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São José dos Campos - SP - Brasil

Tel.:(012) 3208-6923/6921

Fax: (012) 3208-6919

E-mail: pubtc@sid.inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE INTEL-

LECTUAL PRODUCTION (RE/DIR-204):

Chairperson:

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Members:

Dr. Antonio Fernando Bertachini de Almeida Prado - Coordenação Engenharia e

Tecnologia Espacial (ETE)

Dra Inez Staciarini Batista - Coordenação Ciências Espaciais e Atmosféricas (CEA)

Dr. Gerald Jean Francis Banon - Coordenação Observação da Terra (OBT)

Dr. Germano de Souza Kienbaum - Centro de Tecnologias Especiais (CTE)

Dr. Manoel Alonso Gan - Centro de Previsão de Tempo e Estudos Climáticos
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ABSTRACT

The deployment of a new generation of sensors over the last 20 years has made satel-
lite remotely sensed imagery a very important source of spatial data available for
environmental studies of large-scale geographic phenomena. The variety of spatial,
temporal and spectral resolutions for remote sensing images is large, ranging from
panchromatic images to polarimetric radar images. Despite the great experience
in image data gathering and distribution and a diversity of image processing and
analysis toolboxes, it is still difficult to find image analysis systems that provide a
straightforward fully integrated environment to transform multi-temporal and multi-
resolution satellite image data into meaningful information. Taking this into account,
the contribution of this thesis is two-fold. Firstly, we propose and implement a new
toolbox, developed under the Free and Open Source Software (FOSS) foundation,
for integrating remote sensing imagery analysis methods with data mining tech-
niques producing a user-centered, extensible, rich computational environment for
information extraction and knowledge discovery over large geographic databases.
The toolbox is called GeoDMA – Geographic Data Mining Analyst. It integrates
techniques of segmentation, feature extraction, feature selection, classification, land-
scape metrics and multi-temporal methods for change detection and analysis with
decision-tree based strategies adapted for spatial data mining. It gathers remotely
sensed imagery with other geographic data types using access to local or remote
databases. GeoDMA provides simulation methods to assess the accuracy of process
models as well as tools for spatio-temporal analysis, including a visualization scheme
for temporal profiles that helps users to describe patterns in cyclic events. Secondly,
we develop a new approach for analyzing spatio-temporal data based on a polar coor-
dinates transformation that allows creating a new set of features which improves the
classification accuracy of multi-temporal image databases. As GeoDMA was built
on top of TerraView GIS, thematic maps and other results can be produced rapidly,
taking advantage of the basic GIS functionalities. To demonstrate the features of
GeoDMA toolbox, five (5) case studies, applied in contexts of land use and land
cover change, were carried out in different application domains. Evaluations of these
experiments pointed out that the GeoDMA toolbox achieved results with a level of
integration, from a user perspective, that could not be found elsewhere.
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GEODMA: UMA FERRAMENTA PARA INTEGRAR MINERAÇÃO
DE DADOS COM ANÁLISE MULTI-TEMPORAL E ORIENTADA A

OBJETOS DE IMAGENS DE SENSORIAMENTO REMOTO

RESUMO

O desenvolvimento de uma nova geração de sensores nos últimos 20 anos consoli-
dou as imagens de sensoriamento remoto como uma importante fonte de dados para
estudos ambientais e fenômenos geográficos em larga escala. É grande a variedade
de resoluções (espacial, temporal e espectral) das imagens de sensoriamento remoto,
desde pancromáticas até imagens polarimétricas. Apesar da grande experiência em
coleta, armazenamento e distribuição de imagens e da diversidade de ferramentas
computacionais para processamento e análise, ainda é dif́ıcil de se encontrar sistemas
que apresentem um ambiente integrado para transformar imagens multi-temporais
e de diversas resoluções em informação útil. Tendo em vista este panorama, a con-
tribuição desta tese é dupla. Em primeiro lugar, propomos e implementamos uma
nova ferramenta, seguindo os padrões de código-fonte aberto (Free and Open Source
Software – FOSS), para integrar métodos de análise de imagens com técnicas de
mineração de dados, visando produzir um ambiente computacional extenśıvel e fo-
cado no usuário, aplicado à extração de informações e à descoberta de conhecimento
em grandes bases de dados geométricos. Esta ferramenta é chamada GeoDMA – Ge-
ographic Data Mining Analyst (mineração de dados geográficos). GeoDMA integra
técnicas de sementação de imagens, extração e seleção de atributos, classificação,
métricas da ecologia da paisagem, métodos de análise multi-temporal para detecção
de mudanças e classificação por métodos de árvores de decisão adaptados à miner-
ação de dados espaciais. O sistema agrega imagens de sensoriamento remoto com
outros tipos de dados geográficos através do acesso a bancos de dados locais ou re-
motos. GeoDMA também provê métodos de simulação para avaliar a acurácia dos
modelos, e ferramentas para análise espaço-temporal, incluindo um esquema de vi-
suação de perfis temporais que auxilia os usuários a descrever padrões em eventos
ćıclicos. Em segundo lugar, desenvolvemos um novo método para analizar dados
espaço-temporais baseados na transformação dos perfis em coordenadas polares, o
que permite a geração de um novo conjunto de atributos que aumenta a acurácia da
classificação de imagens multi-temporais. O sistema GeoDMA foi constrúıdo como
uma extensão do SIG TerraView, e por isso mapas temáticos e demais resultados
são produzidos rapidamente, aproveitando-se das funcionalidades deste SIG. Para
demonstrar as ferramentas do GeoDMA, cinco (5) casos de estudo, aplicados em
diferentes contextos de detecção de uso e cobertura da terra, foram realizados us-
ando dados de diferentes domı́nios. A avaliação destes experimentos, do ponto de
vista do usuário, mostrou que a ferramenta obteve os resultados com um ńıvel de
integração não encontrado em sistemas semelhantes.
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1 INTRODUCTION

Computers are each day allowing the automation of more and more tasks that in

the past were performed manually. For a large amount of data, the execution of

manual tasks is difficult and time-consuming. On the other hand, in certain cases

the automation appears to be stealing the place of humans in diverse aspects of the

ordinary life. Hence, the balance of automating tasks seems to be coupling the human

expertise with the capacity of computers to perform fast and accurate processing.

A good example of combining human knowledge with computational skills occurs in

the Geographic Information Science – GIScience, where the amount of information to

be gathered and analyzed is tremendous. According to Goodchild (2004), GIScience

is a subfield of information science that is particularly attractive to information

scientists because of the well-defined nature of geographic information. It studies

how geographic knowledge is represented in the human brain, in order to make

systems more readily understood and usable by humans.

GIScience addresses issues raised by the use of Geographic Information Systems

(GIS) relating information technologies such as remote sensing. According to Bradley

et al. (2007), remote sensing data is the only source capable of providing a continuous

and consistent set of information about the Earth’s land and oceans. Combined

with ecosystem models, remotely sensed data offers an unprecedented opportunity

for predicting and understanding the behavior of the Earth’s ecosystem (TAN et al.,

2001b). Since Landsat-1 in 1973, satellites have provided a rich data set that helps

us to map land changes at the surface of our planet. Sensors with high spatial and

temporal resolutions that capture precisely spatio-temporal structures in dynamic

scenes are becoming more accessible. Temporal components integrating spectral and

spatial dimensions also result in a valuable information source for detecting changes

(BRUZZONE et al., 2003).

Remote sensing imagery provides information on land cover, which does not translate

exactly into land use or land change information (MCCAULEY; GOETZ, 2004). But

how to retrieve such rich information from a remotely sensed image? According

to Câmara et al. (2001), despite over 30 years of experience in data gathering,

processing and analysis of remote sensing imagery, it continues to be difficult to

answer a basic question, “What’s in an image?”. To interpret images with the guide

of a computational tool, they can be partitioned into regions, or objects, which exist

only in virtue of the different sorts of demarcations effected cognitively by human

beings (SMITH, 1995). These objects are explored as an instrument for capturing
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landscape dynamics. Besides, there is a significant amount of reusable knowledge

obtained by interpreting images which can be used to retrieve information in more

images.

Although remote sensing techniques are a good alternative for mapping land use and

land cover patterns, the manipulation of a great amount of data is a challenging task.

According to Fayyad et al. (1996), our ability to analyze and understand massive

datasets lags far behind our ability to gather and store the data. For example, the

acquisition rate for IKONOS satellite is about 890 megapixels each minute (DIAL

et al., 2003); for CBERS-2B it was about 120 megapixels each minute. Current hu-

man and technological resources for manual and semiautomatic data analysis are far

slower than these rates (WASSENBERG et al., 2009). Besides, the pool of information

provided by satellites allows revealing complex and important patterns in applica-

tions connecting environmental monitoring and analysis of land cover dynamics. In

many cases, hundreds of independent features need to be simultaneously considered

in order to accurately model a system’s behavior (GOEBEL, 1999). Therefore, hu-

mans need assistance in their analysis capacity. Consequently, it is necessary to have

computationally efficient image analysis algorithms to manipulate and analyze the

huge amount of data to better extract the information to be used in remote sensing

applications.

During the 1980s and 1990s, most remote sensing image analysis techniques were

based on per-pixel statistical algorithms (BLASCHKE, 2010). These techniques aimed

at representing the knowledge about land cover patterns in terms of a limited set of

parameters, such as average and standard deviation values of groups of individual

pixels. Further research on image interpretation concluded that the set of parame-

ters could be extended, and some techniques could be created to better represent

the knowledge behind the image analysis. Recently, Object-Based Image Analy-

sis (OBIA) has shown to be a good alternative to traditional per-pixel and region

based approaches. Differently, they first identify regions in the image, extract neigh-

borhood, spectral and spatial features and afterwards use them to classify the ob-

jects. Although segmentation has a large tradition in remote sensing (HARALICK;

SHAPIRO, 1985; BINS et al., 1996), OBIA took a long time to reach mainstream users.

This approach became popular when it combined image segmentation with good la-

beling methods that match the objects features to those of user-defined classes. Most

successful software packages, either proprietary like eCognition (LANG et al., 2007)

or ENVI Feature Extraction (INTERNATIONAL TELEPHONE & TELEGRAPH EXELIS,

2008), or the open source InterIMAGE (COSTA et al., 2010), have used semantic net-
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works to analyze the objects. Semantic networks resemble decision trees; at each tree

node there is a rule that defines the class to which the data belongs. A rule combines

operation (e.g., segmentation, band ratio) with restriction on feature values (e.g.,

‘select all objects with an average value greater than 100’). However, remote sensing

image analysis using OBIA can be lengthy and complex because of the processing

difficulties related to image segmentation, the large number of object attributes to be

resolved and the many different methods needed to model the hierarchical networks

(HAY; CASTILLA, 2008; PINHO et al., 2008).

Despite the success of using semantic networks in the image analysis, the main bot-

tleneck is the feature selection phase. We have to find metrics that best describe

the object properties as well as select features that best distinguish between ob-

jects. Current software extract a huge amount of statistics (mean value, standard

deviation), spatial (area, perimeter, shape), color, texture, and topology (distance

to neighbors, relative border) features. To obtain accurate classification, the feature

selection often relies on ad hoc decisions about what should describe an object.

Another problem is that land cover classes in most environments are not pure, or

spatially homogeneous. Thus, scene models for classification usually present a nested

structure, analyzing scenes in multiple scales (WOODCOCK; STRAHLER, 1987). An

alternative is to use a theory that makes some hypothesis about the object prop-

erties defined within an application context. Such theory would provide metrics to

extract object properties. Within this context, landscape ecology can help to define

metrics by elaborating landscape types as ecologically meaningful units. Such land

units can be used as the basis for analysis and assessment (GROOM et al., 2006).

Another question concerns how to build a semantic network for interpretation task.

Users experience points out that there are no hard-and-fast rules for building such

networks, and this task may require considerable time and expertise (LANG, 2008).

On the other hand, the number of available features makes a detailed feature ex-

ploratory analysis a time-consuming task and dependent on expertise. In this case,

data mining techniques can be useful to extract information from large databases

where objects being classified are described through many features (TAN et al., 2001a;

SILVA et al., 2008; STEIN et al., 2009; PINHO et al., 2012).

In spite of the considerable advances made over the last few years in high resolu-

tion satellite data, image analysis tools, and services, end users still lack effective

and operational tools to help them manage and transform this data into useful in-

formation that can be used for decision making and policy planning purposes. For
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instance, in many remote sensing applications the user needs different tools to ex-

ecute the processing steps (ADDINK et al., 2007; FERRAZ et al., 2005; FROHN; HAO,

2006; HüTTICH et al., 2009; RIBEIRO et al., 2009). This introduces more challenges

for the researchers such as data integration, conversion of data format, knowledge of

the software to be used, files replication, and other problems that make difficult the

data analysis process. Consequently, the need of a framework capable of merging all

image analysis tasks into a single platform is seen as a great demand in the remote

sensing imagery analysis. Although there are some good proprietary image analysis

software available, the licensing costs can be a barrier for their use. Besides, these

systems cannot be studied and adapted for ones own needs. Steiniger e Hay (2009)

discussed all these problems in a review about the use of geographic information

tools in landscape ecology, which are critical for any application. They also advo-

cated that sharing knowledge through the development of Free and Open Source

Software (FOSS) is a requirement for technological and scientific advancement.

Considering the aforementioned questions, the contribution of this thesis is two-fold.

Firstly we proposed and implemented a new toolbox, developed under the FOSS

foundation, for integrating remote sensing imagery analysis methods with a reper-

toire of data mining techniques producing a user-centered, extensible, rich compu-

tational environment for information extraction and knowledge discovery over large

geographic databases. The new toolbox is called GeoDMA – Geographic Data Min-

ing Analyst. It integrates techniques of segmentation, feature extraction, feature

selection, landscape and multi-temporal features and data mining, allowing pat-

tern recognition tasks and multi-temporal analysis in large geographic databases.

Secondly we developed a new approach for multi-temporal analysis that allowed

creating a new set of features based on polar coordinates transformation to describe

cyclic events such as those common in agriculture applications.

In particular, GeoDMA was thought to provide some technical capabilities, which

fulfill critical requirements for geographic information tools in remote sensing appli-

cations. Below, we list the principal functionalities of GeoDMA:

a) support for different geographic data types in local or remote database;

b) spatio-temporal analysis tools, including visualization scheme for temporal

profiles;

c) set of features based on polar coordinates that allows describing cyclic

events as well as improving the classification accuracy of multi-temporal
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data;

d) simulation to assess the accuracy of process models (e.g. using Monte Carlo

methods);

e) rapid creation of thematic maps and other results due to its integration on

top of TerraView GIS (INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS,

2012);

f) detection of multi-temporal changes as well as creation of change maps,

allowing to explore the causes, processes and consequences of land use and

land cover change (SAITO et al., 2010).

To illustrate the potential of GeoDMA, we present 5 case studies, which analyze

different land cover patterns to explore all the capabilities available in the system.

One case study classify urban land cover in the Brazilian city of São Paulo; the

second one explores urban landscape patterns related to the incidence of dengue

fever in Rio de Janeiro, Brazil; the third one tracks the evolution of deforestation

in the region of São Félix do Xingu; the fourth case classifies land cover using

multi-temporal images in the northern Mato Grosso State of Brazil; the fifth case

aims at distinguishing between croplands and detect direct changes considering the

expansion of agriculture in the entire state of Mato Grosso.

1.1 Document Organization

This thesis is organized as follows. Chapter 2 surveys previous work in the area

of land change detection, data mining, and OBIA. This chapter presents a unified

taxonomy of techniques defined in a number of different domains and discusses

the major approaches. Chapter 3 provides a detailed description of the GeoDMA

system, highlighting its main features. Chapter 4 presents some experiments for

land cover detection to show the potential of GeoDMA for image analysis. Chapter

5 concludes the thesis, providing an overview about the enhancements, advantages

and drawbacks of our system.
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2 REVIEW

In this Chapter we review some important topics in the literature regarding the

concepts used in the development of GeoDMA. We start reviewing some concepts

used by landscape ecology. Afterwards, we give a brief review about object-based

image analysis and data mining techniques. Finally, we review some works related

to multi-temporal analysis to detect pattern changes.

2.1 Landscape ecology concepts

Because of time and space discontinuities, the real world environments are patchy

(WIENS, 1976), defining a landscape as a spatially heterogeneous area (TURNER,

2005). Associated with pattern recognition techniques, landscape ecology qualifies

species, communities, and habitat patches within landscapes (READ; LAM, 2002).

The landscape ecology concepts employed in this thesis are the base to analyze the

structure of the landscape, defining geometric and spatial metrics for the objects

present in the landscape, viewed as a mosaic of elements aggregated to form the

pattern of patches, corridors and matrix on land (FORMAN, 1995).

The landscape ecology mainly considers patches as areas, or categories, containing

habitat, and the main focus is on conservation. However, to adapt these concepts to

remote sensing, patches are also related to other types of objects, such as a defor-

estation area in a forest region, or an object containing a roof in a urban imagery.

Based on these considerations, 3 groups of metrics can be defined (MCGARIGAL,

2002; EL-SHAARAWI; PIEGORSCH, 2002):

• Patch metrics qualify individual patches and characterizes their spatial and

contextual information. Examples include the area of a polygon, perime-

ter, and compacity. As an example, one patch can be defined as a forest

fragment.

• Class metrics integrate all patches of a given type inside a specific area, by

simple or weighted averaging. The weighted averaging scheme can reflect a

greater contribution of large patches to the overall index. Instances include

average shape index, and patch size standard deviation. These metrics are

used to define, for instance, the amount of houses in a block, or the average

size of croplands in a state.

• Landscape metrics concern all patch types or classes inside a specific

area. These metrics are integrated by a simple or weighted averaging, and
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they reflect combined patch mosaic. Landscape metrics include average

perimeter-area ratio and patch size coefficient of variation.

Figure 2.1 illustrates the 3 types of landscape metrics. This Figure shows an area

with 6 different land cover types, including forest, pasture and agriculture. In the

Patch metrics, a single object of the class Pasture with Regrowth is defined. In the

Class metrics, all objects of the same class are integrated. And, in the Landscape

metrics, all objects belonged to the 6 classes inside the area defined by a rectangle

were included.

Figure 2.1 - Scale of objects considered in landscape ecology. Patch (left), Class (center),
and Landscape (right) metrics.

Many works in the literature have used the landscape ecology metrics to analyze the

landscape dynamics and structure. Imbernon e Branthomme (2001) modeled the

ecological processes by measuring the percentage of forest cover and the resulting

fragmentation. Southworth et al. (2002) used landscape metrics to describe and

identify land use change patterns using Landsat imagery from 1987, 1991, and 1996.

Ferraz et al. (2005) analyzed the landscape changes in a watershed in Rondônia,

Brazil, using a 18-year Landsat time series. The authors associated land cover types

with metrics of size, density, connectivity, arrangement and deforested patches dis-

tribution. Ribeiro et al. (2009) evaluated landscape metrics such as edge area, con-

nectivity and fragment size to identify species distribution in the Brazilian Atlantic

Forest. They also quantified the remaining forest and suggested guidelines for con-

servation and preserving the functionally linked mosaics.

Frohn e Hao (2006) evaluated landscape metrics in different years of deforestation in

the Brazilian Amazon. They found a set of metrics with predictable behavior, and an

inverse relation to spatial aggregation. Saito et al. (2011) analyzed the sensitivity of

the landscape ecology metrics when using cells of different sizes to detect deforesta-
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tion patterns associated with different processes of human occupation. They used

data provided by PRODES, which is a project for monitoring annual deforestation

in the Amazon region (ESPACIAIS, 2012). They evaluated nine metrics that describe

the landscape structure in different scales, and concluded that certain scales can

favor the detection of certain patterns in despite of others. Therefore, when using a

single scale for interpretation, the analyst must take this into account to choose a

proper analysis scale, related to the process studied.

Gavlak et al. (2011) studied the land cover dynamics in regions with different occu-

pation stages in an agricultural frontier in the Sustainable Forest District of BR-163

between 1997 and 2008, comparing the temporal evolution of deforestation patterns

for 1997, 2000, 2003 and 2007, and secondary vegetation analysis from 2000 to 2008.

They associated 6 different deforestation patterns to occupation processes. By using

cells of 10 × 10Km, the authors grouped the evolution of the occupation patterns

into 4 groups according to different trajectories in the period of analysis.

2.2 Object-Based Image Analysis

Besides the original bands of an image, current methods for image interpretation

uses additional features, such as pixel differences, ratios, band combinations, and so

on. These features can also be used by segmentation algorithms to partition the im-

age into homogeneous regions, also called segments or objects. According to Haralick

e Shapiro (1985), a good segmentation should separate the image into simple regions

with homogeneous behavior. In other words, segments are generated by one or more

homogeneity criteria in one or more dimensions respectively (BLASCHKE, 2010). Seg-

ments have additional spectral information compared to single pixels, such as mean

values per band, median values, etc. The regions with their respective features char-

acterize the objects. The analysis of such objects, when coupled with a knowledge

model with one or more segmentation levels, is called Object-Based Image Analysis

– OBIA.

Image analysis usually integrates various algorithms to automate the interpretation

task. Presently, the most used proprietary OBIA software is eCognition (BAATZ et

al., 2008). It is based on a user-defined workflow, where the objects are modeled using

interpreter’s knowledge, being afterwards classified in accord to predefined classes of

interest (LANG et al., 2007). The most recent version of eCognition included a data

mining module with decision trees as the underlying method for classification. Being

a proprietary software package, it has stability, high performance, and a complete

documentation.
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ENVI Feature Extraction (INTERNATIONAL TELEPHONE & TELEGRAPH EXELIS,

2008) is also proprietary software for image analysis in the OBIA category. It per-

forms classification using a straightforward process, and is focused on high spatial

resolution imagery. The segmentation approach is called edge-based, since it sup-

presses weak edges according to a scale level parameter. Four types of features are

computed: spatial, spectral, texture and those based on color space and band ratio.

Classification algorithms include the unsupervised K-Nearest Neighbors, decision

trees, and the supervised Support Vector Machines – SVM.

On the other hand, the open source InterIMAGE software integrates image process-

ing operators in the interpretation process (COSTA et al., 2010). It offers a suit of

basic operators as well, including image processing procedures like segmentation,

thresholding, and filtering. The software inherits the interpretation engine and the

knowledge representation scheme from geoAIDA (BüCKNER et al., 2001). The in-

terpreter builds manually semantic networks, in which the nodes’ depths represent

more generalist (root) or more specific (leaves) classes of interest.

Given an application, one important question is how to build an accurate model for

interpretation. To create a proper classification model, a set of adequate features

must be selected, which is not a simple task considering the complexity of classes

to be analyzed as well as the large set of features to describe the objects. For large

amount of data the manual analysis is unfeasible. Therefore, data mining techniques

is an appealing alternative for image analysis.

Several articles relating OBIA applications have been published since around the

year 2000 (BLASCHKE, 2010). Addink et al. (2007) investigated optimal object def-

inition for biomass and leaf area index – LAI, whose fundamental objects are indi-

vidual trees or shrubs. The results showed that the scale of the objects affects the

prediction accuracy, and that aboveground biomass and LAI can be associated with

different optimal object sizes. The study also concluded that the accuracy of param-

eter estimation is higher for object-oriented analysis than for per-pixel analysis.

In accord to Lackner e Conway (2008), works using procedures based on OBIA

tend to rely on manual digitizing or ancillary data to delineate land use polygon

boundaries. Alternatively, they used land cover information derived from IKONOS

imagery to automatically delineate and classify the land use polygons in a region of

Ontario, Canada. Firstly they classified land cover from IKONOS image, and then

used the resultant classification as the basis for creating land use maps. The roads

extracted from the land cover maps were useful in outlining land use boundaries;
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however the delineation of roads in some cases produced jagged boundaries due to

the spectral similarities between the roads and neighboring impervious areas, such

as driveways and parking lots.

Lewinski e Bochenek (2008) classified SPOT (20 m) imagery using spectral and

textural parameters to detect land cover patterns. The classification process started

with recognition of water class, whose objects were delineated using multi-resolution

segmentation. For the remaining land cover classes, a new segmentation was per-

formed in order to detect urban and forest classes. Subsequently, refinement was

performed to detect agriculture and grassland classes. The classification evaluation

presented 89% of overall accuracy.

Zortea et al. (2012) proposed an automatic method to detect daytime cloud and

cloud shadows in the context of tropical forest monitoring. The method extracted

regions from the images using a region growing strategy, and then extracts features

based on pixel differences, ratios, and combinations. Such features, coupled with

shape matching, were employed to detect cloud and cloud shadow areas in TM and

ETM+ images. The method accuracy was of 91% but it still needs improvement

to be able to detect thin clouds and haze, and then to reduce the misclassification

between shadows and water.

Pinho et al. (2012) mapped land cover using an OBIA approach over an IKONOS II

image of southeastern Brazil city, covering an area with 50 neighborhoods. Such area

contained various occupation and land use patterns, with a wide range of intra-urban

targets. The interpretation combined multi-resolution segmentation, data mining

and hierarchical network techniques to detect 11 classes. To select the best attributes

for describing objects and then to build the hierarchical network, the authors used

a classification method based on the decision tree algorithm. The final classification

achieved a global accuracy of 72%.

2.3 Data Mining

Data Mining – DM – is a method to discover patterns from data. It means recovering

high-level potentially useful knowledge from low-level data. The increasing volume

of geoscience data makes it a perfect case for application of DM (RUSHING et al.,

2005). DM deals with the challenge of capturing patterns and agents present in the

geographic space, extracting specific knowledge to understand or to decide about

relevant topics, including land change, climate variations and biodiversity studies.
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The core of DM is the classification, which maps data into specific categories whose

cardinality is fewer than the number of data objects (MILLER; HAN, 2001). Our ability

to analyze and understand massive datasets is far behind our ability to gather and

store the data. Therefore, a new generation of computational techniques and tools

is required to support the extraction of useful knowledge from the rapidly growing

volumes of data (FAYYAD et al., 1996). These techniques and tools are the subject of

the emerging field of Knowledge Discovery in Databases – KDD, which contains DM

as an intermediate step. In Figure 2.2 we depict the steps needed to convert raw data

into useful knowledge. It is important to state that KDD is not a straightforward

process, which is denoted by the interconnections between the steps. From input to

output, some steps can be repeated to refine the relation between data and patterns.

Figure 2.2 - The flowchart of KDD. DM appears as a step in the full process that trans-
forms raw data into knowledge.

SOURCE: Adapted from Fayyad et al. (1996).

Remote sensing databases store millions of records, which hinder the detection of hid-

den patterns at various levels of abstraction only by visual inspection (UDELHOVEN,

2011). Stein (2008) defined the term image mining as “the analysis of (often large

sets of) observational images to find (un)suspected relationships and to summarize

the data in novel ways that are both understandable and useful to stakeholders”. In

remote sensing, thematic maps define recognizable objects in satellite images, which

can be either crisp or fuzzy. Crisp define entities with sharp boundaries and fuzzy

holds a poor definition or a vague boundary. Examples of fuzzy include a mountain

with no clear support or a city having gradual transition zones to the rural land

(STEIN et al., 2009).

DM algorithms have been extensively used in remote sensing applications. Friedl

et al. (1999) examined methods to increase classification accuracy using decision

trees to map land cover from AVHRR multi-temporal data. The work evaluated the
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inclusion of phenological metrics and geographic location as features for classifica-

tion. Tan et al. (2001a) used K-means and linear correlation to measure the likeness

among time series, and patterns were investigated for predicting changes in climate

and carbon cycle.

Roberts et al. (2002) described land cover variation in a wide area in Amazon using a

Landsat time series between 1975 and 1999. They applied DM and spectral mixture

analysis to map primary forest, pasture, second growth, urban, savanna, and water.

Souza et al. (2003) used decision trees and spectral mixture models to map degraded

forest in the Eastern Amazon including intact forest, logged forest, degraded forest,

and regeneration. McCauley e Goetz (2004) mapped residential land use in Mary-

land, USA, using Landsat images associated to a parcel-level database. The results

showed the possibility to distinguish densities of residential development, industrial

and agricultural areas. Silva et al. (2008) proposed a method to detect agents of

land use change in remote sensing image databases, relating each change pattern to

one of land use change.

The number of images provided daily by satellites allows research to go beyond

the current achievements accomplished so far. By using a set of images acquired in

different times it is possible to relate land changes to interpret images using DM and

other techniques that integrate time in the analysis. According to Udelhoven (2011),

there is still a need for automated methods that transform data from temporal

remote sensing data into useful information and knowledge. Next, a review about

some works in the area of multi-temporal analysis is presented.

2.4 Multi-temporal analysis

The growing pool of information provided by Earth satellites raised new possibilities

to analyze data as image time series. The problem is that remote sensing databases

store millions of temporal records, which hamper the detection of hidden patterns

at various levels of abstraction only by visual inspection (UDELHOVEN, 2011). Con-

sequently, image analysis techniques for data processing and information extraction

are necessary (BOULILA et al., 2011).

In accord to Boriah et al. (2008), land change happens when the cover type at a

given location switches to another type. Converting natural land cover into human-

dominated cover types is a change that impacts more than locally, with many un-

known environmental outcomes (POTTER et al., 2007). Remote sensing data is the

only source of long-term views of the Earth’s surface, which is a good alternative for
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mapping land use and land cover change (BRADLEY et al., 2007).

Examples of environmental changes include land cover fragmentation, patch isola-

tion, and a reduction in habitat and native species (METZGER et al., 2009). The

climatic impacts are also significant, such as an increase in surface temperature and

a decrease in the annual precipitation within tropical forests due to deforestation

(NOBRE et al., 1991).

Analysts interpret the imagery and map changes by analyzing differences found in

images taken in different times. Rudorff et al. (2009) related the increase in the

deforestation as well as the conversion of land use from pasture and agriculture to

sugarcane crops due to the biofuels expansion. Southworth et al. (2002) compared

the trajectories of forest-cover change and the landscape biophysical and social char-

acteristics using satellite images series to detect land changes. Both studies evaluated

past events and the image analysis process was manually performed. However, it is

a tedious and time-consuming task to interpret long series using manual methods

(BOULILA et al., 2011). Various studies have used remote sensing techniques to ana-

lyze multi-temporal images and detect changes (BORIAH et al., 2008; POTTER et al.,

2007; HORNSBY et al., 1999).

In agriculture applications one challenging task is to distinguish single and double

croppings among the other events in satellite images (GALFORD et al., 2008). Here,

single croppings stand for growing a crop once a year. Accordingly, double croppings

mean growing two crops in sequence on the same field in a year, i.e. the succeeding

crop is planted after the preceding crop has been harvested. As this event is cyclic,

its complete characterization involves multi-temporal images analysis, the knowl-

edge about the temporal interval that the event occurs as well as the pattern that

describes such event. Studies to identify cyclic events have used images and prod-

ucts from the Moderate Resolution Imaging Spectroradiometer (MODIS), which is

an important source of Earth data with high temporal resolution and low spatial

resolution (GALFORD et al., 2008; VERBESSELT et al., 2010). This imagery records

photosynthetic activity, allowing the surface analysis in time and space, and also

provides vegetation index values (EVI2) in a spatial resolution of 250m (HUETE et

al., 2002; JIANG et al., 2008).

By following the EVI2 values in a certain position along the time, we can define

a temporal profile that has a cyclic behavior, as seen in Figure 2.3. This profile

represents EVI2 values from 2000 to 2011, in a spatial resolution of 250m pixel

and temporal resolution of 16 days. The cycles should not be considered change,
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even though they contain different states as the variation from 0.1 to 0.75 between

2007 and 2008. However, techniques must be able to distinguish cycles to classify

land cover and land change patterns. For this task, we can use temporal profiles to

describe transitions between objects, and this way monitoring the land cover change

dynamics (FREITAS; SHIMABUKURO, 2008). Besides, through automatic methods we

can speed up the image analysis procedures and deliver results on-the-fly.

Figure 2.3 - EVI2 profile example from 2000 to 2011, the range of values is [0,1].

SOURCE: Adapted from Freitas et al. (2011).

Examples of methods to detect cycles automatically include the Discrete Fourier

Transform – DFT. Methods based on DFT convert the multi-temporal profile from

the time domain to the frequency domain, where it is easier to identify the frequencies

that compose the signal. The peaks in the power spectrum of a time series point

out the cycles (TAN et al., 2001b). The work of Galford et al. (2008) detects cycles

by applying an annual standard deviation threshold. This threshold is selected each

year from the local minimum in a bimodal histogram of standard deviation. Jonsson

e Eklundh (2004) use a preliminary definition of the seasonality (uni-modal or bi-

modal) with timings of the growing seasons.

Multi-temporal observations using remote sensing allow the analyst to recover rele-

vant information about changes in the environment. Such information is feasible if

data about objects’ history is available (BITTENCOURT et al., 2011; MOTA et al., 2009).

Two relevant questions are: “what has been the environment past condition?” and

“when and how did such condition change?” (RASINMAKI, 2003). Change detection

techniques can be used to tackle these questions.

Land change detection using remote sensing is not a new topic. However, it has

received more attention due to recent advances in data gathering and storage tasks.

Milne (1988) used digital imagery to calculate temporal variation between two

datasets. The idea of using two instants to detect changes originated the snapshot

15



model, in which the methodological challenge is to compare whether objects in t0

and t1 are the same (BRADLEY et al., 2007). Singh (1989) evaluated several change

detection methods based on snapshots. Before object-based techniques, other meth-

ods such as image differencing, regression to estimate pixels in future states, image

rationing, and post-classification were employed. These methods are computation-

ally fast but the results strongly depend on many external causes such as image

registration quality, illumination effect, atmospheric conditions, and sensor calibra-

tion. Differently, Carvalho et al. (2001) proposed a method based on multi-resolution

wavelet analysis to detect changes due to deforestation as well as new areas of rock

exploitation in south-eastern Brazil. Regardless of accurate spatial registration or ra-

diometric rectification, changes were found successfully while differences not related

to land cover changes were bypassed.

Verbesselt et al. (2010) proposed an algorithm named Breaks For Additive Seasonal

and Trend (BFAST) that integrates a decomposition of time series into trend, sea-

sonal and noise components for detecting changes. The method iteratively estimated

the time and number of changes, and characterized the change by its magnitude and

direction. Changes in the trend indicated gradual and abrupt changes, while changes

in the seasonal component indicated phenological changes. However, the sensitivity

of the BFAST to detect seasonal changes was not extensively assessed, and it was

not extended to distinguish types of changes.

Costa (2009) proposed a new multitemporal classification method based on Fuzzy

Markov Chain – FCM. Training samples of change generates membership values for

the object classified at times t and t+1 that are defined as fuzzy label vectors. After

defining a transition matrix, based on these vectors, the FCM model estimates the

class membership for every new object in t + 1, after a defuzzification step. This

approach was developed in the InterIMAGE software (COSTA et al., 2010).

Bradley et al. (2007) proposed a curve fitting method to model the average annual

phenology, using a spline-based approach. The authors assumed that ecosystems

have an inherent cyclicity approximated by an average annual curve. This assump-

tion was used to fill anomalously low or missing data. The method extracted basic

features from profiles such as amplitude, onset timing of greenness, intrinsic smooth-

ness, and roughness. They evaluated the land cover variability between 1990 and

2002 from NOAA-AVHRR data (1 Km spatial resolution) in the western U.S. The

method was robust to deal with unequally spaced data and reduced the influence

of empty NDVI data, occurred mainly during winter. However, the curve fitting
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method was sensitive to outliers, called spikes in the time series curve.

Castilla et al. (2009) introduced an automated change detection method called

Land cover Change Mapper (LCM). LCM detects regions that undergone signifi-

cant change in land cover using two or more snapshots. It is based on three steps,

starting from analyzing the difference between snapshots. Afterward, they automati-

cally detected a threshold that produces a binary image (change/no change). Finally,

spurious data were removed by applying a region growing strategy in areas detected

as change. The method is fast and robust to illumination differences, and was ap-

plied to track deforestation in Western Canada using SPOT imagery (2.5m spatial

resolution) corresponding to years 2004 and 2006.

A more sophisticated approach to find changes in yearly time series with many

observations was devised by Boriah (BORIAH, 2010). The author proposed a recursive

merging algorithm to identify the scale and scope of disturbance events. It scales up

to handle the large size of Earth science data, large numbers of missing and noisy

values present in satellite data sets. Since any time series can be partitioned into

homogeneous segments, and their boundaries represent change points, it merges the

most similar pair of consecutive cycles until two cycles remain. The distance between

them will indicate (or not) changes. They analyzed EVI profiles between 2000 and

2006 from MODIS sensor (250m spatial resolution) to detect land use conversion

from vegetation to urban, and from barren land to vegetation. The method is fast

since few processing is required but it does not tackle more sophisticated changes

such as crop changes in agriculture sites.

Galford et al. (2008) first detected row crops areas by applying an annual stan-

dard deviation threshold to discriminate row crops from other land cover types.

The thresholds were selected year by year from the local minimum in a bimodal

histogram of standard deviation. To determine if a cropland pixel has a single or

double croppings pattern, the authors detected the number of local maximums in one

growing year of a wavelet-smoothed EVI time series. As mentioned by Verbesselt et

al. (2010), change detection techniques need to be independent of specific thresholds

or change trajectories, since finding out thresholds often produces misleading results

due to different spectral and phenological characteristics of land cover types (LU et

al., 2004). Moreover, manual determination of thresholds adds significant efforts to

expand change detection to large areas.

Jonsson e Eklundh (2004) presented curve-fitting methods to smooth time series of

satellite images. The smoothed curves are used for extracting seasonal parameters
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related to growing seasons (single or double croppings). Seasonal parameters include

the beginning, the mid, the end, and the amplitude of a season. Each season is

detected using data from 3 years, where the central year is processed to detect

growing seasons. If the amplitude of the second peak exceeds a certain fraction of

the amplitude of the primary peak, double croppings are set. For cases where the

amplitude of the secondary peak is low, single croppings are detected.

2.5 Comments

Several studies about land patterns analysis were presented in this Chapter. It is

evident the variety of different methodologies they have used to analyze images.

Concerning classification, many works have used data mining as the underlying

technique for pattern recognition, and some others have still relied on the manual

definition of a rule set. Table 2.1 provides a summary of some software used in the

studies discussed in this Chapter.

Table 2.1 - Softwares used in the remote sensing applications.

Article ArcGIS eCognition ENVI Fragstats R Weka Others Total
Addink et al. (2007) × × CAN-EYE 3
Esquerdo et al. (2009) × 1
Ferraz et al. (2005) × × SWAT2000 3
Frohn e Hao (2006) × × × 3
Gavlak et al. (2011) GeoDMA 1
Hüttich et al. (2009) × × TIMESAT 3
Imbernon e Branthomme (2001) × ERDAS 2
Lackner e Conway (2008) × 1
Lewinski e Bochenek (2008) × PCI 2
Metzger et al. (2009) × × 2
Novack et al. (2011) × × InterIMAGE 3
Pinho et al. (2012) × × × 3
Ribeiro et al. (2009) × × ERDAS 3
Saito et al. (2011) GeoDMA 1
Silva et al. (2008) × × Spring 3
Southworth et al. (2002) × × 2

By carefully inspecting Table 2.1, it is observed that most works used more than one

computational program to perform the complete image analysis. This fact introduces

one more challenge for the researchers, which is the problem of data integration and

the transfer of one platform to another. This includes conversion of data format,

knowledge of the software to be used, files replication, and other tasks that difficult

the image analysis process. Besides, in most cases such tasks are very time con-
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suming, mainly due to the amount of data. Consequently, the need of an integrated

framework, capable of merging all image analysis tasks into a single platform is seen

as a great demand in the interpretation of remote sensing imagery.
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3 GeoDMA – GEOGRAPHIC DATA MINING ANALYST

Current remote sensing research is mainly performed over GIS, since they provide the

necessary functions for spatial data collection, management, analysis and represen-

tation (STEINIGER; HAY, 2009). However, advanced remote sensing research should

not be limited by the basic functionality provided by a GIS platform. In particular,

a tool for advanced image interpretation must include essential functionalities such

as:

a) spatio-temporal analysis tools;

b) adequate set of features to describe patterns in spatio-temporal data;

c) simulation methods to assess the accuracy of process models;

d) detection of multi-temporal changes as well as creation of change maps,

allowing the interpreter to understand land change patterns;

e) options for customization and functional enhancements to advance algo-

rithms;

f) a proper architecture that allows experiments to be repeatable and results

to be reproducible by other researchers;

g) documentation of methods and source code, so that new researchers can

learn the tools and understand or modify the underlying methods.

Taking into account these aforementioned requirements, we decided to build a FOSS

for analyzing changing patterns over large remote sensing datasets, named Geo-

graphic Data Mining Analyst – GeoDMA. The basic ideas of Silva et al. (2005),

who proposed a methodology for detecting deforestation patterns in the Amazon

region were the starting point for our research. Therefore, GeoDMA was designed

as a toolbox to integrate the most essential image analysis algorithms, landscape

ecology metrics, a scheme for multi-temporal analysis, and data mining techniques

to automate the analysis of large databases (KORTING et al., 2008).

Figure 3.1 shows the main interface of GeoDMA. In particular, the system supports

and stores different geographic data types in local or remote databases. It integrates

classification and validation tools in a friendly Graphic User Interface (GUI) based

on statistics and the interpreter’s knowledge. Besides, it is a free software solution for
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remote sensing applications, running in different platforms (e.g. Linux and Windows,

32 bits).

The toolbox works on top of TerraView GIS (INSTITUTO NACIONAL DE PESQUISAS

ESPACIAIS, 2012), whose interface is shown in Figure 3.2. This GIS provides the inter-

face for the interpreter to visualize the geographic information stored in databases,

to control the database, and also to display the objects’ properties.

Figure 3.1 - User interface for GeoDMA.

A summary of the system is as follows:

• Software name: Geographic Data Mining Analyst – GeoDMA

• Contact: tkorting@dpi.inpe.br

• Year of first version: 2009

• Hardware: IBM compatible PC

• Operation System: Linux/Windows

• Program language: C++
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Figure 3.2 - User interface for Terraview.

• Ancillary libraries: TerraLib (CâMARA et al., 2008) and QT (BLANCHETTE;

SUMMERFIELD, 2008)

• Availability: free from http://geodma.sf.net/

• Extra documentation: http://geodma.sf.net/documentation

• Data formats accepted: TIFF rasters, and ShapeFiles
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Figure 3.3 shows a general diagram of the system. The processing steps start from

defining the input data, going through feature extraction and the application of data

mining algorithms to extract and deliver information about Earth observation. Each

module in the diagram corresponds to one of the following Sections.

Figure 3.3 - GeoDMA: diagram of the main processing steps for image analysis.

3.1 Defining the input data

GeoDMA imports a variety of geospatial data, which are stored in a database as

raster1 or vector format. Object-based approaches use homogeneous regions from

image segmentation. The regions extracted by segmentation operation, points (pix-

els), and cells (regular grid) define objects that are stored in database as vector

information. Multi-temporal images can be represented as a sequence of snapshots

in raster format, which are used to extract a sequence of values for each object in

different intervals that define a curve called cycle. Figure 3.4 illustrates the relation

among the input data in the system.

Figure 3.4 - Creating input data – Multi-temporal images define cycles and segmentation
defines objects from raster.

1Throughout the text, image and raster terms will be used interchangeably.
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3.1.1 Segmentation

Image segmentation is one of the most challenging tasks in digital image processing.

One simple definition states that a good segmentation should partition the image

into regions with homogeneous behavior (HARALICK; SHAPIRO, 1985). Figure 3.5

shows the segmentation interface in GeoDMA.

Figure 3.5 - Interface for segmentation: the interpreter selects the algorithm and sets the
thresholds. Regions obtained in the segmentation process are stored in the
database as vector format.

The system provides 4 segmentation algorithms:

• Region growing approach based on Bins et al. (1996). This algorithm de-

fines random seeds over the image and merges them with neighboring pix-

els, according to a similarity threshold. After growing all seeds, regions with

area below a threshold, which define the size of the area, are merged to

the most similar neighbor. According to Meinel e Neubert (2004), this al-

gorithm released good overall impression of results with proper delineation

of homogeneous areas.

• Segmentation approach based on Baatz et al. (2000). It is based on region
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growing and a multi-resolution procedure. The similarity measure depends

on scale and the thresholds are weighted by the objects size. The interpreter

defines the parameters for scale, band’s and color weights, and weights for

smoothness and compactness.

• Algorithm based on Korting et al. (2011), which classifies spectrally similar

pixels according to their location, using a geographic extension of the Self-

Organizing Maps (SOM). The self-organized map will cluster neighboring

pixels, and these clusters will define the image segments.

• A technique of resegmentation applied to urban images based on Korting

et al. (2011). Resegmentation represents the set of adjustments from a

previous segmentation in which the elements are small regions with a high

degree of spectral similarity (a condition known as oversegmentation). This

algorithm is applied to segment the house roofs, which are assumed to have

a rectangular shape. A region adjacency graph (RAG) is created to relate

the border elements of the oversegmentation, and this technique splits and

merges regions until they form a meaningful object.

3.1.2 Cycles detection

The land pattern detection in GeoDMA using multi-temporal images is based on

cycles definition. Therefore it is important to distinguish the terms profile and cycle,

although they represent the same temporal entity in some cases. Suppose we have a

profile with observational data over a 5-year period while the analysis is performed

yearly. In this case, the profile contains the full time series, divided into 5 cycles of

1 year. In vegetation analysis the cycles are often annual. For example, a time series

with temporal resolution of 8 days defines a cycle with around 45 values per year

(365
8
' 45). For 16 days, the number of cycles changes to 23, and so on.

The central question is how to describe each cycle. Before using data to quantify

or infer spatio-temporal processes, it is crucial to understand how the processes

are represented in the data. Characterization of multi-temporal imagery provides

insights into how different processes are represented by the spatial, spectral and

temporal sampling of the imagery (SMALL, 2011). In agriculture applications the

duration of certain events is well defined, e.g. 1 year. From multi-temporal images,

the user defines the initial point of a cycle and the number of points for each cycle.

With this information, GeoDMA is able to extract multi-temporal features from

time series.

26



3.1.3 Creation of cellular space

Based on the landscape ecology concepts, objects can be represented by regions

obtained by segmentation (patches) and regions that encompass a set of objects

(landscape). The latter is represented through a rectangular grid of cells. Such grid

is defined by a resolution that indicates the size of the rectangles. The class and

landscape metrics related in Section 2.1 integrate the regions inside every cell, and

present metrics such as average area of the regions inside a cell, or the amount of

regions for a specific class inside a cell.

As pointed by Saito et al. (2011), the interpreter must take into account the cellular

space resolution and its sensitivity over the detection of different land cover patterns.

3.2 Feature extraction

Figure 3.6 describes the feature extraction module, which stores all features in a

local or remote database. Several features are possible to be extracted, meanwhile

according to the raster size and the quantity of objects this task can spend much time

(i.e. hours) to be performed. Therefore, the creation of a feature database ensures

that all features will be extracted only once.

Figure 3.6 - Feature extraction – Spectral and Spatial features use raster and vector ob-
jects. Landscape ecology features use class information of objects. Multi-
temporal features use cycles’ information.

Features are divided into 3 groups. The segmentation-based features are properties

obtained from the segmented objects, integrating raster and vector data types. The

27



landscape-based features are the landscape metrics, using vector data type. Cycles

obtained from raster time series are used to extract multi-temporal features.

3.2.1 Segmentation-based features

The segmentation-based features include spectral (Table2 A.1) and spatial (Table

A.2) metrics to describe each object stored in database. The spectral features relate

all pixel values inside a region, therefore include metrics for maximum and minimum

pixel values, or mean values. The spatial features measure the shapes of the regions,

including height, width, or rotation. Figure 3.7 shows the visual representation of

both features. Some equations in Table A.1 describe features based on the Gray-

Level Cooccurrence Matrix – GLCM (HARALICK et al., 1973; PACIFICI et al., 2009).

The term pij is the normalized frequency in which two neighboring cells separated

by a fixed shift occur on the image, one with gray tone i and the other with gray

tone j. The constant D is the dimension of the GLCM, which has the same gray

value range of the original image.

Figure 3.7 - Visual representation of the segmentation-based spectral and spatial features.
Several features can be extracted in the highlighted region. Spectral features
include metrics for maximum and minimum pixel values, or mean values.
Spatial features measure the height, width, or rotation.

2All tables describing the features are in the Appendix .
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3.2.2 Landscape-based features

In the Section 2.1 the concepts of landscape ecology were presented. A set of fea-

tures based on this concept was implemented in GeoDMA. Such features represent

the spatial relations between objects (or patches in the landscape ecology) inside a

predefined landscape. Table A.3 describes these features implemented in our system.

3.2.3 Multi-temporal features

The purpose of characterizing multi-temporal data is not only to identify specific

features but also to determine what can and cannot be distinguished in the data

with a minimum of assumptions. Within this context, this work proposes the Polar

representation features to better represent cyclic patterns that are common, for

instance, in agriculture applications. For our purpose, we divided the set of features

into 2 groups, namely Basic and Polar features, which we will describe below.

3.2.3.1 Basic features

Basic features include statistical measures and phenological metrics in case of veg-

etation profiles (HüTTICH et al., 2009; JONSSON; EKLUNDH, 2004). From each cycle

we trace well-known statistical features such as mean, standard deviation, minimum

and maximum values, and amplitude. The phenological metrics include the timing

of recurring vegetation cycles (canopy emergence and senescence), first and second

slopes of the curve, integral, and distance between peaks and valleys. Hereby we

define this type of feature as Basic. Figure 3.8 illustrates some metrics extracted

from time series: maximum, minimum, amplitude, and integral values. Table A.4

presents a description of all the aforementioned features.

3.2.3.2 Polar features

According to Hornsby et al. (1999), the standard computational models of time do

not consider that certain events or phenomena may be recurring. The term cycle

can also be used to capture the notion of recurring events. To support cycle’s visu-

alization, Edsall et al. (1997) proposed a time-wheel legend, resembling a clock face,

divided into several wedges according to the data instances.

In our case, we adapted the time wheel legend by plotting each cycle of the profile,

and by projecting values to angles in the interval [0, 2π]. Let a cycle be a function

f(x, y, T ), where (x, y) is the spatial position of a point, and T is a time interval

t1, . . . tN , and N is the number of observations in such a cycle. The cycle can be
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Figure 3.8 - Some Basic features obtained from time series: maximum, minimum, ampli-
tude, integral values.

visualized by a set of values vi ∈ V , where vi is a possible value of f(x, y) in time ti.

Let its polar representation be defined by a function g(V )→ {A,O} (A corresponds

to the abscissa axis in the cartesian coordinates, and O to the ordinate axis) where

ai = vi cos(
2πi

N
) ∈ A, i = 1, . . . N (3.1)

and

oi = vi sin(
2πi

N
) ∈ O, i = 1, . . . N. (3.2)

Considering aN+1 = a1 and oN+1 = o1, we can obtain the coordinates of a closed

shape. Figure 3.9 illustrates a cycle and its transformation to the polar coordinate

system. Given the shapes, we can extract various shape and linearity metrics, such

as area, perimeter, main direction, bounding ellipse, eccentricity and radius. In this

scheme, a cycle with constant values outcomes a circle, and different cycles draw

different shapes according to their properties. Henceforth, this type of feature is

named as Polar.

Moreover, polar representation provides a new visualization scheme that can help us

to describe the pattern represented in the cycle. A first insight when using annual

cycles suggests splitting the polar representation into 4 quadrants related to the 4

seasons. To illustrate this scheme, Figure 3.10 shows the polar representation for

2 different cycles associated to 2 land cover types (single and double croppings),

divided by seasons. Most of the area that represents the single croppings class is in
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Figure 3.9 - When the values of the cycle are associated to a certain angle (left), the closed
shape is created from its polar transformation (right).

the quadrant related to the summer season. In the spring and fall seasons, it is also

observed that the curves have similar behaviors related to canopy emergence and

senescence, respectively. Differently, the polar representation for the double crop-

pings class has a small area in the winter season and similar areas in the other

seasons. Hence, other features such as average values per season can also be com-

puted. Another feature, called Polar Balance, calculates the standard deviation of

the area per season, which indicates the stability of the profile throughout the cycles.

Given the shapes, we also extract linearity features based on geometric moments

(STOJMENOVIC et al., 2008). The central moment µ, of order pq, from a set of points

Q is defined as

µpq =
∑
x,y∈Q

(x− xc)p(y − yc)q (3.3)

where (xc, yc) is the center of mass from Q. The feature eccentricity is calculated

using the central moments with different orders:

e =

√
(µ20 + µ02)2 + 4µ2

11

µ20 + µ02

. (3.4)

The feature angle of orientation of Q is determined by
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Figure 3.10 - Relation between the four seasons and EVI2 values using polar representa-
tion.

a = 0.5 arctan

(
2µ11

µ20 − µ02

)
. (3.5)

The feature ellipse ratio is obtained by r = 1− b
a
, where

a+, b− =

√√√√2
[
µ20 + µ02 ±

√
(µ20 − µ02)2 + 4µ2

11

]
µ00

. (3.6)

All features for describing cyclic events extracted from polar representation and

implemented in the system are described in Table A.4.

3.3 Data mining to detect land cover and change patterns

In the data mining step, shown in Figure 3.11, the objects stored in a database are

used by the interpreter to select representative samples for each pattern of inter-

est. The different patterns compose the land cover typology, and some algorithms

automatically build a classification model based on training samples, which can be

stored for further analysis. This model shall be used to classify the entire database,
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or different databases with the same typology. The classification interface is shown in

Figure 3.12, where the interpreter selects the input features, sets output parameters,

and defines the classification algorithm.

Figure 3.11 - Classification interface. The interpreter selects the input features, sets output
parameters, and defines the classification algorithm.

Figure 3.12 - The interface for classification. The interpreter must select the input features,
set output parameters, and define the classification algorithm.
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Usually, the search for patterns includes the automatic execution of a classification

algorithm and a phase of feature evaluation by the interpreter. In accord to Pinho

et al. (2012), the inclusion of data mining techniques in the classification process

increases the speed and also reduces the empirical nature of the feature selection

process and the creation of classification models. One mechanism to evaluate the

features is provided in the visualization module, which displays features in a scat-

terplot to visualize the data distribution in the feature space, as shown in Figure

3.13.

Figure 3.13 - Visualizing data in the feature space using a scatterplot, similar to eCogni-
tion’s module (LANG et al., 2007).

Another visualization tool is the spatialization, which helps the interpreter to identify

specific features and also to determine what can and cannot be distinguished in the

data. Figure 3.14 shows the spatialization of the mode feature. Brighter objects

define regions with higher values of mode whereas darker objects define regions with

lower mode values.

When analyzing multi-temporal imagery, the interpreter needs to visualize the time

series, so that a cycle can be related to a specific land pattern. GeoDMA toolbox

provides the cycle’s visualization as well as its polar transformation, as Figure 3.15
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Figure 3.14 - Spatialization of the mode feature. Brighter objects define regions with higher
values of mode whereas darker objects define regions with lower mode values,
similar to eCognition’s module (LANG et al., 2007).

depicts.

3.3.1 Building a training set

Since the interpreter knows the typology behind the data he must create a descrip-

tion of the expected patterns by selecting training samples for each pattern, which

must be representative over the images. These samples are represented by a set of

features. Afterward, in the supervised classification step, the algorithm uses these

training samples to build a classification model.

In GeoDMA, this step is guided by a simple interface, as shown in Figure 3.16. The

interpreter creates the class typology by defining a name and a color for each pattern

of interest. Subsequently, the user selects the samples in the image and associates

them to each class. The information of sample selection is stored as a label in a
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Figure 3.15 - The multi-temporal visualization module in GeoDMA. The interpreter visu-
alizes a specific cycle and the polar transformation of the cycle by selecting
a point in the image.

specific column in the objects database, and will be used to train the classification

model and to evaluate the results.

3.3.2 Classification using decision trees

Statistical classifiers often assume a Gaussian distribution, which may not be ade-

quate for remote sensing data (XU et al., 2005). On the other hand, decision trees

are strictly nonparametric and do not need assumptions about the data statistical

properties. According to McCauley e Goetz (2004), decision trees have an intuitive

appeal because the classification is clear and easily interpretable.

In a classifier based on decision trees, thresholds are applied to object’s features.

Observations satisfying the thresholds are assigned to the left branch, otherwise to

the right branch (HASTIE et al., 2009). In the final step, classes are assigned to the

terminal nodes (or leaves) of the tree.

Forming a decision tree is a recursive problem expressed in a divide-and-conquer

method. Given a set of training samples, there are three possibilities to build a
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Figure 3.16 - Interface for sample selection.

decision tree (QUINLAN, 1993):

• When the set contains only samples belonging to a single class, the decision

tree is composed by a leaf;

• When the set contains no samples, further information, such as the overall

majority class, is necessary;

• If the set contains samples of different classes, it is refined into single class

subsamples. One test based on a single feature with one or more mutually

exclusive outcomes is chosen.

According to Witten e Frank (2005), a purity measure of each node improves the

feature selection process that produces the purest daughter nodes. Based on infor-

mation theory, the entropy relates the likelihood of a feature to be classified as a
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certain pattern. The entropy aims to answer “how uncertain we are of the outcome?”

(SHANNON, 1948). Suppose we have a set of possible events (features being classified

as 1, 2, . . . N) whose probabilities of occurrence are p1, p2, . . . pN . Then the measure

of entropy H(p1, p2, . . . pN), is defined as follows:

H(p1, p2, . . . pN) = −K
N∑
i=1

pi log pi, (3.7)

where K is a positive constant. In the construction of a decision tree, the entropy

for each possible decision (applying a threshold in some feature) is computed. The

lower is the value of H, the most proper is the current decision for discriminate the

classes. Briefly speaking, the problem of decision tree construction is to find the best

features to discriminate the classes and to divide recursively the data into several

subsets (WANG; LI, 2008).

Given this measure, one can calculate the so called information value (info) for the

selected features, converting the occurrences of classes to a set of probabilities:

info([v1, v2, . . . vN ]) = H(
v1
D
,
v2
D
, . . .

vN
D

) (3.8)

D =
N∑
i=1

vi.

The value called gain measures the advantage of using a certain feature in despite

to another. It is calculated by the info contained in all elements per sample class

minus the info for the number of instances that go down each branch. Suppose, for

example, we have two features called pixel mean and area, and classes called forest,

clear cut and road, with 4 samples to forest, 2 samples to clear cut and 3 samples to

road. Generating a split in the pixel mean feature will divide the training samples

like shown in Figure 3.17a, and splitting in the area feature divides as indicated in

Figure 3.17b. To find gain for both splits, one must have to calculate their info

values:
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(a) (b)

Figure 3.17 - a) Splitting feature pixel mean in the value of 70, and b) Splitting feature
area in the value of 50.

gain(pixel mean) = info([4, 2, 3])− info([3, 2, 0], [1, 0, 3])

gain(area) = info([4, 2, 3])− info([4, 0, 3], [0, 2, 0]).

The info value for more than one interval of values is calculated as the following:

info([p1, p2], . . . [pN−1, pN ]) =
N−1∑
i=1

pi + pi+1∑N
j=1 pj

H(pi, pi+1). (3.9)

Therefore the resultant value gain(pixel mean) is:

info([4, 2, 3]) = −4

9
log(4/9)− 2

9
log(2/9)− 3

9
log(3/9) = 1.5305

info([3, 2, 0]) = −3

5
log(3/5)− 2

5
log(2/5) = 0.97095

info([1, 0, 3]) = −1

4
log(1/4)− 3

4
log(3/4) = 0.81128

info([3, 2, 0], [1, 0, 3]) =
5

9
× 0.97095 +

4

9
× 0.81128 = 0.89999

gain(pixel mean) = 1.5305− 0.89999 = 0.63051,
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and the resultant value for gain(area) is:

info([4, 0, 3]) = −4

7
log(4/7)− 3

7
log(3/7) = 0.98523

info([0, 2, 0]) = −2

2
log(2/2) = 0.0

info([4, 0, 3], [0, 2, 0]) =
7

9
× 0.98523 +

2

9
× 0.0 = 0.76629

gain(area) = 1.5305− 0.76629 = 0.76421.

The feature area reached a higher value of gain. In this case, it would be chosen for

creating a branch in the decision tree. Such feature divides better the space, since it

isolates one of the classes in a single leaf (i.e. clear cut), falling into the first basic

assumption of decision trees, as mentioned before.

The main information used to perform splits in the decision tree is the gain, in which

the amplitude and statistical distribution of the features values are not considered.

Only the classified elements in each branch of the tree are important. This fact

grants to this algorithm an independence from data standards and, therefore it

becomes more flexible for classification. Particularly, in multi-temporal analysis, in

which one can have many features, these facts make this algorithm more adequate

for classifying change signatures than others based on mixture models, for instance.

Hastie et al. (2009) discuss the use of decision trees algorithms. Rather than splitting

each node into just two groups at each stage, we might consider multiway splits into

more than two groups. While it can be useful, it is not a good general strategy. The

problem is that multiway splits fragment the data too quickly, leaving insufficient

data at the next level down. According to the author, a major problem with trees is

their high variance. Often a small change in the data can result in different series of

splits, making the interpretation precarious. This happens because of the hierarchical

nature of the process, in which the effect of an error in the top split is propagated

down.

How far should a tree grow? Clearly, a very large tree might overfit the data, while

a small tree might not capture important structures. The average size is preferred,

since it does not under or overestimate the data, and it is also easily interpreted by

the user. According to Witten e Frank (2005), the parameter called minobj defines

the minimum number of instances per leave of the tree. In other words, it has the
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ability to cut out tests in which almost all training samples have the same outcome.

Consequently, nodes in a tree are removed unless they have at least a minimum

number of cases. High minobj values suggest a more generalist classification model,

in which more objects are classified in the same tree path.

3.3.3 Classification using self-organizing maps

One unsupervised alternative for classification is also provided by GeoDMA, using

the well-known algorithm of Self-Organizing Maps – SOM. SOM is a powerful tool

for exploring huge amounts of high-dimensional data. It defines an elastic, topology-

preserving grid of points that is fitted to the input space (LAAKSONEN et al., 2005).

Proposed by Kohonen (2001) as a tool for visualization and data analysis with many

dimensions, this algorithm has been used for a wide variety of applications, such

as clustering, dimensionality reduction, classification, sampling, vector quantization

and data-mining.

SOM is based on the idea of a set of neurons which through learning experiences

specializes in identifying certain types of patterns. The basic idea of SOM is to map

the data patterns onto an n−dimensional grid of neurons. That grid forms what

is known as the output space. This mapping preserves topological relations, i.e.

patterns that are close in the input space are mapped to close units in the output

space. The neuron structure is composed by a vector of weights. The number of

weights is defined by the number of input features.

The classification process involves the competition between the neurons, which oc-

curs in several iterations, known as epochs. The training starts by initializing ran-

domly the neurons. For each input the algorithm finds the winner neuron, which

is the closest neuron to the pattern (VESANTO, 2002). The euclidean distance can

be used to calculate the distances. The neighboring neurons are also updated, how-

ever using a reducing factor. While the process is repeated the neurons move in the

feature space.

Let x be a set of N training patterns, and w the set of neurons, spread along a

2-dimensional space. Thus wij is the neuron at the (i, j) position. Let 0 ≤ α ≤ 1 be

the learning rate, and h(wij, wmn) the neighborhood function, varying in the [0, 1]

interval, closer to 0 for more distant neurons. The learning rate is usually bigger

in the early epochs and smaller in the last epochs, to smooth the convergence. The

basic training algorithm is described as follows:
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a) Calculate the distance from pattern xk and all neurons:

dij = |xk − wij| (3.10)

b) Find the winner neuron:

wmn → wij : dij = min(dmn) (3.11)

c) Update the neural network:

wij = wij + αh(wmn, wij)|xk − wij| (3.12)

d) Repeat this until a stop criteria is reached.

Generally, the gaussian function is used in h(wij, wmn) to update the neurons, ac-

cording to an influence distance r, like the following:

h(wij, wmn) = e−
1
2

(i−m)2+(j−n)2

r2 . (3.13)

After training the neurons, each of them will be specialized in one of the expected

patterns from the input data. Therefore, the resultant classifications are created by

labeling each input data with the label of the winner neuron. In GeoDMA, this

algorithm was implemented based on the work of Korting et al. (2008).

3.4 Evaluation of classification

The output of GeoDMA is a thematic map (Figure 3.18), obtained by applying the

classification model to the database. As the KDD process suggests, from the output

the interpreter can make a number of inferences besides the map evaluation.

In the decision tree classification model, it is possible to infer from the tree’s nodes

the most proper features for classifying each pattern. In the unsupervised classifier

SOM, generally the result produces more clusters than the desired patterns. In this

case, the interpreter must assign a meaning to the patterns by labeling them accord-

ing to the typology. However, if the results are not satisfactory any of the previous

tasks can be executed again.
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Figure 3.18 - Thematic map is the output when applying the classification model to all
objects stored in the database.

3.4.1 Accuracy assessment

According to Gamanya et al. (2007), a strong and experienced evaluator of seg-

mentation techniques is the human eye/brain combination. This statement is also

supported by Baatz et al. (2000), who argued that no segmentation result – even

if quantitatively proofed – will convince, if it does not satisfy the human eye. In

addition, when dealing with multi-temporal analysis, the validation is often not

straightforward, since independent reference sources for a broad range of potential

changes must be available during the change interval (VERBESSELT et al., 2010).

However, it is always important to establish correctness measures of the results with

ground truth. According to Congalton (2005), validation has become a standard

component of any land cover map derived from remotely sensed data. Knowing the

map accuracy is vital to any decision making performed using that map.

GeoDMA provides the calculation of the error matrix and the Kappa value for a

classification. In the sample selection module the system automatically divides the

samples into training and validation sets, randomly. With the validation samples,

results are compared in order to create the error matrix. In cases where the sample

set is reduced, GeoDMA provides an exhaustive method based on the Monte Carlo

simulation using only the training samples. The base for this simulation is to perform

random experiments to solve mathematical models and complex problems. The goal

is to simulate a real system based on the large samples theory (RUBINSTEIN; KROESE,

2008).

To execute the Monte Carlo simulation, the training samples are subdivided N

times into training and validation samples. For each subdivision, a Kappa value

is calculated. In the end of the simulation, the statistics are provided, indicating

maximum, minimum and average values. One example of a Monte Carlo simulation

is presented in Figure 3.19.
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Figure 3.19 - The interface of the Monte Carlo simulation in GeoDMA.

3.4.2 Change detection

At this point, the land cover information is assumed to be available in different

times. It is important to say that the time information may vary according to the

available database. For example, in a multi-temporal profile of EVI2 values, every

classification should represent the land cover at a predefined interval, like a single

year, or a crop year. When high spatial resolution imagery is used, the classification

can represent the land cover at 2 specific moments. Therefore, the interpretation

should respect these intervals in this case. This means that certain aspects of change

will not be correctly detected if the proper temporal resolution is not used.

Two methods for detecting change are related in this work. The first one uses 2

classification maps of the same place in different time intervals, which is called direct

change. The second method creates a trajectory of change using more than 2 maps.

In fact, the first method is a special case of the second. In both cases, the measure of

change contains a restriction over the objects. The restriction is that maps must have

the same spatial resolution, and in case where the segmentation-based approach is

used, the same objects will be used for all maps. The unique variable in this case is

the class typology.
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3.4.2.1 Direct changes

Given the thematic maps, the method to retrieve direct changes simply evaluates

the same location at 2 different times. By using this method, the resultant map will

be a binary description of changed and unchanged locations. The following strategy

is employed to create the direct changes map:

for every object in t1

if the land cover class in t1 and in t2 is the same

label ← no change

else

label ← change

end if

assign label to the object in the resultant map

end for

3.4.2.2 Trajectories of change

According to Silva et al. (2008), patterns found in one map can be linked to those

in earlier and later maps, enabling a description of the objects’ trajectory of change.

In GeoDMA, the change detection method searches for trajectories of change in the

classification maps. We assume that a single object belongs to a specific class on

each map (cycles t1, . . . tN). Within this context, the trajectory of change is defined

by a sequence of land changes. It is then possible to define a label for a specific

sequence, and therefore discover land change patterns.

A second important inference on trajectories is the detection of sub-trajectories

where change is perceived. Suppose we have the patterns forest, bare soil and crop-

land. For instance, given 5 maps it is possible that 3 different objects behave as

follows:

Object t1 t2 t3 t4 t5

O1 Forest Forest Bare soil Cropland Cropland

O2 Forest Forest Forest Bare soil Cropland

O3 Forest Forest Forest Forest Bare soil

When analyzing the entire trajectory for the 3 objects they are different. O1 remains

unchanged in the transitions t1 → t2 and t4 → t5. O2 does not change in t1 → t3 and

also O3 does not change in t1 → t4. However, it is noticeable the sub-trajectory forest,

bare soil, cropland for the objects O1 and O2. In this example, the only difference
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is the starting points for the changes. In this case the objects O1 and O2 present

similar behavior in terms of land change. The trajectory of O3 can be described as

deforestation in t4 → t5.

46



4 CASE STUDIES

This Chapter presents some case studies in which GeoDMA system is applied to

classify land cover patterns. Different targets are analyzed and some experiments are

also performed using alternative OBIA systems such as InterIMAGE and eCognition

for comparison purposes.

The first case study uses high spatial resolution images to detect automatically

urban land cover patterns using segmentation-based features. The second case study

exploits a set of landscape-based features to keep up a correspondence between urban

patterns and incidence of diseases. The third one classifies deforestation patches

using landscape-based features, and explores change detection by combining two

land cover maps. To explore the multi-temporal features, the fourth and fifth case

studies use polar features over an EVI time series and compare the results with

experiments using only basic multi-temporal features. To evaluate the results, land

cover maps produced by hand were employed as reference.

For each case study, it is provided a description about the images, the typology and

the GeoDMA modules used to perform the image analysis. The number of training

samples, the classification model and the accuracy assessment are provided as well.

4.1 Land cover using intra-urban imagery

Identifying changes in land cover and land use provides important information for

urban planning and management (MEINEL et al., 2001). For example, this type of

information can be used to plan changes in the public transportation system for

areas in which the number of high-rise buildings is rapidly increasing. Such changes

can be assessed using multi-temporal analyses of intra-urban land use and land cover

maps, which require continuously updated, detailed and precise data (PINHO et al.,

2012).

Automatic methods for urban land cover analysis face the challenge of wide intra

and inter-classes spectral variability. To overcome this problem, urban applications

often employs the oversegmentation strategy, which involves breaking an image into

many small regions from which any sought information can be assembled with some

knowledge. This strategy is recommended when the goal is object recognition (CO-

MANICIU; MEER, 1997).

To evaluate the effectiveness of GeoDMA system for land cover classification we

conduct the study for the city of São Paulo, southeast of Brazil, with a great variety
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of intra-urban land cover classes, using a QuickBird imagery. The images used in

this experiment consisted in an Ortho-ready Standard 2A hybrid multi-spectral set

(0.6m) with 4 bands blue, green, red, infrared, and a panchromatic band (Figure

4.1). Images were acquired on March 30, 2002 with an off-nadir incidence angle of

7.0o and radiometric resolution of 11 bits.

Figure 4.1 - Intra-urban high-resolution image for land cover classification.

The class typology includes roofs (blue, bright, ceramic, dark and gray asbestos),

grass, swimming pools, shadows, and trees as shown in Table 4.1. The segmentation

algorithm employed is the region growing and the multi-resolution procedure based

on Baatz et al. (2000). The segmentation process created 2254 objects (as shown in

Figure 4.2), and the features were extracted to describe all objects. In the training

step, the interpreter labeled samples according to the previously defined typology.

The selection summarized 15 training samples per class and 10 validation samples per

class. The parameters used in the segmentation were scale of 15 pixels, compactness

of 40% and color factor of 40%. Such parameters are based on Novack (2009).

The classification model based on a decision tree was built using the previously

selected samples which is illustrated in Figure 4.3. The features used to describe
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Figure 4.2 - Segmentation of high-resolution image for land cover classification with pa-
rameters of scale = 15, compactness = 40% and color factor = 40%.

the patterns included spectral mean values of the 4 bands, the mode values of blue,

red, and infrared bands, besides the angle, shape index, and elliptic fit from the

objects. Finally, all objects in the image were classified according to the model and

the top of Figure 4.4 shows the resultant thematic map. To analyze the results we

selected around 10 samples per class. The land cover map was evaluated by Kappa

coefficient, whose value was 0.84, with an overall accuracy of about 85%. Besides,

the overall computational time to run GeoDMA was very short, around 2 hours,

including the phases of segmentation, feature extraction and sample selection by the

interpreter.

The same experiment was performed using the InterIMAGE system (NOVACK, 2009).

Image analysis procedures included feature selection, manual histogram analysis of

selected features, definition of fuzzy thresholds and semantic network. The thematic

map obtained by InterIMAGE is shown in the bottom of Figure 4.4. The classifica-

tion overall accuracy (85%) and Kappa value (0.84) obtained by InterIMAGE were

the same as those obtained by GeoDMA.
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Figure 4.3 - The decision tree model for intra-urban land cover classification in a region
of São Paulo city, Brazil.
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Table 4.1 - Typology for land cover using intra-urban imagery.

Class Sample Description Characteristics

blue roofs
Roofs with large areas, including indus-
trial buildings.

Present smooth textures, shapes mainly
rectangular and areas with a maximum
of 8,000 m2.

bright roofs
White colored roofs with large areas, in-
cluding industrial buildings.

Present a smooth texture, shape mainly
rectangular and areas with a maximum
of 8,000 m2.

ceramic roofs

Roofs with red or orange colors, are
surrounded by vegetation and pools in
richer urban areas, or clustered with dif-
ferent roof types in poor regions.

Shape mainly rectangular and areas
with a maximum of 800 m2.

dark roofs
Roofs with dark colors such as graphite,
including industrial buildings.

Shape mainly rectangular and areas
with a maximum of 8,000 m2.

gray asbestos roofs
Roofs with large areas, including indus-
trial buildings.

Shape mainly rectangular and areas
with a maximum of 8,000 m2.

grass
Targets with light green color, present
in unnocupied areas, gardens, and soc-
cer fields.

Often with irregular shape and variable
size, and smooth or median texture.

swimming pools
Swimming pools with a light blue color,
installed in residences or clubs.

Shape mainly rectangular and areas
with a maximum of 250 m2.

shadows
Targets with black color, present in re-
gions with vegetation or high buildings.

Present an irregular shape, depending
of the object that created such shadow,
with a very smooth texture, and areas
with a maximum of 1,800 m2.

trees
Areas containing trees, presenting
a dark green color, surrounded by
shadow.

The shape is irregular when there is a
cluster of trees, or circular when there
is a single tree, and a rough texture.

SOURCE: Adapted from Novack (2009).
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Figure 4.4 - Intra-urban land cover map using (top) GeoDMA and (bottom) InterIMAGE.
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4.2 Detection of urban landscape patterns

This study aimed to detect Urban Landscape Patterns (ULP), which is based on

the work of Reis (2011). Reis used GeoDMA to associate the urban environment

components to the incidence of dengue fever in the Brazilian city of Rio de Janeiro. In

this application the objective is to divide the landscape based on spatial distribution

of the urban land use classes. For this purpose, the study area was divided into cells

of 250×250m, generating about 800 cells (pixel grid), and they were classified using

landscape-based features.

Figure 4.5 presents the study area highlighted in yellow and composed by 30 neigh-

borhoods in the north of the city. The labels D, M, S, Y, and N stand for Dense,

Moderate, Sparse, Yes, and No, respectively. They identify the type (D, M, S) and

presence or absence (Y, N) of each urban components in the urban cells. Each

cell contains a mixture of the following urban components: residential area, garden,

shadow, shed, impervious area (no buildings), water body, and vegetation. Given

the land cover map produced with 7 pre-defined classes (Table 4.2), each cell was

classified as one of 9 possible ULP, as described in Table 4.2.

Figure 4.5 - Study area for detecting urban landscape patterns (ULP), highlighted in yel-
low.

In this application, GeoDMA provided the entire framework for image interpretation
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Table 4.2 - Typology for the 9 Urban Landscape Patterns.

ULP 1 2 3 4 5 6 7 8 9

Samples
Residences D D D M M D D D S
Gardens N Y N N N Y Y N N
Shadow D M D D M M M M S
Sheds N N N N N Y N Y N
Water M M M M S M M M D
Vegetation S M M D D M M M D
Impervious N N N N Y N Y Y N

Labels: Dense, Moderate, Sparse, Yes, No

SOURCE: Adapted from Reis (2011).

using landscape-based features. The original image was segmented and classified by

hand, and afterwards such classification was used as reference for classifying the

cells into the 9 ULPs. GeoDMA extracted landscape-based features relating the

incidence of land cover classes inside each cell, and the decision tree algorithm found

automatically a classification model to divide the cells into the correct ULP.

The resultant classification captured key features to describe each ULP and it was

simple enough to be understandable by the interpreter. The features used in the

decision tree model are: (1) class area for sheds and impervious areas; (2) percent-

age of residential area inside the cell; (3) patch density for impervious areas and

paved roads; (4) patch size standard deviation for water bodies. Figure 4.6 illus-

trates the decision tree model, and Figure 4.7 presents the thematic map obtained

after classification process.

For evaluating the classification, a set of samples was randomly selected. The Kappa

coefficient resulted in a value of 0.91. The occurrence of ULP 2 (yellow color) was

higher than the remaining ones, about 30% of the total cells, as one can observe in

Figure 4.7. According to the ULP typology (Table 4.2), this pattern defines a dense

residential area, with gardens, moderated vegetation, and absence of impervious

areas with no buildings. Reis (2011) used GeoDMA to detect automatically the

spatial distribution of a landscape to infer hotspots for inserting mosquitoes egg traps

inside each pattern, concluding that the environment needs to be more explored to

model urban diseases.
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Figure 4.6 - The decision tree model to detect the ULPs.

Figure 4.7 - ULP map obtained by GeoDMA.

SOURCE: Adapted from Reis (2011).
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4.3 Analysis of deforestation patterns in the Brazilian Amazon

This experiment aims at classifying deforestation patterns in the Brazilian Amazon,

and it is based on the works of Saito (2011) and Azeredo (2008). The study area

is a deforestation region in the municipality of São Félix do Xingu, located in the

southeastern region of Pará state, as shown in Figure 4.8. Deforestation maps from

years 2006 and 2009 (Figure 4.9) and provided by PRODES (ESPACIAIS, 2012) were

used in this study. PRODES is a methodological approach to identify and estimate

deforested areas in the Brazilian Amazon. Four patterns based on Lambin et al.

(2003) were used in the land cover typology: Untouched forest, Diffuse, Geometric,

and Consolidated. The latest 3 classes were defined in accord to the forest occupation.

The Diffuse pattern includes the beginning or moderate land occupation, unplanned

occupation, and deforestation along rivers. The Geometric pattern is the beginning

or intermediary stage of occupation, and medium or large farms. The Consolidated

pattern means advanced occupation stage, land concentration composed by small,

medium and large farms. This typology is summarized in Table 4.3.

Table 4.3 - Typology for deforestation patterns in the Brazilian Amazon.

Class Sample Description Characteristics

Untouched forest
Areas without deforestation,
containg solely forest.

A cell of untouched forest con-
tains no internal objects of the
class deforestation.

Diffuse

Contains areas of small and
medium rural settlements, defin-
ing the initial stage of land occu-
pation.

Isolated deforestation patches
with irregular shapes.

Geometric

Describes zones with medium
and large settlements, mainly de-
voted to agriculture or cattle
ranching, defining an intermedi-
ate land occupation.

Contains areas with large set-
tlements, and regular geometric
shapes, with low or medium den-
sity of areas.

Consolidated

Defines areas with intense defor-
estation, devoted to agriculture
and cattle ranching. The exhaus-
tion of the forest is evident.

Defines large and homogeneous
patches of deforestation, and
small concentration of remaining
forest.

SOURCE: Adapted from Saito (2011).

To extract landscape-based features from this data set, a regular grid with cells of

10×10Km was generated as shown in Figure 4.9. Following, we selected 10 samples
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Figure 4.8 - Study area: region of São Félix do Xingu, Pará state, Brazil.

for each pattern in the year of 2006, which were employed to build the classification

model as shown in Figure 4.10. We observed that only 3 landscape-based features

were used in this classification model to distinguish the 4 patterns defined in Table

4.3: percent land, patch density and class area features. According to the model,

when the value of percent land is higher than 0.96, the Consolidated and Geometric

patterns are distinguished from the others. The class area feature was also used to

distinguish the Consolidated pattern from the others, since this pattern represents

the situation in which the land is completely (or almost completely) deforested.

The patch density feature was included in the model to distinguish Forest pattern

(without deforestation) from Diffuse (with any density of deforestation patches)

pattern.

The classification model was built using training samples identified in the data of

2006, and subsequently the same model was applied in the data of 2009 to evaluate

the consistency of the model in relation to temporal variation. Validation samples

were selected in both years and the resultant classifications were used to detect direct

land change as mentioned in Section 3.4.2.1. Figure 4.11 illustrates the thematic

maps for 2006 and 2009 as well as the land changes observed in both years.

These results were compared to those obtained by using the eCognition system (ver-

sion 8.64, Developer Trial) (LANG et al., 2007). Then, the landscape features as well
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as two levels of segmentation were computed in eCognition. The first level included

a segmentation strategy which divided the image into regular squares (Chessboard),

resulting in a grid composed by objects with 10 × 10Km over the deforestation

patches. The second level used the deforestation patches provided by PRODES. The

strategy of creating two segmentation levels in eCognition favored the calculation

of ordinary class features such as patch density and class area. However, eCognition

system does not rely strictly on landscape ecology concepts. Specific features had

to be derived manually using the feature set available in the system, which were

composed by several generic features. The supervised nearest neighbor algorithm

was applied to classify the data for both years. Training samples were selected in

both years, and the classification was performed individually for both years. Figure

4.12 shows the land change map produced by eCognition.

Both results, produced by GeoDMA and eCognition, described the deforestation be-

havior properly. Table 4.4 presents the accuracy values calculated for both systems.

We can observe that the Kappa and overall accuracy values for 2009 obtained by

eCognition are higher than those obtained by GeoDMA. This is explained by the

fact that we did not selected training samples for data of 2009 to classify this data

in GeoDMA system. This strategy was employed to test the generality of the model

created by GeoDMA. Such model was trained by 2006 samples, and was used to

classify 2006 and 2009 as well. Even though the accuracy for GeoDMA (86%) was

a little lower than that for eCognition (88%), both systems obtained very similar

results, as we can observe in Figures 4.11 e 4.12.

The use of GeoDMA in this application was straightforward, since the interpreter

only loaded the deforestation patches and created a cellular grid. Afterwards, the

system provided landscape-based features, a simple and intuitive interface for sam-

ple selection, and built the classification model automatically. Such model was also

stored and used to classify different data, by loading deforestation patches from

different years.

Table 4.4 - Classification evaluation for GeoDMA and eCognition.

2006 2009
Kappa Accuracy Kappa Accuracy

GeoDMA 0.87 90% 0.81 86%
eCognition 0.79 84% 0.85 88%
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In this experiment, the processing time for GeoDMA was smaller than that for

eCognition. One can observe that it is straightforward to build a semantic net-

work in eCognition, which is based on a user-defined workflow (BAATZ et al., 2008).

Nevertheless, several steps are necessary to accomplish the classification, including

segmentation in two levels, description of new features, and the setup of the nearest

neighbor algorithm.
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Figure 4.9 - Deforestation patches in São Félix do Xingu, Brazil, for 2006 (top) and 2009
(bottom).

SOURCE: Data provided by PRODES (ESPACIAIS, 2012).
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Figure 4.10 - The classification model for deforestation patterns.

Figure 4.11 - Thematic map for data of 2006 and 2009 using GeoDMA. Overlapping re-
gions define land changes occurred between 2006 and 2009.
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Figure 4.12 - Thematic map produced by eCognition. Overlapping regions define land
changes occurred between 2006 and 2009. Red cells were not classified.
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4.4 Exploring the multi-temporal analysis for land use and cover map-

ping

This Section presents two case studies to evaluate the effectiveness of the multi-

temporal analysis scheme implemented in this thesis for distinguish between different

land cover classes. The studies are primarily focused on assessing the classification

accuracy improvement provided by the usage of polar features in the classification

process. The first experimental study aimed at distinguishing land cover classes in

the Brazilian Amazon region. The second experiment relied on detecting single and

double croppings in each growing season.

The data used in the experiments consisted of 16-day EVI2 profiles from MODIS

with a 250 m pixel size, which is a Level 3 product (MOD13Q1), calculated from the

Level 2 daily surface reflectance product (MOD09 series) (VERMOTE et al., 2002).

The criteria for the pixel selection in the composites are based on cloud screening

and data quality checks. These profiles date from 2000 to 2010, with a temporal

resolution of 16 days in the northern Mato Grosso state of Brazil (Lat. 11o34’23”S,

Lon. 54o43’14” W). Mato Grosso (shown in Figure 4.13) contains the major frontier

of row crops in Brazil, home to some of the largest contiguous row-crop plantations

in the world (GALFORD et al., 2008).

Figure 4.13 - Mato Grosso state, Brazil.
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Each profile was divided into annual cycles because the biomass condition along an

entire phenological cycle – the growing season – is approximately 1 year (ESQUERDO

et al., 2009). Each cycle is composed of 23 values that define a temporal profile for

one growing season. The cycle starts in August of one year and finishes in July of

the next year. The profiles are EVI2 values in the interval [0, 1], as illustrated in

Figure 2.3.

In both case studies, the classification accuracy was analyzed using the cross-

validation method, in which the samples are randomly divided into n = 10 folds

of equal size. One fold was used for testing and the others n− 1 were used to train

the model. The overall accuracy was obtained by averaging all of the folds. Further-

more, the classification accuracy between maps produced by two different sets of

features was compared: only Basic features and a combination of Basic and Polar

features (as described in Section 3.2.3).

In the evaluation process, the experiments took into account the variation of param-

eter minobj using the Monte Carlo simulation, which performs random experiments

to solve mathematical models and complex problems. The parameter minobj stands

for the minimum number of instances per leave of a decision tree. With the variation

of this parameter, the model is more specialized in the training se (a small minobj),

or more generalist (a big minobj value). The goal is to simulate a real system based

on the large samples theory (RUBINSTEIN; KROESE, 2008). To define a credible in-

terval, multiple classifications were performed by varying the parameter minobj. For

each minobj value, 100 simulations were carried out by selecting random samples,

which were approximately 30% of the total, and stored the classification accuracy

for each simulation. The idea was to analyze the classification accuracy for both sets

of features (Basic and Polar) in relation to the parameter minobj, allowing to find

the most appropriate classification model for each application.

4.4.1 Land cover mapping

To classify land cover in the Brazilian Amazon region, five classes were defined as

follows: Croplands, Pasture, Urban area, Deforestation and Forest. Maps produced

by PRODES (ESPACIAIS, 2012) and TerraClass (ALMEIDA et al., 2009) were used

as reference data to assess the classification performance when using our method.

PRODES monitors the evolution of the extent and rate of total deforestation in the

Brazilian Amazon and produces maps of the amount of deforested area annually

(VALERIANO et al., 2012). Conversely, TerraClass maps land use and cover classes

in deforested areas of the Brazilian Amazon such as Pasture, Annual Agriculture,
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Forest, Non-forest, Urban, Hydrography and Secondary Vegetation, among other

uses. This project started in 2009 and has delivered maps for the year 2008.

To evaluate the classification results, a stratified random selection approach was used

to extract 14,088 training samples. The number of samples for each land cover class

was: Croplands (4000), Pasture (4000), Urban area (828), Deforestation (1260) and

Forest (4000). After performing the Monte Carlo simulation two credible intervals

(Basic and Basic + Polar) were delivered, as shown in Figure 4.14.

Figure 4.14 - Kappa values in the Monte Carlo simulation in the multi-temporal land cover
mapping.

The experiments were simulated by changing the parameter minobj in the interval [0,

130], which produced 13,000 models. In Figure 4.14, one can observe the consistency

of the results, whose Kappa values maintain a quasi-constant tendency within the

credible interval and show better classification accuracy for maps produced by the

Basic + Polar set of features. The average Kappa values were 0.78 and 0.82 for

maps produced by the Basic and Basic + Polar sets of features, respectively. The

accuracy improvement when adding the polar features to the basic set of features

was approximately 5.12%.

Figure 4.15 illustrates a classification model for the Basic + Polar set of features

with minobj = 100. The Kappa value was approximately 0.81, and the decision tree

contained 13 leaves. One can observe that the feature in the tree root is area of

the 1st season. This polar feature distinguished the Forest class from the remaining

ones. Another interesting case was the use of the polar balance feature to distinguish

between the classes of Forest and Deforestation in 2008. When the polar balance

feature exhibits low values, the polar visualization of the time series is more stable.

Therefore, this feature explains the fact that cycles of the Forest class present a
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constant behavior annually (polar balance <= 0.14), although, cycles of the Defor-

estation class present an abrupt change.

Figure 4.15 - Classification model for the Basic + Polar set of features, with 13 leaves and
Kappa = 0.81. In the nodes, (B) and (P) stand for basic and polar features,
respectively.

Finally, after applying the model to the entire database, the land cover map shown

in Figure 4.16 was created. The result is visually consistent; however, it is observed

confusion between some classes such as Pasture and Croplands. A possible explana-

tion can be due to the different spatial resolutions of the data used to produce the

reference (30 m) and the land cover (250 m) maps.

4.4.2 Detection of single and double cropping

This study aims at assessing the potential of the implemented toolbox for distin-

guishing between single and double cropping. One of the objectives for identifying

these cropland classes is to detect extensification and intensification processes. Ac-

cording to Galford et al. (2008), extensification is the increase in total row-crop
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agricultural area, which is measured as the annual increase from one growing season

to the next. On the other hand, intensification describes the change from a single to

double croppings pattern from one year to the next.

In this study, the objects were initially identified by hand, which were already clas-

sified as Croplands in the case study presented in Section 4.4.1. From those results,

578 cycle samples were randomly selected over a 3-year period. There were 225 and

353 samples for single and double cropping, respectively. The polar visualization of

some cycles used in the training phase is shown in Figure 4.17. We can observe that

the single and double croppings classes contain distinct behaviors, which suggests

good refinement between them when using this feature space.

Using the same simulation strategy applied in the previous case study, the param-

eter minobj was varied in the interval [0, 50]. Then, 5,000 classification models were

produced, and their accuracy values were simultaneously calculated and stored. The

credible intervals from the two feature sets (Basic and Basic + Polar) were eval-

uated as well. Figure 4.18 shows the Kappa values plotted against the parameter

minobj. The average Kappa values were 0.57 and 0.78 for the Basic and Basic +

Polar feature sets, respectively. It was observed that for minobj > 30, the accuracy

for the Basic set of features decreased, while it remained constant at approximately

0.8 for the Basic + Polar set of features. In Figure 4.19, we can observe that the

classification model solely containing the Gyration Radius feature was enough to dis-

tinguish both classes, with Kappa = 0.8. Considering the average accuracy obtained

using both models in the simulation, the improvement of adding polar features to

the set of features was approximately 36.84%.

4.4.2.1 Land change detection

The classification model obtained in this case study was applied to a 3-year time

series, creating land cover maps for the Mato Grosso state to describe the patterns

of single and double croppings from years 2008 to 2010. The initial map of pattern

croplands from TerraClass was used as reference. Therefore the objects of class

croplands were classified as single or double croppings, for the 3 years. Figure 4.20

summarizes the classification.

The maps illustrated in Figure 4.20 show the types of cropland considering the

benchmark provided by TerraClass. The classification provided in this application

considered only regions labeled as cropland in 2008 by TerraClass. Therefore, in this

experiment, no extensification (change from some other land cover class to cropland)
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was detected. The areas (Km2) of single or double croppings are presented in Figure

4.21. In this study region, 19237.87 Km2 of croplands were mapped for the year 2008,

of which 14097.81 Km2 are single croppings, and the remaining 5140.06 Km2 are

double cropping. In 2009, the amount of single croppings increased to 15711 Km2

(with 3526.87 Km2 of double cropping), and later it decreased to 15165.06 Km2 in

2010 (with 4072.81 Km2 of double cropping).

When analyzing the trajectories of change from the cropland maps, 4 land change

patterns were identified, as follows:

a) Constant: the land cover presented no changes along over a 3-year period;

b) Intensification: the land cover changed from single to double croppings;

c) Reduction: the land cover changed from double to single croppings;

d) Interchange: the land cover presented alternate behavior along the 3-year

period (double, single, double or single, double, single).

As we can observe in Figure 4.23, the Constant pattern prevailed over the others,

with 64.8% of the total area. The other patterns presented the following area per-

centages: 9.7% for Intensification, 15.2% for Reduction and 10.3% for Interchange.

The land change map obtained from the years 2008 to 2010, took into account only

the cropland classes, is shown in Figure 4.22.
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Figure 4.16 - Reference map (top), and land cover map (bottom).

SOURCE: Reference adapted from Almeida et al. (2009).
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Figure 4.17 - Polar visualization of single (left) and double (right) classes at approximately
30 cycles per class.

Figure 4.18 - Kappa values in the Monte Carlo simulation in the detection of single and
double cropping.

Figure 4.19 - Classification model for the Basic + Polar set of features, with 2 leaves and
Kappa = 0.8.
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Figure 4.20 - Classification of single and double croppings for the years 2008, 2009 (top),
and 2010 (bottom), in the Mato Grosso state (Lat. 11o34’23”S, Lon. 54o43’14”
W).
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Figure 4.21 - Mapping the area (Km2) of single and double croppings for the years 2008,
2009, and 2010.

Figure 4.22 - Land change map produced from land cover maps for the years 2008, 2009
and 2010.
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Figure 4.23 - Area (Km2) of land change patterns over a 3-year period (2008 to 2010),
taking the cropland map of TerraClass as reference.
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4.5 Discussion

This Chapter presented 5 case studies to show the effectiveness of using the GeoDMA

toolbox. Different targets and features (segmentation-based, landscape-based, and

multi-temporal) were used in each case study, which are dependent on the types

of input data and application. In some studies, comparisons with other OBIA sys-

tems were also performed to evaluate the strength and weakness of GeoDMA. For

every case study, we executed all processing steps using only GeoDMA functional-

ities, without transferring information to another platform. Due to integration of

GeoDMA on top of TerraView GIS, the production of thematic maps, database

management and other necessary tasks were easy and fast.

In the study cases, in which we compared GeoDMA with eCognition and InterIM-

AGE, our toolbox produced results in shorter time than the others. Besides, the data

mining algorithm implemented in the toolbox, effectively helped the interpreter to

find out the most proper features to distinguish patterns. These points are supported

by Pinho et al. (2008) who used GeoDMA as well as eCognition and InterIMAGE

systems for urban image analysis (COSTA et al., 2007; PINHO et al., 2008; COSTA et

al., 2008; PINHO et al., 2012). In their study, GeoDMA was easy to use and provided

enough generality and good accuracy for object labeling with low processing time.
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5 CONCLUSION

In this thesis, two objectives were pursued: (i) the development of a free and open

source toolbox, GeoDMA, which provides the functionalities needed for analysis of

remote sensing imagery in large geographic databases; and (ii) the development of

a scheme for multi-temporal analysis. GeoDMA integrates all processing algorithms

necessary to automate the interpretation tasks such as segmentation, feature extrac-

tion, classification and data mining techniques.

In order to identify patterns, the objects in the images (pixels, regions and cells) are

first detected. Next, samples are selected by the interpreter based on a predefined

typology. Afterwards, features extracted from objects are then used by a classifier

to build a classification model. GeoDMA also provides accuracy assessment tools

allowing the interpreter to evaluate the results. We demonstrated the potential of

GeoDMA in 5 case studies for detecting land patterns in a wide range of remote

sensing applications. GeoDMA showed robustness and flexibility in the execution of

such applications. The interpreter performed all processing steps using the toolbox,

without the need to transfer information from one platform to another.

To provide the multi-temporal analysis functionalities, we developed a visualization

scheme to represent the time series, and also a novel set of multi-temporal features

to represent cyclic events, which are common in agriculture applications. A cyclic

event involves the use of multi-temporal images, the knowledge about the temporal

interval during which the event occurs as well as the patterns that describe such

event. These features were employed to classify multi-temporal profiles of EVI2 from

MODIS sensor in a 3-year series. When comparing the polar features to well-known

features based on phenological indicators, the classification accuracy improved about

5.12% and 36.84% when coupling basic and polar features for multi-temporal land

cover detection.

Further work is needed to explore the multi-temporal features for change detection

and cycles detection over different periods, like seasonal or biannual. For instance,

croppings can have a cycle different of one year. Besides, we also intend to work on

the automatic detection of change trajectories in profiles as well as the evaluation

of trends for land change based on past events.

The case studies showed that the GeoDMA performance, in terms of classification

accuracy, were competitive to that achieved by other systems such as eCognition and

InterIMAGE. On the other hand, in terms of computational time, GeoDMA per-
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formed much better than the others. A noticeable weakness in the current processing

strategy of GeoDMA is the absence of multi-resolution analysis. Various input layers

can be created separately but they cannot be integrated using a hierarchical strat-

egy, like eCognition, and InterIMAGE. This strategy would allow the computation

of more features that could improve the interpretation tasks for some applications.

Another point to be addressed in the future is the definition of new features in

GeoDMA. For example, if the input image has Red and Infra-red bands, it is straight-

forward to calculate the NDVI. Other software, such as InterIMAGE and eCognition,

provide friendly interfaces for creating new features based on precomputed ones. In

GeoDMA this can be done manually by editing the columns in the database, which

is a tedious task, and for some users it can be hard to be accomplished.

GeoDMA proved to be an efficient alternative for image interpretation in different

domains; nevertheless the tool still lacks some improvements. The data can be stored

in a remote database, and the interpreter can up-to-date the interpretation wherever

the work is performed. However, the storage and retrieval of large images can be time-

consuming in case of remote databases. This problem happens due to the current

architecture of TerraView that is being improved in the next version TerraView 5.0.

Finally, as GeoDMA is a FOSS project, it can be improved and customized by the

developers, and extended to different versions according to the applications needs.

The drawbacks aforementioned are related to the fact that GeoDMA is relatively

young. So, we expect these drawbacks to be addressed over time, as the system

matures.

76



REFERENCES

ADDINK, E.; JONG, S.; PEBESMA, E. The importance of scale in object-based

mapping of vegetation parameters with hyperspectral imagery.

Photogrammetric Engineering & Remote Sensing, v. 73, n. 8, p. 905–912,

2007. 4, 10, 18

ALMEIDA, C.; PINHEIRO, T.; BARBOSA, A.; ABREU, M.; LOBO, F.; SILVA,

M.; GOMES, A.; SADECK, L.; MEDEIROS, L.; NEVES, M.; SILVA, L.;

TAMASAUSKAS, P. Metodologia para mapeamento de vegetação
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<http://linkinghub.elsevier.com/retrieve/pii/S0034425706003014>. 1,

14, 16

BRUZZONE, L.; SMITS, P.; TILTON, J. Foreword special issue on analysis of

multitemporal remote sensing images. IEEE Transactions on Geoscience and

Remote Sensing, v. 41, n. 11, p. 2419–2422, nov. 2003. ISSN 0196-2892. 1
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CâMARA, G.; EGENHOFER, M.; FONSECA, F.; MONTEIRO, A. What’s in an

image? Lecture Notes in Computer Science, v. 2205, n. Spatial Information

Theory, p. 474–488, 2001. Dispońıvel em:
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CâMARA, G.; VINHAS, L.; FERREIRA, K.; QUEIROZ, G.; SOUZA, R.;

MONTEIRO, A.; CARVALHO, M.; CASANOVA, M.; FREITAS, U. TerraLib: An

open source GIS library for large-scale environmental and socio-economic

applications. Open Source Approaches in Spatial Data Handling, v. 2, n.

Advances in Geographic Information Science, p. 247–270, 2008. Dispońıvel em:
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<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4309314>. 28

HARALICK, R.; SHAPIRO, L. Image segmentation techniques. Applications of

Artificial Intelligence II., 1985,, v. 548, p. 2–9, 1985. 2, 9, 25

HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. The elements of statistical

learning: data mining, inference, and prediction. 2. ed. Stanford, CA:

Springer, 2009. 745 p. Dispońıvel em:
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em: <http://linkinghub.elsevier.com/retrieve/pii/S0034425708001971>.

14

JONSSON, P.; EKLUNDH, L. TIMESAT: A program for analyzing time-series of

satellite sensor data. Computers & Geosciences, v. 30, n. 8, p. 833–845, out.

2004. ISSN 00983004. Dispońıvel em:
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em: <http://linkinghub.elsevier.com/retrieve/pii/S009830040400233X>.

11

SAITO, E.; FONSECA, L.; ESCADA, M.; KORTING, T. Effects of changes in

scale of deforestation patterns in Amazon. Brazilian Journal of Cartography,

v. 4, 2011. 8, 18, 27

SAITO, E.; KORTING, T.; FONSECA, L.; ESCADA, M. Mineração em dados

espaciais de desmatamento do prodes utilizando métricas da paisagem caso de
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APPENDIX A - TABLES OF FEATURES

Table A.1 - Segmentation-based spectral features.

Name Description Formula Range Unit
Amplitude Defines the amplitude of the pixels inside the

object. The amplitude means the maximum
pixel value minus the minimum pixel value.

pxmax − pxmin ≥ 0 px

Dissimilarity Measures how different the elements of the
GLCM are from each other and it is high when
the local region has a high contrast.

D−1∑
i=1

D−1∑
j=1

pij .|i− j| ≥ 0 –

Entropy Measures the disorder in an image. When the
image is not uniform, many GLCM elements
have small values, resulting in large entropy.

−
D−1∑
i=1

D−1∑
j=1

pij . log pij ≥ 0 –

Homogeneity Assumes higher values for smaller differences
in the GLCM.

D−1∑
i=1

D−1∑
j=1

pij
1 + (i− j)2

≥ 0 –

Mean Returns the average value for all N pixels in-
side the object.

∑N
i=1 pxi
N

≥ 0 px

Mode Returns the most occurring value (mode) for
all N pixels inside the object. When the object
is multimodal, the first value is assumed.

≥ 0 px

Std Returns the standard deviation of all N pixels
(µ is the mean value).

√√√√ 1

N − 1

N∑
i=1

(pxi − µ)
2 ≥ 0 px
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Table A.2 - Segmentation-based spatial features.

Name Description Formula Range Unit
Angle Represents the main angle of an object. It is

obtained by computing the minimum circum-
scribing ellipse, and the angle of the biggest
radius of the ellipse suits to the object’s an-
gle.

[0, π] rad

Area Returns the area of the object. When mea-
sured in pixels is equal to N .

≥ 0 px2

Box area Returns the bounding box area of an object,
measured in pixels.

≥ 0 px2

Circle Relates the areas of the object and the small-
est circumscribing circle around the object. In
the equation, R is the maximum distance be-
tween the centroid and all vertices.

1− N
πR2 [0, 1) px

Elliptic fit Finds the minimum circumscribing ellipse to
the object and returns the ratio between the
object’s area and the ellipse area.

[0, 1] –

Fractal dimension Returns the fractal dimension of an object. 2
log perimeter

4

logN [1, 2] –

Gyration radius This feature equals the average distance be-
tween each pixel position in one object and the
object’s centroid. The more similar to a circle
is the object, the more likely the centroid will
be inside it, and therefore this feature will be
closer to 0.

∑N
i=1 |posi − posC |

N
≥ 0 px

Length It is the height of the object’s bounding box. ≥ 0 px
Perimeter It is the amount of pixels in the object’s bor-

der.
≥ 0 px

Perimeter area ra-
tio

Calculates the ratio between the perimeter
and the area of an object.

perimeter
N ≥ 0 px−1

Rectangular fit This feature fits a minimum rectangle outside
the object and calculates the ratio between its
area and the area of this rectangle. The closer
to 1 is this feature, the most similar to a rect-
angle.

[0, 1] –

Width It is the width of the object’s bounding box. ≥ 0 px

SOURCE: Some features are adapted from McGarigal (2002).
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Table A.3 - Landscape-based features. When the unit is hectares, the value is divided by
104.

Name Description Formula Range Unit

Class area The metric CA means the sum of areas of a
cell.

n∑
j=1

aj ≥ 0 ha

Percent land %Land equals the sum of the areas (m2) of
all patches of the corresponding patch type,
divided by total landscape area (m2). %Land
equals the percentage the landscape comprised
of the corresponding patch type.

∑n
j=1 aj

A
× 100 [0, 1] %

Patch density PD equals the number of patches of the cor-
responding patch type divided by total land-
scape area.

n
A ≥ 0 Patches

Mean patch size MPS equals the sum of the areas (m2) of all
patches of the corresponding patch type, di-
vided by the number of patches of the same
type.

∑n
j=1 aj

n
10−4 ≥ 0 ha

Patch size std PSSD is the root mean squared error (devia-
tion from the mean) in patch size. This is the
population standard deviation, not the sample
standard deviation.

√∑n
j=1 (aj −MPS)

2

n
10−4 ≥ 0 ha

Landscape shape
index

LSI equals the sum of the landscape bound-
ary and all edge segments (m) within the
boundary. This sum involves the correspond-
ing patch type (including borders), divided by
the square root of the total landscape area
(m2).

∑n
j=1 ej

2
√
π ×A

≥ 1 –

Mean shape index MSI equals the sum of the patch perimeter
(m) divided by the square root of patch area
(m2) for each patch of the corresponding patch
type.

∑n
j=1

j

2
√
π×aj

n
≥ 1 –

Area-weighted
mean shape index

AWMSI equals the sum, across all patches of
the corresponding patch type, of each patch
perimeter (m) divided by the square root of
patch area (m2).

n∑
j=1

[
j

2
√
π × aj

× aj∑n
j=1 aj

]
≥ 1 –

Edge density ED equals the sum of the lengths (m) of
all edge segments involving the correspond-
ing patch type, divided by the total landscape
area (m2).

∑m
j=1 ej

A
× 10000 ≥ 0 m/ha

Mean perimeter
area ratio

MPAR equals the sum of ratios between
perimeters and areas, divided by the number
of patches of the same type.

∑n
j=1

j
aj

n
≥ 0 m−1

Patch size coeffi-
cient of variation

PSCOV calculates the ratio between the
”Patch Size Standard Deviation” and the
”Mean Patch Size”.

PSSD
MPS × 100 ≥ 0 –

SOURCE: Some features are adapted from McGarigal (2002).
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Table A.4 - Temporal features for describing cyclic events.

Name Type Description Range
Amplitude Basic The difference between the cycle’s maximum and minimum values. A

small amplitude means a stable cycle.
[0, 1]

Angle Basic The main angle of the closed shape created by the polar visualiza-
tion. A small angle defines a shape possibly stable along the seasons,
whereas different angles point to EVI peaks in a specific season.

[0, π]

Area Polar Area of the closed shape. A higher value indicates a cycle with high
EVI values.

≥ 0

Area per Season Polar Partial area of the closed shape, proportional to a specific quadrant
of the polar representation. High value in the summer season can be
related to the phenological development of a cropland.

≥ 0

Circle Polar Returns values close to 1 when the shape is more similar to a circle.
In the polar visualization, a circle means a constant feature.

[0, 1]

Cycle’s maximum Basic Maximum value of the cycle. Relates the overall productivity and
biomass, but it is sensitive to false highs and noise.

[0, 1]

Cycle’s mean Basic Average value of the curve along one cycle. [0, 1]
Cycle’s minimum Basic Minimum value of the curve along one cycle. [0, 1]
Cycle’s std Basic Standard deviation of the cycle’s values. ≥ 0
Cycle’s sum Basic When using vegetation indices, the sum of values over a cycle is an

indicator of the annual production of vegetation.
≥ 0

Eccentricity Basic Return values close to 0 if the shape is a circle and 1 if the shape is
similar to a line.

[0,1]

First slope maxi-
mum

Basic Maximum value of the first slope of the cycle. It indicates when the
cycle presents some abrupt change in the curve. The slope between
two values relates the fastness of the greening up or the senescence
phases.

[-1, 1]

Gyration radius Polar Equal to the average distance between each point inside the shape
and the shape’s centroid. The more similar to a circle is the shape,
the more likely the centroid will be inside it, and therefore this feature
will be closer to 0.

≥ 0

Polar balance Polar The standard deviation of the areas per season, considering the 4
seasons. A small value can point to a constant cycle, such as the EVI
of water (with a small value of Area), or forest (with a medium value
of Area).

≥ 0
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