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Abstract. This work proposes a new approach to couple Aedes aegypti 
population dynamic models with local scale spatially-explicit computational 
models for the Geographical Space. A geographic database was developed for 
a neighborhood in Rio de Janeiro, RJ, and used to estimate the spatial pattern 
of mosquito infestation to estimate areas of epidemic risk. 

1. Introduction 
Models describing the population dynamics of Aedes aegypti, classified as deterministic 
[Ferreira and Yang 2003] or stochastic [Otero et al. 2006; Focks et al. 1993A], share a 
common structure based on System Theory [Bertalanffy 1975]. A typical example 
[Ferreira e Yang 2003] is shown in Figure 1. In this model, the dynamics of a mosquito 
population is modelled as the flow of individuals between stocks, denoted in the 
diagram by four rectangles: E(t) - eggs, L(t) – larvae, P(t) – pupae, and W(t) – adults. 
Stocks are connected by arrows, f1, f2 and f3, representing the flow of individuals 
between life stages: 1 - egg to larva, 2 – larva to pupa, and 3 – pupa to adult. Flow 
occurs at rates that are temperature dependent. New individuals enter in the population 
by birth (at a rate ovip) and mortality rates are stage-specific (m1, m2, m3 and m4).  This 
model structure represents the main demographic events in the life cycle of an Aedes 
aegypti population and its formulation in the form of dynamic equations allows the 
simulation of its temporal dynamics. Since space is not explicited, however, the model 
does not describe the distribution of Aedes aegypti through space.    



 
Figure 1. Flow diagram describing Aedes aegypti life cycle (adapted from Ferreira e Yang, 

2003).  Temperature (temp in yellow circle) controls three development rates: 1 - egg to 

larva, 2 – larva to pupa, and 3 – pupa to adult; ovip is the oviposition rate; m1, m2, m3 

and m4 are natural stage-specific death rates,  mec1, mec2, mec3 is a death by breeding 

site removal (mechanical control); Larv1 and larv2 are death rates induced by larvicidal 

control.  The  arrow  “Adult”  indicates  the  death  rate  by  adulticide.  C is the carrying 

capacity of the area. 

To understand the spatial-temporal dynamics of these populations, this work 
proposes a new approach to couple Aedes aegypti population dynamic models with 
local scale spatially-explicit models, which are integrated with geographical databases. 
The goal is to calculate, at each simulation time step, the variation in population size 
given by the dynamic models and allocate it in a grid of regular cells that represents the 
Geographical Space.   

2. Theoretical Foundations 
Few computational models are capable of simulating Aedes aegypti population spatial-
temporal patterns. Otero et al. (2008) proposed a stochastic spatially-explicit model in 
which changes are modelled considering cells as occupied by autonomous mosquito 
populations interconnected by flows of flying individuals. A similar approach was used 
by Magori et al. (2009). However, more realistic simulations of Aedes aegypti life cycle 
can be achieved when population dynamic models [Focks et al. 1993a] considers  the 
spatial distribution of breeding sites in their formulation as well as the dynamics of the 
aquatic stage of the mosquitoes (larvae and pupae).  The breeding site density per house 
and the house density per area are model parameters. However, in both studies the 
simulation experiments were conducted in artificial spaces where the breeding site 
density and local temperature were also synthetic. In other words, the models were not 
integrated with geographical databases.  

Remote sensor images and digital maps were used by Tran and Raffy (2005) to 
develop a model to assess Dengue transmission processes in the municipality of 
Iracabouro, French Guiana. Chang et al. (2009) also used geographical data to help 
Dengue control specialists to prioritize specific neighborhoods for targeted control 
interventions.  



3. Methodology 
A deterministic Aedes aegypti population dynamic model, modified from Ferreira and 
Yang (2003) [Lana 2009] was implemented in the TerraME modeling environment 
[Carneiro 2006]. The implemented model was calibrated using data from a real urban 
area, whose socioeconomic and biophysical properties were organized into a 
geographical database implemented in TerraLib [Camara et al. 2000]. The allocation 
procedure for spatialization was also implemented in TerraME. The kernel estimator 
provided by TerraLib was used to parameterize the allocation procedure. 

3.1. Data  
The data used in this work was collected by Honório et al., (2009), who weekly 
monitored the Aedes aegypti population in Higienópolis district (Figure 2), Rio de 
Janeiro, RJ, Brazil, during 1.5 years, using ovitraps. Ovitraps are traps that attract 
mosquito females looking for places to lay eggs. [Fay and Eliason 1966; Reiter et al., 
1991]. Forty ovitraps were randomly placed in a 0,25 km2 area. Each week, the ovitraps' 
contents were taken to the laboratory and number of Aedes aegypti eggs was counted. 
After that, traps were cleaned and returned to the houses. Week mean air temperature 
during the period was obtained from the nearest meteorological station, located at the 
Rio de Janeiro's international airport. 

 
Figure 2. Study area and ovitrap locations – Higienopólis, Rio de Janeiro, RJ. 

3.2. Population Dynamic Model 

Four differential equations describe the rate of change of mosquito abundance, per life 
stage: eggs, larvae, pupae and adult (Figure 1).  
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 Equation 1 describes the dynamic of the egg stock. Eggs are layed at a 
temperature and density-dependent rate. ovip(t) is a quadratic function describing the 
effect of temperature on oviposition rate. Individuals leave the egg stage by either 
natural death, induced death (by mechanical control) or by ecloding into larvae. 
Equation 2 describes the dynamic of the larva stock. Larvae eclode at a temperature-
dependent rate. Individuals leave the larva stage by either natural death, induced death 
(by mechanical control and larvicide) or by evolving into pupae. Equation 3 describes 
the dynamic of the pupa stock. Pupa emerges at a temperature-dependent rate as well. 
Individuals leave the pupal stage by either natural death, induced death (by mechanical 
control and larvicide) or by emerging into adult. Equation 4 describes the dynamic of 
the adult female stock that lay eggs. Female adults also emerge at a temperature 
dependent rate and die by either natural death or induced death (by adulticide).   
 In comparison to Ferreira and Yang (2003), this model has the following 
modifications:  

1- It uses the equation proposed by Sharpe and DeMichelle (1977) to describe the 
temperature-dependent developmental rates. This equation describes the temperature 
dependent rate of development of a poikilothermic organism as the temperature 
dependent rate of activation and deactivation of an enzyme. 

2- Eggs are layed at a temperature and density-dependent rate. A quadratic relation 
between oviposition and temperature sampled was found to Higienópolis district 
(Figure 3). 

 

Figure 3. Quadratic function describing the relationship between oviposition rate and 
air temperature. The source of data is of Honório et al. (2009). 



3.3. Calibration and Validation 
The model presents only one free parameter, the carrying capacity C. The other 
parameters are maintained fixed (Table 1). 

Table 1: Parameters used in the dynamic model 

Parameter Value 

ovip (t)  (Quadratic function in Figure 3) 

1(t), 2(t), 3(t) Fixed (equation proposed by Sharpe e 
DeMichelle, 1977) 

m1(t), m2(t), m3(t) Fixed (1/100, 1/3, 1/70 respectively) 

mec1(t), mec2(t), mec3(t) Fixed (0) 

larv1(t), larv2(t) Fixed (0) 

adult(t) Fixed (0) 

C                                 Fitted 

 
 To calibrate the carrying capacity C to the Higienópolis area, the ovitrap data 
was divided into two subsets. The first subset (green points in Figure 2) was used to 
calibrate the single free parameter using a Monte Carlo method (Rubinstein and Kroese 
2007) to minimize the mean quadratic error. 2000 iterations were performed in 10000 
Monte Carlo experiments. 

 Once calibration was achieved, the second subset was used to simulate the 
model again and another error value was obtained and compared to the error obtained 
by the calibration process. Since this error was lower than the calibration error, we 
considered that the model calibration was adequate. The division into subgroups was 
done to avoid clusters and guarantee a similar temporal distribution of the two sets of 
sample points.  

3.4. Geographical Database 
Several layers of information for the study area were integrated into a geographical 
database developed in the TerraView geographic information system (GIS), version 
3.2.0. Informations included point maps with ovitrap locations, number of eggs 
collected per ovitrap per week, census tracts in the area, census data, and spatial 
location of schools, houses, water reservoirs (Pereira Passos Institute - Rio de Janeiro 
Prefecture, 2000). 

 For simulation purpose, a grid of regular cells (10 x 10 meters) was created and 
its cells were used to store model's inputs and outputs. 



3.5. Scale Issues and Estimation of the Infestation Spatial Pattern  
To generate maps of the spatial distribution of the Aedes aegypti population in 
Higienópolis, we used two approaches: 

3.5.1. Census tract scale 

In the first approach, the ovitrap data was aggregated by census tract. Higienópolis is 
divided in 22 census tracts and the study area has 10 census tracts (Figure 4a). A census 
tract with only one trap was excluded from the analysis (marked with a white X in 
Figure 4a). The carrying capacity of the dynamic population model was calibrated 
separately for each census tract. Figure 4b shows that estimated carrying capacity and 
the mean number of eggs collected per census tract. We observed that, discounting a 
scale factor (5.387), the carrying capacity captures the spatial variation in egg density. 

 
 

 
Figure 4. (a) The Higienópolis district divided in census tracts (a). The census tracts 

within the study area are colored and enumerated. The 10th census tract was excluded 
from the analysis.  (b) Comparison between the estimated carrying capacity per census 

tract and the mean number of eggs. The red line was increased five times to facilitate 

comparison with the blue line. Applying a linear regression we obtain the equation C = 

37.48 + 5.387*mean (Eggs), with r2 = 96.5%. 

3.5.2. Kernel Estimator 

Our second approach aimed at producing a spatially continuous estimate of mosquito 
abundance (defined by our grid). To achieve this goal, we used a variation of the Kernel 
estimator for point events with an associated real value (Bailey and Gatrell, 1995). The 
method smooths the surface interpolating the density of eggs in each location, without 
modifying the data statistical characteristics and variability. In this work, the Kernel 
estimator with adaptive radius provided by TerraView software was used to generate 78 
weekly maps of egg density from the observed data. These maps could be used to 
parameterize the allocation model proposed below. Since models with many parameters 
are difficult to calibrate, as a first approximation, the 78 maps were summarized into an 
unique average map of egg density. Therefore, the final kernel map is an aggregation of 

a) b) 



all 78 weeks into a single map (Figure 5). This map was used as input to the spatially-
explicit allocation model described below. 

 
Figure 5: Average kernel map of egg density. 

3.6. Allocation model for spatialization of the Aedes aegypti population 
Some assumptions were considered in order to develop an Aedes aegypti population 
allocation procedure.   

a) Cells of 10 by 10 meters were generated and adopted as the spatial scale for this 
approach.  

b) The estimated egg population is distributed through space according to the kernel 
map of egg density (Figure 5). It is important to note that we found the carrying 
capacity to be proportional to the mean egg density, so the underlying assumption is 
that eggs are distributed according to the carrying capacity. For example, if the 
calculated average egg population is 400 eggs, some cells will have a null quantity of 
eggs, others can have 100, 200, 400 eggs, or even a higher concentration of eggs.  

   
 The resulting algorithm used to allocate egg populations is shown in Figure 6. It 
traverses the cellular space allocating the Aedes aegypti population. The cells are visited 
in a decreasing order of egg density estimated by the average kernel map of egg density. 
At each cell, the algorithm deposits a quantity of eggs that is proportional to the average 
capacity of an adult female to lay eggs [Otero et al. 2006] and proportional to the local 
egg density estimated in the average kernel map.     

 
Figure 6. Aedes aegypti population dynamic allocation algorithm. 



4. Results and Future Works 
This work presents an approach to allocate the Aedes aegypti population on the real 
space. The allocation algorithm uses a Kernel estimator based map and a ranking 
mechanism to traverse the space allocating the mosquito population in a 10x10m cell 
grid (change). In this study, the model was parameterized and integrated to a 
geographical database for the Higienópolis district from Rio de Janeiro city, RJ, Brazil.  

 The population dynamic model, parameterized for the study site in Rio de 
Janeiro, presented some problems to fit to the data (Figure 7). Contrary to our 
expectations, the observed time series appears to be less responsive to temperature than 
expected by the model. This result suggests that other variables may have a bigger effect 
on the control of the week oviposition rates, for example, the rain regime or air relative 
humidity. In the winter, we observed the largest discrepancy between simulated and 
observed oviposition. Most of the time, the model underestimates the quantity of 
weekly deposited eggs. Several factors can be contributed for this imperfection. The 
oviposition statistic is just based on 1.5 years of sampling. Besides, the Higienópolis 
district is not an isolated place as the model assumes, thus the mosquito population can 
receive and lose individual for neighborhoods. 

 
Figure 7. Graph of comparing between Observed oviposition (OO) and Simulated 

oviposition (SO). The blue line, temp, is the temperature time series.   

Despite the simplifications introduced in the spatialization of the model, the 
model was capable of capturing the spatial pattern of mosquito abundance, with four 
hotspots that vary in intensity through time. Despite this spatial similarity, though, 
simulated and observed maps differ in the intensity of the mosquito abundance (Figure 
8). During the warm seasons, mosquito abundance is less intense in simulated maps 
(black background) than in the observed maps (white background). The opposite occurs 
during the cold seasons. These discrepancies occur due to the errors in the estimation of 
population size by dynamic model discussed above. 

 The allocation procedure introduced here is a simplification. The method 
neglects the interactions between spatial heterogeneity and the growth of the mosquito 
population. It considers the whole district as a homogeneous area during computation of 



the population size and, then, it distributes the individuals over the space. It does not 
consider the spread of mosquito by flight. Other simplification is the use of an egg 
density average map to base the allocation. The average map fixes the spatial structure 
while the intensity of eggs changes during the time. Hence, we consider that the average 
map is only an indicator of average risk.    

Future works will investigate integrated methods to develop spatial dynamic 
models for the Aedes aegypti life cycle. In this new approach, the spatial structure will 
be dynamic and population dynamics will be governed by autonomous populations 
located in each cell, as in Figure 9. Dispersion of mosquitoes by flight will be also 
considered. These improvements will allow for the simulation of control strategies to 
evaluate their efficiency. For instance, strategies as the use insecticides in risk areas or 
the elimination of breeding sites of certain regions can be evaluated through simulated 
scenarios. 

 

 

Figure 8. Comparing observed (white background) and simulated (black background) 

infestation maps – left maps show results for the winter season, right maps show results 

for the summer season. 

 

 



 

Figure 9. Autonomous Aedes aegypti populations occupy each space cell. Mosquitoes 

may fly to the neighbor cells indicated by blue arrows. E: egg, L: larva, P: pupa and A: 

adult. 
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