software

development for space applications. In: INTERNATIONAL CONFERENCE ON

SOFTWARE ENGINEERING & KNOWLEDGE ENGINEERING (SEKE), 19.,

2007, Boston, MA, USA. Proceedings... Skokie, IL, USA: Knowledge Systems

Institute Graduate School, 2007. p. 51–56. 10, 11, 47, 48, 49, 50, 91, 93, 147, 172,

182, 190

214

http://urlib.net/sid.inpe.br/mtc-m19@80/2010/02.26.14.05

SANTIAGO, V.; SILVA, W. P.; VIJAYKUMAR, N. L. Shortening test case

execution time for embedded software. In: IEEE INTERNATIONAL

CONFERENCE ON SECURE SYSTEM INTEGRATION AND RELIABILITY

IMPROVEMENT (SSIRI), 2., 2008, Yokohama, Japan. Proceedings...

Washington, DC, USA: IEEE Computer Society, 2008. p. 81–88. 1 CD-ROM. 2,

15, 152

SANTIAGO, V.; VIJAYKUMAR, N. L.; GUIMARAES, D.; AMARAL, A. S.;

FERREIRA, E. An environment for automated test case generation from

Statechart-based and Finite State Machine-based behavioral models. In:

INTERNATIONAL CONFERENCE ON SOFTWARE TESTING,

VERIFICATION AND VALIDATION (ICST) - WORKSHOP ON ADVANCES

IN MODEL BASED TESTING (A-MOST), 1., 2008, Lillehammer, Norway.

Proceedings... Washington, DC, USA: IEEE Computer Society, 2008. p. 63–72. 1

CD-ROM. 2, 10, 17, 31, 61, 188

SARMA, M.; MALL, R. Automatic generation of test specifications for coverage of

system state transitions. Information and Software Technology, v. 51, n. 2, p.

418–432, 2009. 30

SIDHU, D. P.; LEUNG, T. K. Formal methods for protocol testing: a detailed

study. IEEE Transactions on Software Engineering, v. 15, n. 4, p. 413–426,

1989. 17, 29, 62, 152

SINGH, H.; CONRAD, M.; SADEGHIPOUR, S. Test case design based on Z and

the classification-tree method. In: INTERNATIONAL CONFERENCE ON

FORMAL ENGINEERING METHODS (ICFEM), 1., 1997, Hiroshima, Japan.

Proceedings... Washington, DC, USA: IEEE Computer Society, 1997. p. 81–90.

29

SINHA, A.; PARADKAR, A.; WILLIAMS, C. On generating EFSM models from

use cases. In: INTERNATIONAL WORKSHOP ON SCENARIOS AND STATE

MACHINES (SCESM), 6., 2007, Minneapolis, MN, USA. Proceedings...

Washington, DC, USA: IEEE Computer Society, 2007. p. 1–8. 8, 29

SINHA, R.; MIHALCEA, R. Unsupervised graph-based word sense disambiguation

using measures of word semantic similarity. In: IEEE INTERNATIONAL

CONFERENCE ON SEMANTIC COMPUTING (ICSC), 1., 2007, Irvine, CA,

USA. Proceedings... Washington, DC, USA: IEEE Computer Society, 2007. p.

363–369. 27, 28, 79, 81, 82

215

SLEATOR, D. D.; TEMPERLEY, D. Parsing English with a link grammar. In:

INTERNATIONAL WORKSHOP ON PARSING TECHNOLOGIES, 3., 1993,

Tilburg, The Netherlands. Proceedings... [S.l.], 1993. p. 277–292. 39, 65

SNEED, H. M. Testing against natural language requirements. In:

INTERNATIONAL CONFERENCE ON QUALITY SOFTWARE (QSIC), 7.,

2007, Portland, OR, USA. Proceedings... Washington, DC, USA: IEEE

Computer Society, 2007. p. 380–387. 34, 158

SOLEMON, B.; SAHIBUDDIN, S.; GHANI, A. A. A. Requirements engineering

problems and practices in software companies: An industrial survey. In: SLEZAK,

D.; KIM, T.-h.; KIUMI, A.; JIANG, T.; VERNER, J.; ABRAHAO, S. (Ed.).

Advances in software engineering. Berlin/Heidelberg, Germany: Springer

Berlin/Heidelberg, 2009. v. 59, p. 70–77. Communications in Computer and

Information Science. 5

SOUZA, É. F. Geração de casos de teste para sistemas da área espacial

usando critérios de teste para máquinas de estados finitos. 2010. 133 p.

(INPE-16682-TDI/1627). Dissertation (Master in Applied Computing) — Instituto

Nacional de Pesquisas Espaciais (INPE), São José dos Campos, SP, Brazil, 2010.

62, 152

SOUZA, S. R. S. Validação de especificações de sistemas reativos: definição

e análise de critérios de teste. 2000. 264 p. Thesis (PhD in Applied Physics) —

Universidade de São Paulo (USP), São Carlos, SP, Brazil, 2000. 19, 21, 62, 153

SPIVEY, J. M. The Z notation: A reference manual. 2. ed. Oxford, England: J.

M. Spivey, 1998. 168 p. 33

THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS

(IEEE). ANSI/IEEE Std 830-1984: IEEE guide to software requirements

specifications. New York, NY, USA, 1984. 24 p. 37, 163

. IEEE Std 610.12-1990: IEEE standard glossary of software engineering

terminology. New York, NY, USA, 1990. 83 p. 1, 3, 4, 13, 22

. IEEE Std 829-1998: IEEE standard for software test documentation.

New York, NY, USA, 1998. 52 p. 14

THE OBJECT MANAGEMENT GROUP (OMG). OMG Unified Modeling

Language (OMG UML), Superstructure, V2.1.2. Needham, MA, USA,

2007. 722 p. 3, 6, 17

216

TOUTANOVA, K.; KLEIN, D.; MANNING, C. D.; SINGER, Y. Feature-rich

part-of-speech tagging with a cyclic dependency network. In: CONFERENCE OF

THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR

COMPUTATIONAL LINGUISTICS ON HUMAN LANGUAGE TECHNOLOGY,

2003, Edmonton, Canada. Proceedings... [S.l.], 2003. p. 173–180. 10, 65, 91, 156,

188

TRAVASSOS, G. H.; SHULL, F.; FREDERICKS, M.; BASILI, V. R. Detecting

defects in object-oriented designs: using reading techniques to increase software

quality. In: ACM SIGPLAN CONFERENCE ON OBJECT-ORIENTED

PROGRAMMING, SYSTEMS, LANGUAGES, AND APPLICATIONS (OOPSLA

’99), 14., 1999, Denver, CO, USA. Proceedings... New York, NY, USA: ACM,

1999. p. 47–56. 4

UNIVERSITY OF OTTAWA. Alan Williams’ Page. 2008. Available from:

<http://www.site.uottawa.ca/˜awilliam/>. Access in: Oct. 15, 2009. 53, 149,

156, 192, 232

UNIVERSITY OF SUSSEX. David Hope’s page. 2010. Available from:

<http://www.cogs.susx.ac.uk/users/drh21/>. Access in: July 22, 2010. 80,

156

UNIVERSITY OF ZURICH. Attempto Project. 2009. Available from:

<http://attempto.ifi.uzh.ch/site/tools/>. Access in: Feb. 05, 2010. 38

UTTING, M.; LEGEARD, B. Practical Model-Based Testing: A tools

approach. Waltham, MA, USA: Morgan Kaufmann Publishers, 2007. 456 p. 17, 18,

91

VIJAYKUMAR, N. L.; CARVALHO, S. V.; FRANCÊS, C. R. L.;

ABDURAHIMAN, V.; AMARAL, A. S. M. Performance evaluation from

Statecharts representation of complex systems: Markov approach. In:

CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO (CSBC) -

WORKSHOP EM DESEMPENHO DE SISTEMAS COMPUTACIONAIS E DE

COMUNICAÇÃO, 26., 2006, Campo Grande, MS, Brazil. Proceedings... Porto

Alegre, RS, Brazil: Sociedade Brasileira de Computação, 2006. p. 183–202. 31, 63

WEYUKER, E. J. On testing non-testable programs. The Computer Journal,

v. 25, n. 4, p. 465–470, 1982. 15

WILSON, W. M.; ROSENBERG, L. H.; HYATT, L. E. Automated analysis of

requirement specifications. In: INTERNATIONAL CONFERENCE ON

217

http://www.site.uottawa.ca/~awilliam/
http://www.cogs.susx.ac.uk/users/drh21/
http://attempto.ifi.uzh.ch/site/tools/

SOFTWARE ENGINEERING (ICSE), 19., 1997, Boston, MA, USA.

Proceedings... New York, NY, USA: ACM, 1997. p. 161–171. 8, 35

WITTEN, I. H.; FRANK, E.; HALL, M. A. Data Mining: Practical machine

learning tools and techniques. 3. ed. Waltham, MA, USA: Morgan Kaufmann

Publishers, 2011. 664 p. 193

WOODCOCK, J.; LARSEN, P. G.; BICARREGUI, J.; FITZGERALD, J. Formal

methods: Practice and experience. ACM Computing Surveys, v. 41, n. 4, p.

19:1–19:36, 2009. 6, 7, 195

YU, L.; SU, S.; LUO, S.; SU, Y. Completeness and consistency analysis on

requirements of distributed event-driven systems. In: IFIP/IEEE

INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF

SOFTWARE ENGINEERING (TASE), 2., 2008, Nanjing, China. Proceedings...

Washington, DC, USA: IEEE Computer Society, 2008. p. 241–244. 46, 183

ZOUGHBI, G.; BRIAND, L.; LABICHE, Y. Modeling safety and airworthiness

(RTCA DO-178B) information: conceptual model and UML profile. Software and

Systems Modeling, v. 10, n. 3, p. 337–367, 2011. 7, 187

218

APPENDIX A - SWPDC SOFTWARE PRODUCT: NATURAL LAN-

GUAGE REQUIREMENTS

This appendix shows the 97 NL requirements collected from the four deliverables

(documents) prepared for the SWPDC software product, and which were used by

the SOLIMVA methodology and by the SOLIMVA tool to generate model-based

system and acceptance test cases: Requirements Baseline, Software Requirements

Specification, PDC-OBDH Communication Protocol Specification, and PDC-EPPs

Communication Protocol Specification. As mentioned at the end of Chapter 4, all

documents developed within the scope of the QSEE project were made in the

Portuguese language. Therefore, the selected documents were translated from the

Portuguese language into the English language due to wide acceptance of English

worldwide and also due to INPE’s international cooperation.

It was also said at the end of Chapter 4 that some of these requirements have been

somehow created in NL. In this context, some requirements considered as already

created in NL may even have minor modifications of the original requirement in

Portuguese. But in these cases, the analysis was made taking into account that

there was sufficient information in the documents, in NL, but distributed so that

it was coherent to consider that such requirements have already been created in

Natural Language. Moreover, some other requirements were extracted from UML

diagrams (sequence, activity) and converted into NL requirements. However, “new”

NL requirements had to be created by the test designer in order to generate coherent

test cases. These requirements were not present in any of the documents consulted

to apply the SOLIMVA methodology. So, for instance, requirements were “collected”

from the Software Requirements Specification meaning that some of these NL re-

quirements really existed and were used. However, some other requirements did not

exist and they were therefore created.

Table A.1 shows the profile of the collected requirements used in the SOLIMVA

methodology where the column Source refers to how requirements in Natural Lan-

guage has been obtained: NL means that the requirements were already properly

created in NL, UML means that the requirements were derived from UML diagrams

and converted into NL, and NEW means that requirements were created because

they did not exist.

In the next sections the requirements used when applying the SOLIMVA method-

ology will be presented. Identification of requirements is of the form DC where C

is a counter starting at 001, and D identifies the deliverable (document) where the

219

Table A.1 - Profile of the collected requirements: SWPDC case study

Source Quantity Percentage

NL 34 35.05

UML 25 25.77

NEW 38 39.18

Total 97 100.00

requirement was collected. Therefore, D can assume the following values:

∙ RB = Requirements Baseline;

∙ SRS = Software Requirements Specification;

∙ POCP = PDC-OBDH Communication Protocol Specification;

∙ PECP = PDC-EPPs Communication Protocol Specification.

A.1 Requirements collected from the Requirements Baseline

The requirements collected from the Requirements Baseline are listed as follows:

∙ RB001 - The OBDH shall send VER-OP-MODE to PDC.

∙ RB002 - The PDC shall switch each Event Pre-Processor (EPP Hx, x =

1 or 2) on or off independently, when the OBDH sends distinct commands

to perform such actions.

∙ RB003 - The OBDH shall send CH-OP-MODE-Nominal to PDC.

∙ RB004 - The OBDH shall send CH-OP-MODE-Safety to PDC. After that,

the PDC shall be in the Safety Operation Mode.

∙ RB005 - After switching both EPPHxs off via PDC, the OBDH shall switch

the PDC off via the Power Conditioning Unit.

∙ RB006 - The OBDH should wait 10 seconds before asking for a Test Data

frame.

∙ RB007 - The OBDH shall send AC-HW-RESET to PDC.

∙ RB008 - The OBDH shall send STOP-DT-ACQ to PDC.

220

∙ RB009 - The OBDH shall send LD-PRG-MIN-Ok to PDC.

∙ RB010 - The OBDH shall send several LD-PRG-INRNG-Ok to PDC.

∙ RB011 - The OBDH shall send EXEC-CKS-INV to PDC.

∙ RB012 - The OBDH shall send RSTART-DATA-ACQ to PDC.

A.2 Requirements collected from the Software Requirements Specifica-

tion

The requirements collected from the Software Requirements Specification are listed

as follows:

∙ SRS001 - The PDC shall be powered on by the Power Conditioning Unit.

∙ SRS002 - The PDC shall be in the Initiation Operation Mode after being

powered on. The SWPDC shall then accomplish a POST. If PDC presents

any irrecoverable problem, this computer shall remain in the Initiation

Operation Mode and such a problem shall not be propagated to the OBDH.

∙ SRS003 - If PDC does not present any irrecoverable problem, after the

initiation process, the PDC shall automatically enter into the Safety Op-

eration Mode.

∙ SRS004 - The OBDH should wait 600 seconds before asking for a House-

keeping Data frame.

∙ SRS005 - Housekeeping data transmission shall start with PREP-HK. After

that, the OBDH can send several TX-DATA-HK to PDC. The transmission

shall be ended with TX-DATA-SCI-End.

∙ SRS006 - The SWPDC shall obtain and handle scientific data from each

EPP Hx. The SWPDC shall also accept scientific data transmission re-

quests from OBDH.

∙ SRS007 - Test data transmission shall start with prep-tst. After that, the

OBDH shall send two tx-data-tst to PDC. The transmission shall be ended

with tx-data-sci-end.

∙ SRS008 - The OBDH should wait MIN seconds before asking for a House-

keeping Data frame.

221

∙ SRS009 - The SWPDC shall distinguish between Power On/Reset pro-

cesses.

∙ SRS010 - Requirements SRS002 and SRS003 also apply to the Reset pro-

cess.

∙ SRS011 - The PDC shall store information in memory that defines the

current configuration of the computing subsystem.

∙ SRS012 - The information that indicates which is the process currently

occurring (Power On or Reset) is part of the configuration information,

and this information shall be read and updated to a preset value in case

of Power On. In case of Reset, this information shall only be read.

∙ SRS013 - The SWPDC shall always maintain temporarily stored the last

data response sent to the OBDH because the OBDH can demand the

retransmission of this last data response.

∙ SRS014 - The OBDH should wait MINDEF seconds before asking for a

Housekeeping Data frame.

∙ SRS015 - The SWPDC shall be capable to load and execute new programs

in the Nominal Operation Mode. First, the OBDH shall send STOP-

DT-ACQ so that the SWPDC can interrupt the acquisition of scientific

data. After this command, the PDC is expected to receive LD-PRG-MIN-

Ok and, after that, the OBDH shall send several LD-PRG-INRNG-Ok.

Then, the OBDH shall submit EXEC-CKS-OK to PDC so that the loaded

program is executed. At the end of the process of loading and executing

a new program, the OBDH shall send rstart-DATA-ACQ to PDC so that

PDC can restart acquiring scientific data from EPP Hxs.

∙ SRS016 - Housekeeping data transmission shall start with prep-hk. In this

case, the SWPDC shall stop scientific data acquisition from EPP Hxs. After

that, the OBDH can send several tx-data-hk to PDC. The transmission

shall be ended with tx-data-sci-end.

∙ SRS017 - Memory Dump data transmission shall start with prep-dmp-prg-

inrng-inrng. In this case, the SWPDC shall stop scientific data acquisition

from EPP Hxs. After that, the OBDH can send several tx-data-dmp to

PDC. The transmission shall be ended with tx-data-sci-end.

222

∙ SRS018 - Memory Dump data transmission shall start with prep-dmp-prg-

min-min. In this case, the SWPDC shall stop scientific data acquisition

from EPP Hxs. After that, the OBDH can send one tx-data-dmp to PDC.

The transmission shall be ended with tx-data-sci-end.

∙ SRS019 - Memory Dump data transmission shall start with prep-dmp-prg-

max-max. In this case, the SWPDC shall stop scientific data acquisition

from EPP Hxs. After that, the OBDH can send one tx-data-dmp to PDC.

The transmission shall be ended with tx-data-sci-end.

∙ SRS020 - Memory Dump data transmission shall start with prep-dmp-prg-

lessmin-lessmin. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS021 - Memory Dump data transmission shall start with prep-dmp-prg-

greatmax-greatmax. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS022 - Memory Dump data transmission shall start with prep-dmp-

dtp0-inrng-min. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS023 - Memory Dump data transmission shall start with prep-dmp-

dtp0-min-inrng. In this case, the SWPDC shall stop scientific data acqui-

sition from EPP Hxs. After that, the OBDH can send several tx-data-dmp

to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS024 - Memory Dump data transmission shall start with prep-dmp-

dtp0-max-lessmin. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS025 - Memory Dump data transmission shall start with prep-dmp-

dtp0-lessmin-max. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS026 - Memory Dump data transmission shall start with prep-dmp-

dtp0-greatmax-inrng. In this case, the SWPDC shall not stop scientific

223

data acquisition from EPP Hxs. After that, the OBDH can send one tx-

data-dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS027 - Memory Dump data transmission shall start with prep-dmp-

dtp0-min-greatmax. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS028 - Memory Dump data transmission shall start with prep-dmp-

dtp1-inrng-max. In this case, the SWPDC shall stop scientific data acqui-

sition from EPP Hxs. After that, the OBDH can send several tx-data-dmp

to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS029 - Memory Dump data transmission shall start with prep-dmp-

dtp1-min-lessmin. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS030 - Memory Dump data transmission shall start with prep-dmp-

dtp1-max-inrng. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS031 - Memory Dump data transmission shall start with prep-dmp-

dtp1-lessmin-min. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS032 - Memory Dump data transmission shall start with prep-dmp-

dtp1-greatmax-min. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS033 - Memory Dump data transmission shall start with prep-dmp-

dtp1-min-greatmax. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS034 - Memory Dump data transmission shall start with prep-dmp-

dtp2-inrng-lessmin. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

224

∙ SRS035 - Memory Dump data transmission shall start with prep-dmp-

dtp2-min-max. In this case, the SWPDC shall stop scientific data acquisi-

tion from EPP Hxs. After that, the OBDH can send several tx-data-dmp

to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS036 - Memory Dump data transmission shall start with prep-dmp-

dtp2-max-min. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS037 - Memory Dump data transmission shall start with prep-dmp-

dtp2-lessmin-inrng. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS038 - Memory Dump data transmission shall start with prep-dmp-

dtp2-greatmax-max. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS039 - Memory Dump data transmission shall start with prep-dmp-

dtp2-min-greatmax. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS040 - Memory Dump data transmission shall start with prep-dmp-

dtp3-inrng-greatmax. In this case, the SWPDC shall not stop scientific

data acquisition from EPP Hxs. After that, the OBDH can send one tx-

data-dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS041 - Memory Dump data transmission shall start with prep-dmp-

dtp3-min-inrng. In this case, the SWPDC shall stop scientific data acqui-

sition from EPP Hxs. After that, the OBDH can send several tx-data-dmp

to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS042 - Memory Dump data transmission shall start with prep-dmp-

dtp3-max-min. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS043 - Memory Dump data transmission shall start with prep-dmp-

dtp3-lessmin-max. In this case, the SWPDC shall not stop scientific data

225

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS044 - Memory Dump data transmission shall start with prep-dmp-

dtp3-greatmax-lessmin. In this case, the SWPDC shall not stop scientific

data acquisition from EPP Hxs. After that, the OBDH can send one tx-

data-dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS045 - Memory Dump data transmission shall start with prep-dmp-

dtp4-inrng-inrng. In this case, the SWPDC shall stop scientific data acqui-

sition from EPP Hxs. After that, the OBDH can send several tx-data-dmp

to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS046 - Memory Dump data transmission shall start with prep-dmp-

dtp4-min-greatmax. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS047 - Memory Dump data transmission shall start with prep-dmp-

dtp4-max-min. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS048 - Memory Dump data transmission shall start with prep-dmp-

dtp4-lessmin-max. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS049 - Memory Dump data transmission shall start with prep-dmp-

dtp4-greatmax-lessmin. In this case, the SWPDC shall not stop scientific

data acquisition from EPP Hxs. After that, the OBDH can send one tx-

data-dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS050 - Memory Dump data transmission shall start with prep-dmp-

dtp5-inrng-inrng. In this case, the SWPDC shall stop scientific data acqui-

sition from EPP Hxs. After that, the OBDH can send several tx-data-dmp

to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS051 - Memory Dump data transmission shall start with prep-dmp-

dtp5-min-min. In this case, the SWPDC shall stop scientific data acquisi-

tion from EPP Hxs. After that, the OBDH can send one tx-data-dmp to

PDC. The transmission shall be ended with tx-data-sci-end.

226

∙ SRS052 - Memory Dump data transmission shall start with prep-dmp-

dtp5-max-greatmax. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS053 - Memory Dump data transmission shall start with prep-dmp-

dtp5-lessmin-max. In this case, the SWPDC shall not stop scientific data

acquisition from EPP Hxs. After that, the OBDH can send one tx-data-

dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS054 - Memory Dump data transmission shall start with prep-dmp-

dtp5-greatmax-lessmin. In this case, the SWPDC shall not stop scientific

data acquisition from EPP Hxs. After that, the OBDH can send one tx-

data-dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS055 - Memory Dump data transmission shall start with prep-dmp-

dtp6-inrng-inrng. In this case, the SWPDC shall stop scientific data acqui-

sition from EPP Hxs. After that, the OBDH can send several tx-data-dmp

to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS056 - Memory Dump data transmission shall start with prep-dmp-

dtp6-min-min. In this case, the SWPDC shall stop scientific data acquisi-

tion from EPP Hxs. After that, the OBDH can send one tx-data-dmp to

PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS057 - Memory Dump data transmission shall start with prep-dmp-

dtp6-max-max. In this case, the SWPDC shall stop scientific data acqui-

sition from EPP Hxs. After that, the OBDH can send one tx-data-dmp to

PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS058 - Memory Dump data transmission shall start with prep-dmp-

dtp6-lessmin-greatmax. In this case, the SWPDC shall not stop scientific

data acquisition from EPP Hxs. After that, the OBDH can send one tx-

data-dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS059 - Memory Dump data transmission shall start with prep-dmp-

dtp6-greatmax-lessmin. In this case, the SWPDC shall not stop scientific

data acquisition from EPP Hxs. After that, the OBDH can send one tx-

data-dmp to PDC. The transmission shall be ended with tx-data-sci-end.

227

∙ SRS060 - Memory Dump data transmission shall start with prep-dmp-

dtp7-inrng-inrng. In this case, the SWPDC shall stop scientific data acqui-

sition from EPP Hxs. After that, the OBDH can send several tx-data-dmp

to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS061 - Memory Dump data transmission shall start with prep-dmp-

dtp7-min-min. In this case, the SWPDC shall stop scientific data acquisi-

tion from EPP Hxs. After that, the OBDH can send one tx-data-dmp to

PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS062 - Memory Dump data transmission shall start with prep-dmp-

dtp7-max-max. In this case, the SWPDC shall stop scientific data acqui-

sition from EPP Hxs. After that, the OBDH can send one tx-data-dmp to

PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS063 - Memory Dump data transmission shall start with prep-dmp-

dtp7-lessmin-lessmin. In this case, the SWPDC shall not stop scientific

data acquisition from EPP Hxs. After that, the OBDH can send one tx-

data-dmp to PDC. The transmission shall be ended with tx-data-sci-end.

∙ SRS064 - Memory Dump data transmission shall start with prep-dmp-

dtp7-greatmax-greatmax. In this case, the SWPDC shall not stop scientific

data acquisition from EPP Hxs. After that, the OBDH can send one tx-

data-dmp to PDC. The transmission shall be ended with tx-data-sci-end.

A.3 Requirements collected from the PDC-OBDH Communication Pro-

tocol Specification

The requirements collected from the PDC-OBDH Communication Protocol Specifi-

cation are listed as follows:

∙ POCP001 - The PDC can only respond to requests (commands) from

OBDH after the PDC has been energized for at least 1 minute. If OBDH

sends commands within less than 1 minute, the OBDH shall not receive

any response from PDC.

∙ POCP002 - The OBDH should wait 10 seconds before asking for a Scientific

Data frame.

∙ POCP003 - The OBDH shall send CH-SW-PHK-MIN to PDC.

228

∙ POCP004 - The OBDH shall send CH-SW-PIP-INRNG to PDC.

∙ POCP005 - The OBDH shall send CH-SW-PST-MAX to PDC.

∙ POCP006 - The OBDH shall send CH-SW-PIP-MIN to PDC.

∙ POCP007 - The OBDH shall send CH-SW-PST-GREATMAX to PDC.

∙ POCP008 - The OBDH shall send CH-SW-PIP-MAX to PDC.

∙ POCP009 - The OBDH shall send CH-SW-PST-LESSMIN to PDC.

∙ POCP010 - The OBDH shall send CH-SW-PIP-LESSMIN to PDC.

∙ POCP011 - The OBDH shall send CH-SW-PST-MIN to PDC.

∙ POCP012 - The OBDH shall send CH-SW-PIP-GREATMAX to PDC.

∙ POCP013 - The OBDH shall send CH-SW-PST-MINDEF to PDC.

∙ POCP014 - The OBDH shall send CH-SW-PIP-INRNG to PDC.

∙ POCP015 - The OBDH shall send CH-SW-PST-DEF to PDC.

∙ POCP016 - The OBDH shall send CH-SW-PIP-LESSMIN to PDC.

∙ POCP017 - The OBDH shall send CH-SW-PST-DEFMAX to PDC.

∙ POCP018 - The OBDH shall send CH-SW-PHK-DEF to PDC.

∙ POCP019 - The PDC shall check all fields of the commands received. In

case of inconsistency in the values received in any of the fields of an OBDH’s

command, the PDC shall abort the communication, the command shall be

discarded, an event report shall be generated, and the PDC shall wait

for a new OBDH’s command. The PDC shall not send back any negative

acknowledgment message to the OBDH.

∙ POCP020 - The PDC may not receive a command sent in its entirety.

After identifying the beginning of a command frame, the PDC shall wait

two times MAX-TRANSM-DELAY for the rest of the command. If this

stipulated time expires, a timeout shall occur, the PDC shall abort the

communication, the command shall be discarded, an event report shall be

generated, and the PDC shall wait for a new OBDH’s command.

229

A.4 Requirement collected from the PDC-EPPs Communication Pro-

tocol Specification

The single requirement collected from the PDC-EPPs Communication Protocol

Specification is listed below:

∙ PECP001 - Each EPP Hx can only respond to requests (commands) from

PDC after each EPP Hx has been energized for at least 30 seconds. If

PDC sends commands within less than 30 seconds to a certain EPP Hx,

the PDC shall not receive any response from this EPP Hx.

230

APPENDIX B - THE SOLIMVA TOOL

This appendix presents an overview of the most relevant tool that supports the

SOLIMVA methodology, i.e. the SOLIMVA tool, in order to generate model-based

system and acceptance test cases considering NL requirements deliverables. The

Graphical User Interface of the SOLIMVA tool will be shown in sequence. The

SOLIMVA tool was developed according to the Object-Oriented Programming

paradigm using the Java programming language and version 6.5.1 of the NetBeans

(NETBEANS.ORG, 2011) Integrated Development Environment. The current version

of the SOLIMVA tool is 1.0.

Figure B.1 shows the Graphical User Interface of the SOLIMVA tool. Note that the

interface has four tabs (recall the activities of the SOLIMVA methodology as shown

in Figures 3.3 and 5.1):

∙ Dictionary. This tab allows the user to input the Dictionary;

∙ Scenarios. This tab is related to the definition of scenarios;

∙ Requirements. This tab allows the user to input the set of NL requirements

that characterize a scenario;

∙ Model Generation. This tab allows the user to generate the Statechart

model.

Note in Figure B.1 that the Dictionary tab allows the user to enter all information

of the components of the Dictionary. At the far left of the tab, the names can be

entered in NL. At the center, the Reactiveness (R) function can be defined. In the

leftmost column (Reactiveness In), the user must enter the elements of the domain of

R (R.IE), while in the rightmost column (Reactiveness Out) must be the respective

elements of the codomain of R (R.OE). In the far right of the tab, the Semantic

Translation Model of the Dictionary must be defined. As mentioned in Chapters 3

and 4, the Control (STM .C; column Con...) and Self Transition (STM .F ; column Self-

T...) sets are already predefined and the user does not need to change them. The

Hierarchy (STM .Y) function is entered in the Hierarchy column in accordance with

the notation yip/yop where yip is an element of the domain of STM .Y (Y.IP) while

yop is an element of the codomain of STM .Y (Y.OP). Figure B.2 shows the Dictionary

tab already filled with data on the application of the SOLIMVA methodology to the

SWPDC case study.

231

Figure B.1 - Graphical User Interface of the SOLIMVA tool

As said in Chapter 3, the definition of scenarios was accomplished by means of

combinatorial designs and TConfig (UNIVERSITY OF OTTAWA, 2008), an external

tool. Therefore, in the current version (1.0) of the SOLIMVA tool, there is no

treatment of the data put in the Scenarios tab shown in Figure B.3. However, this

tab has been already defined thinking of future implementation of a combinatorial

designs algorithm as mentioned in Section 6.3. In the situation shown in Figure B.3,

the algorithm implemented within the SOLIMVA tool would return the number of

a factor combination in column Run, and the factor combination itself in the five

columns (FacA, FacB, FacC, FacD, and FacE columns) where each column would

have a level of a certain factor (In the example, it was assumed 5 factors).

Figure B.4 shows the Requirements tab where the user can input the set of NL

requirements that characterize a scenario. In column ReqId should be entered the

identification of the requirement and the column Requirement must contain the NL

requirement itself. Figure B.5 shows the Requirements tab already filled with the

set of NL requirements that characterize SOLIMVA’s normal scenario 71 as shown

232

Figure B.2 - SWPDC case study: the Dictionary tab

earlier in Table 4.7.

The Generate Model activity of the SOLIMVA methodology (Section 3.3) is accom-

plished by means of the Model Generation tab shown in Figure B.6. In order to

generate the BSAO tuples, the user must select the BSAO Generation button. After

this, the BSAO to Model button must be selected to generate the Statechart model.

Observe that buttons Clear Requirements in Figures B.4, B.5, and Clear BSAO

Tuples and Model in Figure B.6 must be chosen to carry out the Clear Requirements

and Model activity of the SOLIMVA methodology.

In order to show the internal structure of the tool, Figure B.7 shows the class

hierarchy of version 1.0 of the SOLIMVA tool. Such a hierarchy was created with

Javadoc (ORACLE, 2011).

233

Figure B.3 - The Scenarios tab

234

Figure B.4 - The Requirements tab

235

Figure B.5 - The Requirements tab already filled with the set of NL requirements that
characterize SOLIMVA’s normal scenario 71

236

Figure B.6 - The Model Generation tab

237

Figure B.7 - Class Hierarchy of version 1.0 of the SOLIMVA tool

238

PUBLICAÇÕES TÉCNICO-CIENTÍFICAS EDITADAS PELO INPE

Teses e Dissertações (TDI) Manuais Técnicos (MAN)

Teses e Dissertações apresentadas nos
Cursos de Pós-Graduação do INPE.

São publicações de caráter técnico que
incluem normas, procedimentos, in-
struções e orientações.

Notas Técnico-Cient́ıficas (NTC) Relatórios de Pesquisa (RPQ)

Incluem resultados preliminares de
pesquisa, descrição de equipamentos,
descrição e ou documentação de pro-
gramas de computador, descrição de
sistemas e experimentos, apresentação
de testes, dados, atlas, e documentação
de projetos de engenharia.

Reportam resultados ou progressos de
pesquisas tanto de natureza técnica
quanto cient́ıfica, cujo ńıvel seja com-
pat́ıvel com o de uma publicação em
periódico nacional ou internacional.

Propostas e Relatórios de Projetos
(PRP)

Publicações Didáticas (PUD)

São propostas de projetos técnico-
cient́ıficos e relatórios de acompan-
hamento de projetos, atividades e con-
vênios.

Incluem apostilas, notas de aula e man-
uais didáticos.

Publicações Seriadas Programas de Computador (PDC)

São os seriados técnico-cient́ıficos: bo-
letins, periódicos, anuários e anais de
eventos (simpósios e congressos). Con-
stam destas publicações o Internacional
Standard Serial Number (ISSN), que
é um código único e definitivo para
identificação de t́ıtulos de seriados.

São a seqüência de instruções ou códi-
gos, expressos em uma linguagem de
programação compilada ou interpre-
tada, a ser executada por um com-
putador para alcançar um determinado
objetivo. Aceitam-se tanto programas
fonte quanto os executáveis.

Pré-publicações (PRE)

Todos os artigos publicados em periódi-
cos, anais e como caṕıtulos de livros.

	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	EPIGRAPHY
	DEDICATORY
	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CONTENTS
	1 INTRODUCTION
	1.1 Motivation
	1.1.1 Requirements: importance and documentation

	1.2 Objectives
	1.2.1 Primary Objective
	1.2.2 Secondary Objective

	1.3 A proposal to achieve the objectives
	1.4 Organization of this PhD thesis

	2 THEORETICAL BASIS
	2.1 Verification and Validation
	2.1.1 Software Testing and test case generation
	2.1.1.1 Model-Based Testing
	2.1.1.2 The Statechart Coverage Criteria Family
	2.1.1.3 Combinatorial designs

	2.1.2 Formal Verification
	2.1.2.1 Model Checking

	2.2 Natural Language Processing
	2.2.1 Word Sense Disambiguation

	2.3 Related work
	2.3.1 Model-Based Testing
	2.3.2 Software Testing based on Natural Language requirements
	2.3.3 Analysis of defects in Natural Language requirements
	2.3.4 Translation of requirements
	2.3.5 Formal methods and requirements specifications

	2.4 Final remarks about this chapter

	3 THE SOLIMVA METHODOLOGY
	3.1 Main case study: software embedded in satellite payload
	3.2 Description of version 1.0 of the SOLIMVA methodology
	3.3 Model generation
	3.3.1 Generation of tuples
	3.3.1.1 Relation with typed dependencies

	3.3.2 Translation from BSAO tuples into behavioral model
	3.3.2.1 Refinement based on domain information
	3.3.2.2 Word Sense Disambiguation refinement
	3.3.2.3 Refinement for adding hierarchy

	3.4 Final remarks about this chapter

	4 APPLICATION OF THE SOLIMVA METHODOLOGY
	4.1 Comparing the SOLIMVA methodology with an expert's approach
	4.1.1 Coverage of test objectives
	4.1.2 Characteristics of Executable Test Cases

	4.2 A second case study: Satellite Control System
	4.3 Final remarks about this chapter

	5 AN APPROACH TO DETECT INCOMPLETENESS IN SOFTWARE SPECIFICATIONS
	5.1 Description of version 2.0 of the SOLIMVA methodology
	5.1.1 The Analyze Incompleteness activity

	5.2 Case study: SWPDC software product
	5.3 Final remarks about this chapter

	6 CONCLUSIONS
	6.1 Solution to achieve the primary objective
	6.2 Solution to achieve the secondary objective
	6.3 Future work
	6.4 Final remarks about this PhD thesis

	REFERENCES
	 APPENDIX A - SWPDC SOFTWARE PRODUCT: NATURAL LANGUAGE REQUIREMENTS
	A.1 Requirements collected from the Requirements Baseline
	A.2 Requirements collected from the Software Requirements Specification
	A.3 Requirements collected from the PDC-OBDH Communication Protocol Specification
	A.4 Requirement collected from the PDC-EPPs Communication Protocol Specification

	 APPENDIX B - THE SOLIMVA TOOL

