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Fig. 1. Graph of citations in a subset of the 2014 IEEE Infovis Contest dataset, comprising papers published on the IEEE Infovis Conference between
1990 and 2014. An edge linking two papers means that one paper cites or was cited by the other one (left). The vertices are placed in the visual space using
a radial layout algorithm (middle). The Neighbor Joining Bundling was used to produce a graph with clutter reduction and grouped edges (right).

Abstract—Graphs have been successfully applied in a range of
problems and applications. It is the object of study of different
areas, from modeling and analysis to the construction of visual
representations. Different approaches exist for graph visualiza-
tion, however, most of them suffer from the severe clutter when
the number of nodes or edges is large. Amongst the techniques
of graph visualization that handle such problem, Edge-bundling
techniques attained relative success on improving the quality
of the visual representations by bending and aggregating edges
in order to reduce overlapping. Despite this success, most of
them just perform the bundle based only on the visual space
information, that is, there is no explicit connection between the
produced bundled visual representation and the data. Some of
them look upon edge information as a complement to the visual
information, but it is just an additional measure, not their main
goal. In this paper, we present a novel edge-bundling technique,
called Neighbor Joining Bundling (NJB), for graph visualization
that tackles this problem by considering the similarity between
the nodes when performing the edges bending.
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I. INTRODUCTION

Graphs are applied in a range of problems, being useful
to model different kinds of relationship between elements.
The visual representation of data sets modeled as graphs is
frequently used in data analytics, being the the node-link
diagram the most common visual representation. However,
graph visualization presents several challenges [1], [2]. Spe-
cially, when the number of vertices and edges is large, the

visualization suffers from the visual-clutter problem, reducing
the power of data analysis. The clutter reduction is a frequent
thread in different areas of study in data visualization [3] and
aims at reorganizing or transforming the visual elements so
that the attained representation can reveals patterns that are
hidden on the original representation.

Among the graph visualization techniques, Edge-
Bundling [4] has obtained great success reducing the
visual-clutter on node-link diagrams. The main goal of this
technique is to transform a straight node-link representation
by bending and aggregating the edges using a set of control
points. Edges that share control points are grouped, reducing
ovelapping thus the visual clutter. The smoothness provided
by the curves also helps improving the data analysis in the
visual representation.

After Holten [4], many others edge-bundling based tech-
niques have been published, proposing different ways to
execute the bundling and grouping the edges. Some exam-
ples include, strategies based on force-directed [5], geometry
processing [6], [7], clustering [8] and image processing [9],
[10], [11]. However, these techniques mainly use the visual
space information to perform the edge bundling, ignoring the
underlying data, thereby creating aggregations that do not
explicitly reflect the data. In some techniques, the underlying
data may be used as a complement to the visual information.
However, this is not used as their main goal.
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Contributions: In this paper, we propose a novel tech-
nique, called Neighbor Joining Bundling (NJB), to build an
edge bundled graph that employs a similarity phylogenetic
tree to guide the edges bending and aggregation. This tree
is also used to place the vertices on the visual space, thereby
the resulting graph has its edges grouped and the nodes placed
considering similarity relationships presented on the data set.

II. RELATED WORK

Edge bundling has been used to reduce visual clutter in
different information visualization techniques [12]. The orig-
inal idea was proposed by Holten [4], a technique called
Hierarchical Edge Bundling (HEB), that employs hierarchical
data to determine paths to guide the edges bending and
grouping. The hierarchical information is also used to draw
the vertices by a tree drawing algorithm, such as radial or
hyperbolic. The edges are drawn as B-Splines curves using
the intermediary points from the hierarchical tree as control
points. Holten also presented a points transformation model
that can control the smoothness of the bundling.

Most of following edge bundling techniques proposed meth-
ods to avoid the use of more information besides the adja-
cency data. The Geometry-Based Edge Clustering (GBEC) [6]
allowed the clutter reduction in a common graph layout. It
builds a mesh layout based on the original graph to group
similar edges. However, the mesh construction can be a
complex process, with high computational cost, and normally
produced unpleasant layouts. The Winding Roads [7] approach
processes the visual space information using a hybrid approach
that combines QuadTree decomposition and a Voronoi diagram
to discretize the visual space, creating roads when the edges
are drawn.

In a different way, the Force Directed Edge Bundling
(FDEB) [5] creates a system of forces over the edges and
execute an iterative process, bending the edges, until it gets
stable. Each edge is segmented in a set of points. The
points are connected in a spring–mass system with the others
points in the same edge. An electrostatic force manages the
approximation between points in different edges. A compati-
bility edges measure is also used to avoid grouping different
edges. The major problem of the force-directed model is the
computational cost. Our approach presents a better trade-off
between quality and computational cost.

Gansner et al. [8] propose a different approach to cluster
edges using an ink-minimization algorithm. The algorithm
groups the nearest edges until the amount of ink cannot be
reduced. It was the first technique that used a quantitative
measure to perform and evaluate the edge bundling.

A large group of edge bundling techniques is constituted
by image processing edge-bundling approaches with GPU-
based implementations. There are three techniques in that
group. The Image Based Edge Bundling (IBEB) [9] processes
a previous edge bundling layout to improve the graph visu-
alization with better groups separation. Skeleton-Based Edge
Bundling [10] uses image processing to create a skeleton that
determines the paths of edges bending. Finally, the Kernel

Density Estimation Edge Bundling (KDEEB) [11] draws the
bundled edges using the kernel density estimation process.
Finally, the Attribute-Driven Edge Bundling (ADEB) [13]
extends KDEEB that also uses numerical edge attributes to
determine the bundling flow map. Common to almost all these
techniques, the information contained on the data-set is not
used to guide the edge bundling, so there is no connection
between the visual representation and the underlying data.
FDEB and SBEB look upon the use of edge information to
measure edge compatibility, but it is not their main goal. Only
ADEB effectively uses numerical edge attributes, e.g. weight,
to perform the bundling. In this paper, any associated attribute
with a vertex is used to guide the edge bundling. Our approach
uses a similarity tree to guide the edges bending and grouping.
In the following section, we detail our approach.

III. NEIGHBOR JOINING BUNDLING

Fig. 2 outlines the process to construct the Neighbor Joining
Bundling (NJB). It involves the computation of the bundling
skeleton. To do this, a distance matrix is create considering the
data, then the Neighbor Joining (NJ) [14] is executed to create
a similarity tree that is used to define the control points which
are used to guide the edge bending and to define the place
of the nodes. In this section, we describe the NJ algorithm
and the graph drawing approach based on the similarity tree
structure.
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Fig. 2. Neighbor Joining Bundling overview

A. Neighbor Joining

The NJ algorithm creates a phylogenetic tree containing
vertices that represents all the N data elements and other N−2
virtual vertices. It starts with the distance matrix D and a star-
like tree, in which all data vertices are connected in one virtual
vertex. Then, the algorithm finds a pair of vertices (i, j) by
the criterion of minimum evolution, that is, the pair with the
smallest sum of branch lengths Si,j given by the following
equation:

Sij =
1

2(n− 2)

n∑
k 6=i,j

(Dik+Djk)+
1

2
Dij+

1

n− 2

n∑
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When the pair (i, j) is selected, a new virtual vertex X is
created, with the vertices i and j as its children and connected
to the common ancestor of i and j. The distance matrix D
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Fig. 3. Curving an edge through the NJ tree; First, the original edge is selected (a); the path between the source and the target is found in the NJ structure
(b); a B-Spline curve is drawn using the NJ virtual vertices as control points (c).

is then updated by removing the distances that involves the
vertices i and j, and adding the distances from X to the
remaining vertices. In order to calculate these distances the
following equation is used:

Di−j,k =
Dik +Djk

2

This process finishes when there are only two nodes re-
maining in D. At the end, the similarity tree will have the
original N vertices of the data set and N − 2 virtual vertices.
We use the implementation proposed by Studier et al. [15],
in which NJ is obtained with complexity O(V 3), where V
is the number of vertices. Although the NJ algorithm is
mainly used in biological studies, it had been applied in
information visualization before. Cuadros [16] creates a NJ
from collections of documents to perform a visual analysis of
text similarity. Despite the requirement of a distance matrix,
it can be generated by any kind of data associated with the
vertices of the original graph.

B. Graph Drawing

Once we have the similarity tree, the first step is to place
the points on the plane. To do this, we take advantage of
the NJ structure and use an tree drawing algorithm. In this
paper, we present our results using the radial layout [17].
With the radial layout, the vertices are placed around a circular
structure, while the virtual vertices are placed in the middle
of the visual space. Fig. 1 shows the NJ tree drawn using the
radial layout algorithm.

Finally, the last process is to draw the edges. To do that, for
each edge S we first find its source and target vertices. Then,
we search the path between these vertices on the phylogenetic
tree. This path is composed by virtual vertices, that are
employed as control points to draw the edge S as a B-Spline
curve. An example of this process is shown in the Fig. 3.
Due to the characteristics of the NJ tree, the computational
complexity to determine the control points is O(V ∗E), where
V is the number of vertices and E is the number of edges.

In our approach we allow users to change the edge straight-
ening parameter, similar to the transformation proposed by [4].
This parameter (β) controls the movement of the control points
of an edge S towards the original original straight edge, so that
the curvature is reduced. The transformation of each curved
edge S is given by the following equation:

S′(t) = S(t)β + (1− β)(P0 + t(PN−1 − P0))

this is then applied in each control point by the equation:

P ′i = Piβ + (1− β)(P0 +
i

n
(PN−1 − P0))

Small values of β produce a less distorted graph, but with
small clutter reduction. On the other hand, β values close to 1
produce the best result in terms of clutter reduction, but with
more distortion. There is no conclusive experiments about the
best values of β, so it is useful to allow users to change this
parameter interactively. Another parameter that can be changed
on real-time is the global edge opacity (α). The edges opacity
can be helpful to highlight the level of aggregation in each
section of the bundling.

IV. RESULTS

We used Neighbor Joining Bundling (NJB) to visualize the
graph of citations in a subset of the 2014 IEEE Infovis Contest
dataset [18], comprising papers published on the IEEE Infovis
Conference between 1990 and 2014. This has 490 vertices,
representing the papers. Edges represent the citation between
these papers, resulting in a set of 1, 547 edges. To generate
the required similarity matrix, we perform a text processing
similar to what was presented on Cuadros [16].

Fig. 1 shows the graph with bundled edges. In this graph,
we set the parameters β = 0.98 and α = 0.33. In this
visualization, it is possible to better identify, in distinct levels
of details, the edges connections between the different groups
of papers. Bundling benefits are better shown in graphs with
more edges. The Fig. 4 shows a synthetic dataset with 175
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vertices and 9, 500 edges. Each edge has its color based on
its original length. On the original drawn, with straight edges,
it is difficult to identify patterns of connections, while on the
bundled representation these patterns are better identified.

We developed a web-based environment with D3js [19], in
which the user can interact with the visualization, by chang-
ing the visualization parameters (α and β), and highlighting
edges by the selection of a vertex or group of vertices. This
interaction is useful by allowing the user to analyze different
aspects of the original graph.

(a) Original Graph (b) NJB Graph

Fig. 4. NJB resulting graph for a synthetic data set with 175 vertices and
9, 500 edges, each edge has its color based on its original size.

A. Limitation and Future Work

The NJB requires more than just an initial graph to construct
the edge bundling layout. Since the NJ employs a distance
matrix, a way to calculate distances between the vertices
must be provided. If this is not provided, the NJB cannot be
applied. NJB cannot also be applied to graphs with a given
vertices placement, such as geographic information. However,
the added semantic on bending the vertices according to
similarity relationships can represent an improvement over
other technique that execute the bundling without considering
the data set.

Another limitation is its computational complexity. As fu-
ture work, we intend reduce this complexity by creating an
strategy that approximates the NJ but with a small complexity.

V. CONCLUSION

In this paper, we present a novel edge-bundling graph
drawing technique to reduce clutter on graph visualization.
Our technique, called Neighbor Joining Bundling (NJB), uses a
phylogenetic tree to guide the bending and grouping of edges.
Different from the current state-of-the-art edge-bundling ap-
proaches, the bundled edges are obtained considering similar-
ity relationships, potentially improving the data analysis for
different kinds of data sets. Although our technique presents a
high computational cost, it is considerable easier to implement,
and it does not demand special hardware resources to be
executed, such as GPUs. The results show that NJB might
be useful in the visualization of similarity relationships on

graph data sets with vertices organized in different clusters,
providing benefits not found in the existing techniques.
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