
A Progressive Vector Map Browser
José Augusto S. Ramos1, Claudio Esperança2, Esteban Walter G. Clua 1

1 Instituto de Computação – Universidade Federal Fluminense (UFF)
Niterói, RJ – Brazil

2Programa de Engenharia de Sistemas – COPPE – Universidade Federal do Rio de Janeiro (UFRJ)
Rio de Janeiro, RJ – Brazil

ja sapienza@yahoo.com.br, esperanc@cos.ufrj.br, esteban@ic.uff.br

Abstract. With the increasing popularity of web-based map browsers, remotely
obtaining a high quality depiction of cartographic information has become com-
monplace. Most web mapping systems, however, rely on high-capacity servers
transmitting pre-rendered tiled maps in raster format. That approach is capa-
ble of producing good quality renderings on the client side while using limited
bandwidth and exploiting the browser’s image cache. These goals are harder
to achieve for maps in vector format. In this work, we present an alternative
client-server architecture capable of progressively transmitting vector maps in
levels-of-detail (LOD) by using techniques such as polygonal line simplification,
spatial data structures and, most importantly, a customized memory manage-
ment algorithm. A multiplatform implementation of this system is described, as
well as several performance and image quality measurements taken with it.

1. Introduction and related work
The increasing popularity of web-based systems and services for delivering maps can
be regarded as one of the most important developments in the advancement of cartog-
raphy. Several aspects of these systems have merited investigation in recent years, such
as the improving reliability of the Internet and web server infrastructure, ascertaining the
quality and fidelity of the served data, coping with privacy and security issues, max-
imizing the use of screen space, and making rational use of the available bandwidth
[Burghardt et al. 2005].

One important design decision when building a web mapping application is the
choice between raster and vector formats. Some of the most popular systems, such as
Google Maps [Google, Inc. 2008] or Yahoo Maps [Yahoo! Inc. 2008], are mostly raster-
based, which means that they serve pre-rendered digital images, that is, maps are first
rendered in several resolutions in the server, cut into blocks (called tiles), and then sent to
clients based on the desired area and zoom level. The key reasons for using rasters are: (1)
all work spent in authoring a good quality representation can be done on the server, with
the merely composing a big picture from several small image tiles; (2) the transmission
of raster data of fixed size uses limited bandwidth, and (3) web browsers already manage
image caches and, thus, little or no memory management is needed on the client side.

Several web mapping systems have also been proposed which use vector data
as well. Perhaps the most widely used system is the MapServer open source project
[University of Minnesota 2008]. The technology for serving maps in vectorial form

127

has been intensely researched (see [Kraak and Brown 2001] for a survey). The ad-
vent of the SVG (Scalable Vector Graphics) has further propelled these initiatives
and general information and software for deploying such systems is abundant (see
[Carto:net - cartographers on the net 2008], for instance). An adequate solution for the
problem clearly depends on the use of techniques for hierachically organizing vec-
tor data according to its visual importance, obtaining what is usually known as level-
of-detail data structures [Davis 2008]. At the same time, some sort of spatial index-
ing is usually required for quickly retrieving data which overlap the region of interest
[Gaede and Günther 1998]. Several authors have also investigated suitable techniques
for memory caching of spatial data with and without prefetching [Stroe et al. 2000,
Doshi et al. 2003], as well as methods appropriate for handling multi-resolution vector
data [Chim et al. 1998].

One less studied aspect of web cartography is the relation between the level-of-
detail of the data being served, the use of bandwidth and client memory management,
specially for vector-based software. In particular, most systems assume that all clients
have the same (small) amount of memory at their disposal and, as a consequence, stati-
cally link the level-of-detail of the served map to the size of the area being viewed.

In this paper we describe data structures and algorithms which make it possible to
remotely deliver and present high-quality vector maps in a progressive manner, making
efficient use of the available bandwidth, and adapted to the memory profile of any given
client without encumbering the communication protocol with information about client
memory state. In particular, although the server receives from the client only information
pertaining to the area being viewed, it is able to guess and progressively transmit only
needed data.

2. Overall system architecture
According to [McMaster and Shea 1992], around 80% of the total data in vector geo-
graphical databases are polygonal lines. This statement guides the scope of the proposed
architecture: (1) only vector maps with open or closed polygonal lines are considered,
and (2) the use of network bandwidth is optimized by restricting the transmission of line
data with just enough detail for a faithful representation.

Thus, we propose a client-server system for serving map data containing a pro-
gram (the server) capable of directly accessing all polygonal lines of a given map – from
a database, for instance – and progressively sending it to interactive visualization applica-
tions (the clients). Clients have limited memory capacity and thus store only enough line
data so as to present a good depiction of the map within a visualization window. Each
time a user changes this window, the contents of the client memory must be updated by
requesting relevant data from the server and discarding unneeded information.

The system preprocesses all polygonal lines comprising the map into two hier-
archical data structures, which can be quickly traversed in order to obtain the needed
information. The two structures used are: (1) a spatial index, which is needed to prune
out polygonal lines which do not contribute to the current viewing window, and (2) a
structure for organizing the vertices of each polygonal line in order of visual importance
– the so-called level-of-detail (LOD) data structure. It should also be mentioned that the
present architecture does not handle polygonal line importance classification, i.e., it is

128

considered that all polygonal lines intersecting a given window need to be drawn at some
level of detail. Although map visualization applications typically provide some way of
establishing which lines can be left out when rendering the map at certain zoom levels,
we do not concern ourselves with this feature in this paper.

Both server and client process the viewing window change in a similar manner.
The client only needs to inform the server of the new viewing window in order to receive
the needed data not yet stored in its memory. This requires that the server is kept aware
of the memory state of each client: if there are n lines in a map, the server maintains for
each client an array of n integers which map each line to the level of detail in which it is
represented in the client’s memory. Whenever new vertices need to be sent from server to
client, this transmission is broken into blocks of limited size. In other words, the archi-
tecture supports progressive transmission of detail information so that the visual quality
of the client images improve over time, at a rate that depends solely on the available
bandwidth.

3. Server-side preprocessing
For each map being served, their polygonal lines must be submitted to a preprocessing
step in order to (1) build a hierarchical level-of-detail data structure for their vertices, and
(2) build a spatial index used to support window queries.

3.1. Level-of-detail data structure

We employ the well-known Douglas-Peucker (DP) line smoothing algorithm
[Douglas and Peucker 1973]. Although it is not a particularly fast algorithm, running
in O(n log n) at best and O(n2) in the worst case [Hershberger and Snoeyink 1992],
it is ranked as the best when it comes to preserving the shape of the original line
[McMaster 1987]. Furthermore, it produces a hierarchical representation which can be
used for level-of-detail processing.

The DP algorithm recursively subdivides a polygonal line by selecting the vertex
at greatest distance from the line segment defined by the first and last point. Figure 1
illustrates this process for an example line. Observe that the subdivision process can be

Figure 1. Douglas-Peucker line simplification (adapted from
[Casanova et al. 2005] (a) A polygonal line with 29 vertices; (b) vertex 15
is furthest from line segment 1–29, (c) polygonal lines 1–15 and 15–29 are
processed recursively.

registered in a binary tree, where each node N corresponds to a subdivision vertex and
the corresponding distance dN , whereas its left and right sons correspond to sub-trees for

129

the left and right sub-chains. Thus, an approximation within tolerance � for the polygonal
line can be extracted by visiting the tree in pre-order and pruning out branches rooted at
nodes with distances dN < �.

In this work, we are interested in obtaining increasingly finer representations for
each polygonal line. This can easily be implemented by quantizing tolerance values into
an integer range [1, MaxLOD]. A coarse representation will thus be assigned to level-of-
detail (LOD) 1 by visiting the tree in pre-order for tolerance �1. Vertices in this represen-
tation are then marked with LOD = 1. The process is repeated for increasingly smaller
tolerances �i for i = 2 · · ·MaxLOD, and in each stage i, non-marked vertices are labeled
with the corresponding LOD = i value. An important consideration in this process is
that, ideally, the number of vertices marked for each LOD value should be approximately
constant, so that transmitting the next finer representation of a given line (see constant �
in Section 4) can be done in constant time. In our implementation, �1 is chosen as the
distance in world coordinates corresponding to the width of a pixel for a fully zoomed
out projection of the map, while successively finer tolerances were estimated by setting
�i+1 = 0.8�i.

3.2. Spatial indexing
In theory, the worst case scenario for vector map browsing consists of setting the view-
ing window so that all polygonal lines are enclosed in it. In practice, however, users
frequently are interested in investigating a small portion of the whole map. It stands to
reason, therefore, that some spatial indexing method be used for selecting polygonal lines
intersecting any given query window.

Although the present work does not focus on the issue of efficient spatial indexing,
we surveyed several works in the field (see [Samet 2006] for a comprehensive compila-
tion) and chose the relatively simple Expanded MX-CIF Quadtree [Abel and Smith 1984]
data structure for speeding up window queries. This is a data structure for rectangles
which, in the context of this work, correspond to each polygonal line minimum enclos-
ing bounding box. Each rectangle is represented in the data structure by a collection of
enclosing quadtree blocks. In our implementation, this collection contains a maximum of
four blocks, although other amounts might also be possible. The four blocks are obtained
by determining the minimum enclosing quadtree block, say B, for each rectangle, say R,
and then splitting B once to obtain quadtree blocks Bi (i � {NW, NE, SW, SE}) such
that Ri is the portion of R, if any, that is contained in Bi. Next, for each Bi we find the
minimum enclosing quadtree block, say Di, that contains Ri. Now, each rectangle is rep-
resented by the set of blocks consisting of Di (refer to Figure 2 for an example). Window
queries can be easily computed by means of a recursive descent algorithm on the tree, i.e.,
start with the root and recursively visit sons if their quadrants intersect the given window.

4. Memory Management
In the context of a client-server system, the issue of memory management should be
governed by the following considerations.

Memory capacity: It is assumed that the client memory is bounded by some given
constant. At any one time, the client has its memory partially occupied with a subset of

130

Figure 2. Example MX-CIF Quadtree (b) and the block decomposition induced by
it for the rectangles in (a) (adapted from [Samet 2006]).

the map’s polygonal lines at some level-of-detail. When the user changes the viewing
window, i.e., performs a zooming or panning operation, the memory contents should be
altered if it does not contain a “good” representation of the map as revealed by the newly
defined window.

Memory control protocol: When requesting new data from the server, some agreement
must be reached on what data is needed. In other words, the server must either be told,
or must already know what data to transmit to the client in response to a user action.
Thus, there are two general approaches for the control protocol: (1) the client requests the
needed data items, meaning that the server does not know the client memory’s contents,
or (2) the server is aware of the memory management operations performed by the client
by simulating the same operations as stipulated by a fixed algorithm. Clearly, the former
approach uses up more bandwidth than the latter. On the other hand, CPU usage could be
greatly increased if the server is to reproduce operations of all clients. In this work, we
adopt the second strategy, where the increase in time complexity is alleviated by employ-
ing a relatively simple memory management rationale which can be executed in tandem
by both server and client.

In order to describe our approach, let us first define a few terms. Let

• M be the maximum client memory size;
• m be the amount of data that can be transmitted from the server to the client in

one transaction, i.e., in time for the client displaying the next frame;
• S = {Li} be the current resident set, i.e., the set of polygonal lines Li that inter-

cept the current viewing window W ;
• W be the current viewing window;
• LOD(L) be an integer in [0, MAXLOD(L)] representing the level-of-detail of

polygonal line L. It is assumed that if L �� S, then LOD(L) = 0;
• BestLOD(L, W) be an estimate for the “best” level-of-detail for exhibiting a

polygonal line L in viewing window W . Clearly, this function should return 0 if
L is not visible within W . Otherwise, it should return a LOD which is adequate

131

for the current screen resolution. For instance, it should be just fine enough for
mapping two consecutive vertices to different pixels; and

• � be an estimate of how much memory associated with increasing or decreasing a
level-of-detail step for any given polygonal line L. In other words, on average, a
polygonal line L should occupy approximately � � LOD(L) memory.

Then, adjusting the items resident in memory requires two classes of operations:
operations that increase and operations that decrease the use of memory. Operations in
the first class cause data to be transferred from the server to the client. We distinguish two
of these:

1. IncreaseLOD(L) increases the level-of-detail for polygonal line L. This means
that if LOD(L) = k > 0, then after its execution LOD(L) = k + 1.

2. Load(L) brings polygonal line L from the server in its coarsest form. As a pre-
condition, LOD(L) = 0 and after its execution, LOD(L) = 1.

The second class corresponds to operations which cause data to be thrown away
from client memory. Observe that these operations do not cause any network traffic be-
tween server and client. We also define two operations of this class:

1. DecreaseLOD(L) decreases the level-of-detail for polygonal line L.
2. Unload(L) unloads polygonal line L from memory altogether.

Thus, any memory management algorithm will consist of sequentially perform-
ing these operations in some order in a timely manner and without infringing memory
limits M and m. Our algorithm uses two heaps I and D which hold operations of each
of the two classes described above. A crucial consideration is how to define the order-
ing between operations in each heap. Clearly, operations of type Load should have a
higher priority than all operations of type IncreaseLOD. Similarly, operations of type
DecreaseLOD should have higher priority than operations of type Unload. In our imple-
mentation, the ordering between operations IncreaseLOD for two lines L1 and L2 depend
on how distant the LOD�s of each line are from their estimated “best”. In other words, we
use |BestLOD(L) � LOD(L)| as a priority measure. The priority between operations
DecreaseLOD is defined in a similar way. Algorithm 1 DefineOperations describes how
the two heaps are created.

Once the operation heaps are known, client and server process them in paral-
lel. Operations are executed subject to the memory and bandwidth restrictions discussed
above. Algorithm 2 ExecuteOperations summarizes the rationale for operation execution.
It is important to realize that executing an operation has different meanings for client and
server. For instance, executing an IncreaseLOD operation in the client entails receiving
line detail from the server and updating the geometry for that line, while for the server
it means merely sending the additional vertices. Similarly, while DecreaseLOD entails
updating the polygonal line data structure for the client, the server needs only to take note
that the corresponding memory was freed in the client. A limitation of Algorithm 2 is
related to the fact that � is merely an estimate of the amount of memory associated with
decreasing or increasing the LOD of any given line. This may lead to |S|, the amount of
memory used for the polygonal data, eventually exceeding M if the newly received LOD
data is bigger that �. This, in general, is not a problem since the overflow should be small
on average. In any case, the restriction can easily be lifted by assigning to � a sufficiently
large value.

132

Algorithm 1: DefineOperations
Input: Wnew: the new window set by the user
Output: I and D: heaps containing operations which cause memory

increase/decrease
begin

I � �
D � �
S � � set of lines which intersect Wnew

for L � S � � S do
if L /� S then

Enqueue [Load, L] in I

if L /� S � then
Enqueue [Unload, L] in D

if LOD(L) < BestLOD(L, Wnew) then
for i � LOD(L) + 1 to BestLOD(L, Wnew) do

Enqueue [IncreaseLOD, L] in I

else if LOD(L) > BestLOD(L, Wnew) then
for i � BestLOD(L, Wnew) + 1 to LOD(L) do

Enqueue [DecreaseLOD, L] in D

end

Note that the scheme described above is easily adapted to support progressive
transmission. Suppose that Algorithm 2 terminates with a non-empty heap I . Then, if
the viewing window for the next frame is unchanged, there is no need to run Algorithm
1 again, and the next execution of Algorithm 2 will further process heaps I and D, thus
providing an increasingly finer rendering of the map, as illustrated in Figure 7.

5. Implementation and Results

A prototype implementation of the framework described in this paper was built and used
to conduct several experiments in order to assess the validity of our proposal.

The development was supported by the following tools: user interfaces were
built with version 4.4.1 of the multi-platform Qt [TrollTech 2008] library and the
Shapelib library v. 1.2 was used for reading Shapefiles [MapTools 2008]. The pre-
processor was written in C++ and compiled using version 4.1 of the gcc compiler
[Free Software Foundation Inc. 2008]. The client and server programs which implement
the algorithms described above were written in Python (version 2.5.3) with the Qt library
accessed by means of the the PyQt wrapper [Riverbank 2008] version 4.4.3. Communi-
cation between clients and server use the XML-RPC specification, a protocol for Remote
Procedural Call (RPC) coded in XML [UserLand Software, Inc. 2008]. It is important to
remark that all of these tools are Open Source and, thus, freely available.

The pre-processing described in Section 4, was carried out with a dedicated pro-
gram which (1) reads polygonal map data in Shapefile format, (2) executes of the Douglas-
Peucker algorithm and computes the level-of-detail hierarchy for each polygonal, (3) cre-

133

Algorithm 2: ExecuteOperations
Input: I and D: heaps containing memory management operations
begin

t � 0
while I �= � and t < m do

if |S| + � > M then
[op, L] � Dequeue from D
execute op(L)

else
[op, L] � Dequeue from I
execute op(L)
t � t + �

end

Table 1. Sequence of map browsing operations used in the experiments.

Frame 0 8 12 14 16 19 21 23 25 27 31 36 39 41 43 45
Op. ZF Z+ P Z+ Z+ Z+ P P P Z+ Z+ Z- Z- Z- Z- ZF

ates an extended MX CIF Quadtree for supporting window queries, and (4) saves the
important information into a structured XML (eXtensible Markup Language) file which
is used as input for the server program.

The system deployment is straightforward, requiring only that a server process is
started in some computer and one or more client processes in the same or some other
machine connected by a TCP/IP network. When initialized, the server will load the XML
generated in the preprocessing stage. When a client connects to the server, it informs
its cache memory size and transmission block size, i.e., constants M and m discussed
in Section 4. The server then sends a reply message containing the coarsest possible
map representation and a compressed representation of the MX-CIF data structure. After
this initialization stage, the communication protocol proceeds as described in the above
sections.

Experiments were conducted using a test map with the state limits of Brazil in
scale 1:1.000.000 produced by the Brazilian Geography and Statistics Institute (IBGE)
[IBGE 2008]. This map contains 349 polygonal lines, each with 173 vertices on aver-
age. The preprocessing stage produced an Extended MX CIF Quadtree of height 6 and
containing 172 leaf nodes, while polygonal lines were split into up to 25 LOD steps.

The maximum client memory size M was set to 32 KBytes, while the maximum
block size per frame was set to 2 KBytes. A client was then used for browsing the test
map by issuing a fixed sequence of zooming and panning operations. These are shown
in Table 5, where ZF, Z+, Z- and P stand for zoom full, zoom in, zoom out and pan,
respectively.

The first experiment aimed at measuring the use of client cache memory during
the browsing session. The chart in Figure 3 shows that, as expected, the use of mem-

134

ory increases almost linearly and, around frame 19, levels out at the maximum memory
capacity.

Figure 3. Client cache memory usage per frame.

The second experiment gauged the usage of bandwidth by measuring the sizes of
transmitted blocks. These numbers are shown in the chart of Figure 4. As expected, net-
work usage is kept under the imposed limit of 2 KB per frame. Observe that successive
frames with high bandwith usage – but without intervening browsing operations – corre-
spond to progressive transmission and rendering of map data. We also note that zooming
in and zooming to the full map generate more network traffic than panning or zooming
out.

Figure 4. Bytes transmitted per frame.

It is also useful to observe the frequency of cache memory management operations
as a function of the frame number. The chart in Figure 5 plots two lines, one depicting the
cache inclusion operations, i.e., those that generate network traffic, and another depicting
the cache exclusion operations. Note that no exclude operations are required before frame
19, as there is still enough room for storing polygonal data. After this point we observe
that the number of include and exclude operations increase and decrease in sync. This
is reasonable since exclude operations are required to make room for include operations.
Another important observation is that the number of operations does not necessarily fol-
low the pattern of bandwidth usage. This can be attributed to the fact that the amount of
data for each LOD step is not constant.

Finally, it was sought some way for measuring the picture quality observed in
the client as a function of time (frame). For this purpose, we considered that a given
polygonal line L present in window W is rendered perfectly if it is represented in cache

135

Figure 5. Cache memory management operations per frame.

memory with LOD BestLOD(L, W) or greater. Thus, a percentage measure of image
quality Q may be estimated by

Q =
100

|R| �
�

L�R

min(LOD(L), BestLOD(L, W))

BestLOD(L, W)
,

where R is the set of lines intersecting W . A plot of this quality measure is shown in
Figure 6. It is possible to observe that after a few frames the system achieves maximum
quality and never falls significantly below 80%. Obviously, this threshold is dependent on
the relationship between the total map size and M , the cache memory size. Similarly, the
latency observed for reaching maximum quality depends on the allowed block size m.

Figure 6. Image quality per frame.

As an example of quality increasing over time is shown in Figure 7. The user
performs a zoom operation in a window displaying a map with all states of Brazil, causing
the system to perform a progressive transmission and rendering until it reaches 100% of
image quality.

6. Conclusions and suggestions for future work
The client-server framework for remotely displaying vector maps described in this work
was designed to achieve several goals: be simple, scalable, make predictable use of net-
work bandwidth and support progressive transmission and rendering. The prototype im-
plementation and admittedly limited experimental evidence seem to indicate that these
objectives were largely met. A continuation of this work would necessarily start by a
more thorough experimentation, with the use of different data sets and other values for

136

Figure 7. A zoom-in operation performed on the black rectangle (a) causes pro-
gressive transmission and rendering (b), (c) until the system achieves maximum
image quality (d).

constants M and m. Ideally, a performance evaluation should also be attempted in order
to evaluate the scalability of the server.

Clearly, a production system would require the addition of several improvements
such as visual importance classification and a more fine-grained processing of polygonal
data so that a given polyline could be stored with varying levels of detail in client memory.
A complete system would probably also include the ability to serve raster data.

References

Abel, D. J. and Smith, J. L. (1984). A data structure and query algorithm for a database
of areal entities. Australian Computer Journal, 16(4):147–154.

Burghardt, D., Neun, M., and Weibel, R. (2005). Generalization services on the web –
a classification and an initial prototype implementation. Proceedings of the American
Congress on Surveying and Mapping – Auto-Carto.

Carto:net - cartographers on the net (2008). Svg, scalable vector graphics: tutorials,
examples, widgets and libraries. http://www.carto.net.

Casanova, M., Câmara, G., Davis, C., Vinhas, L., and Queiroz, G. (2005). Bancos de
dados geográficos. Editora Mundo GEO, Curitiba.

Chim, J. H. P., Green, M., Lau, R. W. H., Leong, H. V., and Si, A. (1998). On caching and
prefetching of virtual objects in distributed virtual environments. In MULTIMEDIA
’98: Proceedings of the sixth ACM international conference on Multimedia, pages
171–180, New York, NY, USA. ACM.

Davis, C. (2008). Geometria computacional para sistemas de informação geográfica.
http://www.dpi.inpe.br/

˜

gilberto/livro/geocomp/.

Doshi, P. R., Rundensteiner, E. A., and Ward, M. O. (2003). Prefetching for visual data
exploration. In DASFAA ’03: Proceedings of the Eighth International Conference on
Database Systems for Advanced Applications, page 195, Washington, DC, USA. IEEE
Computer Society.

Douglas, D. H. and Peucker, T. K. (1973). Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. The Canadian Cartogra-
pher, 2(10):112–122.

137

Free Software Foundation Inc. (2008). GCC, the GNU compiler collection. http:

//gcc.gnu.org/.

Gaede, V. and Günther, O. (1998). Multidimensional access methods. ACM Comput.
Surv., 30(2):170–231.

Google, Inc. (2008). Google maps. http://maps.google.com.

Hershberger, J. and Snoeyink, J. (1992). Speeding up the Douglas-Peucker line-
simplification algorithm. In Proc. 5th Intl. Symp. on Spatial Data Handling, pages
134–143.

IBGE (2008). IBGE - Instituto Brasileiro de Geografia e Estatı́stica. http://www.

ibge.gov.br.

Kraak, M.-J. and Brown, A. (2001). Web Cartography – Developments and prospects.
Taylor & Francis, New York.

MapTools (2008). Shapefile C library v1.2. http://shapelib.maptools.org/.

McMaster, R. B. (1987). Automated line generalization. Cartographica, 24(2):74–111.

McMaster, R. B. and Shea, K. S. (1992). Generalization in digital cartography. Associ-
ation of American Geographers, Washington, D.C.

Riverbank (2008). Pyqt4 download. http://www.riverbankcomputing.co.

uk/software/pyqt/download.

Samet, H. (2006). Foundations of Multidimensional and Metric Data Structures. Morgan-
Kaufman, San Francisco.

Stroe, I. D., Rundensteiner, E. A., and Ward, M. O. (2000). Scalable visual hierarchy
exploration. In DEXA ’00: Proceedings of the 11th International Conference on
Database and Expert Systems Applications, pages 784–793, London, UK. Springer-
Verlag.

TrollTech (2008). Qt cross-platform application framework. http://trolltech.

com/products/qt/.

University of Minnesota (2008). UMN MapServer. http://mapserver.gis.umn.
edu.

UserLand Software, Inc. (2008). Xml-rpc homepage. http://www.xmlrpc.com.

Yahoo! Inc. (2008). Yahoo! maps. http://maps.yahoo.com.

138

