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Abstract—With the advent of interactive techniques for mul-
tidimensional data visualization using dimensionality reduction,
new possibilities of dealing with data complexity were introduced.
The idea behind those methods is to allow the user to manually
modify the mapping of a subset of the data, steering the
mapping of the whole data set. Previous studies suggest that
user manipulation is beneficial to the visualization as a means
of effectively modifying the final result. Still, those studies focus
only on the grouping of instances, such as group separation and
compactness. This paper proposes a new view on effectiveness
of user manipulation based on well-known evaluation measures.
In addition, it provides initial experimental evidence on the
effectiveness of user manipulation on state of the art interactive
methods. Although the manipulation does affect results, we
conclude that it does not lead to definitive improvements.
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I. INTRODUCTION

Nonlinear dimensionality reduction methods are both com-
monly and traditionally used to visualize multidimensional
data [1]. Their purpose is to find low-dimensional representa-
tions of high-dimensional data while preserving some aspect
of the original structure. In general, this structure is related to
pairwise dissimilarities between data items or neighborhood
structure. A particular class of such methods, which allow
user interactivity, provide new ways to handle complex data by
allowing the user to interactively steer the mapping, as shown
by recent research [2], [3], [4], [5]. Using a previously mapped
subset of the data as input, users can manipulate the subset
mapping to indirectly influence (either positively or negatively)
the visualization.

Previous studies, however, have focused only on improve-
ments related to cluster separation and compactness. The
ability to improve mappings on other aspects, such as preser-
vation of neighborhood structures, were not taken into account.
While it is clear that the initial mapping plays an important
role on the geometry of the mapping, those studies lack
either theoretical or experimental evidence to properly assess
user manipulation as an effective tool for incorporating user
knowledge into the visualization.

In this paper we review three recent interactive methods
(Section II), namely Least-Square Projection (LSP) [6], Part-
Linear Multidimensional Projection (PLMP) [2] and Local
Affine Multidimensional Projection (LAMP) [3], highlighting

their advantages and disadvantages relative to one another. We
focus on these methods primarily due to their accuracy and
efficiency. Following that, we outline the concept of effective
manipulation and establish the quality measures adopted in
our study (Section III). We then perform a series of experi-
ments in order to assess whether manipulation is effective on
them (detailed in Section IV) and discuss the results attained
(Section V).

Contributions: The contributions of this paper are (i)
a simple framework for evaluating the effectiveness of user
manipulation in interactive methods; (ii) an initial assessment
of state of the art interactive methods using this framework.

II. TECHNICAL BACKGROUND

Let X = {x1,x2, . . . ,xn} be a set of p-tuples xi ∈ Rp
representing n observations of p > 3 variables. We also
consider another representation, which corresponds to placing
the observations in a matrix Xn×p where each observed
variable has a corresponding column and each observation
occupies a row. We call X (or X) a data set, each tuple xi
(or row of X) a datum, instance or sample, each variable (or
column of X) an attribute, feature or dimension.

As previously mentioned, the methods discussed are ap-
proaches at solving the problem of finding a q-dimensional
(q << p) representation Y of X such that some aspect of the
original structure of X is still observable in Y . In addition
to X , another set of tuples X ′ ⊂ X , called control points,
and its q-dimensional mapping Y ′ is also given as input, with
|X ′| = |Y ′| = c (c << n).

A. Least-Square Projection (LSP)

Let Ni (|Ni| = k) be the set of the k-nearest neighbors
of xi. Given each set Ni, 1 ≤ i ≤ n, LSP uses a Laplacian
operator to preserve this neighborhood structure by mapping
each xi inside the convex hull of the images of all xj ∈ Ni.
More precisely,

yi −
∑

xj∈Ni

αijyj = 0, (1)

with αij ≥ 0 and
∑
j αij = 1. Solving Equation (1) for all i,

however, will generally not produce good results, as a trivial
solution (yi = 0,∀ i) is always possible. Because of this, we

mailto:samuel.fadel@usp.br
mailto:paulovic@icmc.usp.br


add restrictions to the solution by imposing that every xi ∈ X ′
must be mapped to its image given in Y ′.

LSP is a very precise method for preserving neighborhood
structures, but since the linear system grows quadratically on
n, its computational cost is high, compared to both PLMP and
LAMP. As a result, its applicability as an interactive technique
is more limited than the others.

B. Part-Linear Multidimensional Projection (PLMP)

Much faster and simpler than LSP, PLMP aims to find
a linear map Φ̃p×q that approximates the function Φ which
transforms X ′ into Y ′, that is, Φ(X ′) = Y ′. This is done by
solving the normal equation

X ′TX ′φj = X ′Tbj (2)

for all 1 ≤ j ≤ q, where bj is the j-th column of Y ′. Each φj
is then used as a column of Φ̃. Then, Φ̃ is used to project each
xi /∈ X in order to approximate the mapping provided. Since,
for visualization purposes, q is usually 2 or 3, the result is a
very fast technique that can map very large data sets. This,
however, comes at the cost of being less precise than both
LSP and LAMP in terms of dissimilarity and neighborhood
structure preservation.

C. Local Affine Multidimensional Projection (LAMP)

In contrast to other techniques, LAMP determines an indi-
vidual orthogonal mapping for each xi. The problem is defined
in terms of the already known coordinates Y ′. The mapping
of each xi is the affine transformation fxi

(x) = xM + t that
optimizes

min
fxi

c∑
j=1

αj ||fxi
(x′j)− y′j ||2

subject to MTM = I,

(3)

where x′j ∈ X ′, y′j ∈ Y ′ and αj = 1
||x′

j−xi||2 are scalar
weights added in order to let more similar control points
influence more the mapping of xi, while, conversely, less
similar ones have less influence.

The solution to the minimization problem (3) is to rewrite
it in matrix form, giving rise to an Orthogonal Procrustes
Problem [7], which has known solution. To do this, we take the
partial derivatives with respect to t equal to zero and rewrite
t in terms of M as t = ȳ′− x̄′M , where x̄′ =

∑c
j=1 αjx

′
j∑c

j=1 αj
and

ȳ′ =
∑c

j=1 αjy
′
j∑c

j=1 αj
.

Back to problem (3), we have

min
fxi

c∑
j=1

αj ||fxi
(x̂j)− ŷj ||2

subject to MTM = I,

(4)

where x̂j = x′j − x̄′ and ŷj = y′j − ȳ′. Lastly, by writing
problem (4) in matrix form, we have

min ||AM −B||F
subject to MTM = I,

(5)

where || · ||F denotes the Frobenius norm and matrices A and
B are given by

A =


√
α1x̂

T
1√

α2x̂
T
2

...√
αcx̂

T
c

 , B =


√
α1ŷ

T
1√

α2ŷ
T
2

...√
αcŷ

T
c

 . (6)

As mentioned before, problem (5) has well-known solution.
By writing ATB = UDV T where UDV T is the singular
value decomposition (SVD) of ATB, we have that M =
UV T . Therefore, fxi , which gives us yi, is given by

fxi
(x) = (x− x̄′)M + ȳ′. (7)

Since we can limit the number of control points that
influence each instance via the aij coefficients, LAMP is
capable of being a truly local technique. In addition, it is a
very efficient technique and, while still slower than PLMP, has
very competitive accuracy.

III. EVALUATING USER MANIPULATION

We propose an evaluation framework based on well-known
evaluation measures for dimensionality reduction. Since we
are interested in evaluating the effectiveness of user manipu-
lation on LSP, PLMP and LAMP, we need to measure how
transformations on Y ′ propagate to Y . Specifically, suppose a
transformation is applied to Y ′, producing Ỹ ′. Then, one of
the methods discussed in Section II is applied to Y ′ and Ỹ ′,
producing Y and Ỹ , respectively. Given an evaluation measure
m, we say that the user manipulation is effective if

m(Y ′) ≤ m(Ỹ ′)⇒ m(Y) ≤ m(Ỹ)

or
m(Y ′) ≥ m(Ỹ ′)⇒ m(Y) ≥ m(Ỹ).

In other words, if the user manipulation increases (or de-
creases) m on the mapped subset, we expect that the final
map will also increase (or decrease) m.

A. Evaluation measures

Three different aspects of the mappings are evaluated by
the measures. Stress [8] is a measure of how distorted is
the representation of the dissimilarities δij (the dissimilarity
between xi and xj) in Y . This distortion is given by

σ =
1∑

i<j δij

∑
i<j

(δij − dij)2

δij
, (8)

where dij represents the distance between yi and yj .
We also use the silhouette coefficient [9], which measures

how well grouped are the instances in Y , based on their class.
In this metric, being well grouped means that an instance is far
from instances of other classes and that the average distance
between instances of the same class is low. Let li be the class
of yi, a(i) the average distance between yi and every other
instance with class equal to li and b(i) the smallest distance



TABLE I
DATA SETS USED IN THE EXPERIMENTS.

Data set n p Source
WDBC 569 30 [11]
WINE 178 13 [11]

between yi and every other instance with class different from
li. The silhouette coefficient s(i) of yi is

s(i) =
b(i)− a(i)

max{b(i), a(i)}
. (9)

Lastly, we evaluate the representation of neighborhood
structures using the neighborhood preservation index [10]. Let
kNN(xi) and kNN(yi) be the sets containing indices of the
k nearest neighbors of instance i in X and in Y , respectively.
The neighborhood preservation index is given by

NPk(i) =
|kNN(yi) ∩ kNN(xi)|

|kNN(xi)|
. (10)

Since both the silhouette coefficient and neighborhood
preservation index are calculated for each individual instance
and not the whole map, we average them over all instances in
order to globally evaluate a map.

IV. EXPERIMENTS

Using the concept of effectiveness and the evaluation mea-
sures described in Section III, we perform a series of exper-
iments in order to assess how effective is the manipulation
on each technique. For each data set, we apply automated
transformations on Y ′ to simulate an improvement of each
measure. The data sets we performed our experiments on are
detailed in Table I.

The first step is to choose X ′, which will be used to find
the initial mapping. We use c = 3

√
n and, since we are not

interesting in evaluating how representative are the control
points, we randomly pick instances to compose X ′. Because
of this, all experiments are repeated 30 times. To determine
Y ′, we use the classical scaling method [12] on X ′, as this is a
linear method. Consequently, we can more easily improve its
mapping according to each measure using nonlinear strategies.
Next, we describe the strategies adopted to artificially produce
Ỹ ′.

To observe improvements in stress, we use Sammon’s
nonlinear mapping [8], which is a direct optimization of
Equation (8). The transformation to improve the silhouette
coefficient is the one described in [13], which adds more
attributes to instances based on their class. This transformation
is known to improve class separation, directly improving the
silhouette coefficient. Finally, to observe improvements in
neighborhood preservation, we use the t-SNE technique [14],
which is known to produce maps with high neighborhood
preservation [15].

The techniques were tuned as follows. LAMP was set to use
25% nearest control points with the default values of alphaj ,
while the other 75% control points use alphaj = 0. The
neighborhood map used by LSP was built using 15 nearest
neighbors.
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Fig. 1. The manipulation process for the WINE data set in LAMP. From
top to bottom, the first plot illustrates Ỹ ′ and the second plot illustrates Ỹ .
In the last plot, instances are colored according to the observed difference in
the silhouette coefficient before and after the manipulation, with zero as gray,
above zero (increase) as blue and below zero (decrease) as red.

V. RESULTS AND DISCUSSION

In Fig. 1 we illustrate the results of the manipulation
for the WINE data set, along with a plot illustrating the
differences in the silhouette coefficient for each instance. The
complete results for all techniques and data sets for each
measure are shown in Fig. 3 (silhouette), Fig. 4 (neighborhood
preservation) and Fig. 2 (stress).
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Fig. 2. Results for stress (averaged over all data sets).

The results for stress (Fig. 2) provide the first signifi-
cant evidence for our study. At first glance, we see that
all three techniques are not affected by the manipulation.
Further inspection reveals that it is in fact lower, altough the
reduction is very small. While stress is directly optimized in
the manipulation, the improvement itself is not very large.
Since the initial solution is found by classical scaling, this
suggests that finding an optimal map in terms of stress for a
subset of the data in this case is not necessary, since it will
not be significantly improved.

In addition, LAMP shows very high values of stress when
compared to the other techniques. This is expected since, as
previously described, we employ only 25% of the control
points when mapping each instance. As a consequence, the
technique becomes highly local, introducing discontinuities in
the map [3]. This results in larger distortions of dissimilarities
between instances that have few or no common control points
when we select the 25% nearest.

Conversely to stress, the silhouette coefficient (Fig. 3)
showed larger variation before and after manipulation. Only
PLMP showed improvements in the final map but, although
much larger than stress, still not significant enough. LAMP,
however, suffered a descrease in silhouette, which was not an
expected outcome. This could happen for two reasons. First,
both data sets had very different average silhouette values,
as highlighted by the many outliers in PLMP. Second, since
very few data sets were evaluated, a limitation of this paper, if
the method used to improve the silhouette was not enough to
significantly improve the silhouette in one of them, this will
become evident in the boxplots.

Neighborhood preservation (Fig. 4) is the only measure to
provide significant observable changes. Initially, we can see
that LSP is the least affected technique. This is probably due
to its robustness in faithfully mapping the neighborhood graph
used to represent the original data. Since we evaluate the same
number of neighbors as the technique employs, we can see
that manipulation is not significant enough to distort the maps
attained. This was not the case for LAMP and PLMP, however.

In the case of LAMP, the very low values of neighborhood
preservation attained can be attributed to the very small neigh-
borhoods created by the 25% nearest control points. Since we
evaluate 15 neighbors for all maps, a value independent of the
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Fig. 3. Results for the silhouette coefficient (averaged over all data sets).
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Fig. 4. Results for neighborhood preservation (k = 15; averaged over all
data sets).

number of control points used to map each instance in LAMP,
the distortions created by the previously mentioned discontinu-
ities are probably responsible for this. One insteresting result,
however, is that it its the only technique on which we can
observe consistent improvement in neighborhood preservation.
This can be a consequnce of the fact that the technique already
attained very low values in the first place, leaving more room
for improvement. Contrarily, PLMP suffered heavily from
the manipulation done by t-SNE. Since it is the only truly
global technique, the local distortions introduced by t-SNE
which improve neighborhood structure representation probably
led to increasingly distorted dissimilarities on the rest of the
instances.

A. Limitations

The main limitation of this study is the amount of data
sets used in the evaluation. As an initial assessment, it pro-
vides some but limited evidence. Additionally, studies were
conducted globally on the mappings. Consequently, possible
local modifications in badly mapped regions which happen to
improve those regions are not taken into account.

VI. CONCLUSIONS

In this paper, we reviewed three state of the art techniques
for interactive multidimensional data visualization using di-
mensionality reduction. We proposed a concept of interaction
effectiveness and assessed the reviewed techniques under this
concept using well-known evaluation measures. The proposed



assessment framework serves as an initial formulation for more
elaborate studies.

In general, the experiments conducted suggest that the
manipulation did affect the mappings regarding neighborhood
preservation and silhouette, either for better or worse, but
stress remained largely unaffected. A direct implication is
that while some distortions in dissimilarities are alleviated
by the manipulation, others are introduced to compensate.
Moreover, the inconsistency in either improving or degrading
the mappings suggest that user manipulation might not an
effective action to improve them globally.

Further studies should be done on larger and more complex
data sets in order to attain more significant results. Addi-
tionally, local modifications such as improvement of badly
mapped regions and strategies to improve those using specially
tailored manipulations would provide an interesting insight
into possible improvements of currently available interactive
methods.
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