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Abstract. This work proposes  a mechanism to integrate different types of processes 
into a common gis-based simulation engine and, in particular, how to handle business 
processes described as workflows. In this sense, the paper presents the simulation 
process approach adopted, describes a method for mapping a workflow into the 
simulation process and it identifies which information needs to be added to the 
workflow description to make it possible to simulate it. To illustrate the ideas proposed, 
the aspects regarding management of an emergency situation are discussed. The 
discussion considered the different processes involved with it and the use of 
computational simulation  to help manage the emergency situation.  

1. Introduction 
In the Geographical Information Systems (GIS) field, a considerable amount of research 
has been devoted to developing dynamic models of man-driven and earth phenomena, 
such as physical processes, land use cover change, traffic control and socio-economic 
dynamics, among others. Many formalisms were developed to express these dynamic 
models. Among the most popular, we may quote cellular automata [von Neumann 
1966], system dynamics [Forrester 1961] and multi-agent systems [Michel et al. 2009]. 
These models are used to predict the outcome of given scenarios and can be used to 
help planning, for example, urban activity, logistics, emergency response or marketing 
strategies. 
 Organizations have also worked out ways to formally express their activities. 
The adoption of the so-called Business Process Management (BPM) systems has grown 
significantly over the last few years [Weske 2007]. The most common practice of BPM 
tools is to express business processes as workflows. However, most BPM solutions 
focus on analyzing, publishing and monitoring business processes. There has been little 
research on simulating these processes, which  help verifying and improving them. 
 Sometimes it is relevant to consider interaction between external processes, such 
as physical simulations, with organizations business processes, such as technical 
procedures. One example occurs during an emergency situation, such as an oil leak 
accident on the sea, where the behavior of the oil spill is influenced by the response 
team actions and the way the command of the emergency handle the situation depends 
on how big the oil spill is. In order to simulate such situations and obtain more realistic 
results, this type of interference must be considered. 



 

 

 

 Based on this idea, a simulation engine has been developed to provide such 
mechanism to deal with different processes that can interact with each other. In a 
previous work [Metello et al. 2008], it was presented an earlier version of this engine, 
which could simulate some kinds of processes in a GIS environment, such as physical 
dispersion of leaked products and transportation of equipment. Even though this engine 
could simulate a large variety of processes commonly modeled in GIS, it could not 
simulate workflows based processes. This paper addresses a newer version of the 
simulation engine, which can simulate business processes described as workflows. The 
paper has two main objectives. First, it describes a method for mapping a workflow into 
a simulation process to be executed in the engine. Second, it identifies the information 
required to be added to the workflow description that enable it to be simulated. 
 This paper is organized as follows. Section 2 illustrates in more detail the 
motivating example of handling emergency situations. Section 3 describes a formal base 
for integrating processes of different nature together in a simulation environment. 
Finally, section 4 describes how a process described by a workflow can be  simulated in 
that environment. 

2. A Motivating Example: Emergency Planning 
An emergency occurs when a sudden and unexpected situation may cause damage to 
human health and/or to the environment and properties and which, therefore, requires 
immediate action and specific resources. In this case, it is not only important to respond 
quickly, but the response must be conducted in a well organized manner, in order to 
minimize the damages. The complexity of emergency management, coupled with the 
growing need for multi-agency and multi-functional involvement on these situations, 
has increased the need for methodologies that follow standards and that can be used by 
all emergency response disciplines. In this sense, the use of the Incident Command 
System (ICS) [Bigley and Roberts 2001] standard by public safety and private sector 
organizations around the world has been increasing. 
 When the incident begins, the first steps are notifications, initial assessment, 
command meeting, initial response and incident briefing using specific ICS forms. After 
this initial response period, the emergency handling process becomes cyclic. Each cycle, 
called Planning “P”, consists of a planning and an operational phases. The planning 
phase include meetings for assessing the current situation, update objectives, tactics 
definition, preparing and approving the incident action plan (IAP). The operational 
phase is where the response plan is executed and its progress is evaluated, after which 
starts a new cycle.  

 Use of information systems, such as InfoPAE [Carvalho et al. 2001] help to 
improve the management of this process. InfoPAE is an automated system designed to 
improve the response to emergency situations. It also proved to be a valuable training 
tool. The system offers sophisticated action plans and easy access to vital information 
and resources allocated for different types of scenarios. The system is developed by 
Petrobras (the Brazilian oil company) and the Computer Graphics Technology Group 
(Tecgraf) at PUC-Rio.  

 One of the difficulties of such systems is that, even though it is possible to 
describe an emergency action plan at a reasonably detailed level, this is somewhat 
limited with respect to the representation of dynamic aspects. The action plan is usually 



 

 

 

described using workflows and most workflow representations do not specify the time 
at which an action should be executed, how long it will take to finish and how the 
environment is affected by its execution. For instance, if a plan has instructions to 
install barriers to contain an oil spill at some point, it should take into account where 
and how the spill moves and how long it will take to have the barriers installed at the 
correct point. Otherwise, the plan is useless. 
 Testing the quality of an action response plan and the performance of the 
emergency response team is mandatory to ensure minimum impact of the incident. 
Beside others initiatives such as field exercises, use of computational simulation can be 
a cost-effective mechanism to improve it. Simulation can be used for different purposes 
as to estimate, in advance, if there will be enough resources and time for executing a 
specific action or  support complex decisions during the planning phase of emergency 
response. One of the common used for it is to simulate the behavior of physical 
phenomena such as those involving dispersion of chemical products in the environment. 
However, the pure simulation of physical dispersion does not take into consideration the 
effects of contingency actions. Therefore, the use of purely physical simulation is 
somewhat limited in a strategy which cycles between evaluation and planning. 
 Hence, a more suitable computational environment to test the emergency 
management would be one that could combine simulation of physical phenomena with 
others processes such as those related to Planning “P”.  

3. Process Simulation 

3.1 Motivation 
In the long-lived field of simulation, many different formalisms were developed to 
model processes in time [Eker et al. 2003, Vangheluwe 2000, Zeigler et al. 2000]. Each 
formalism suits better some specific class of processes. For instance, the dispersion of 
some leaked product into the environment can be modeled as a cellular automata (CA), 
while the corresponding contingency action plan can be modeled as a workflow. These 
two types of processes are depicted respectively in Fig. 1 (a) and (b). The first process 
defines a sequence of states over time while the second represents a set of actions from 
a workflow being executed in time, where each individual action has a defined start and 
end time instants. The problem of simulating these two processes independently of each 
other is obvious. Each of them only represents a partial view of the problem. The 
physical dispersion simulation would not take into consideration the effects of 
contingency actions. Likewise, the elaboration of plans as mere workflows does not 
guarantee that the actions will have their preconditions for execution met and, even if 
executed, that they will produce the desired results. Again, one illustrative example 
would be a plan that contains one action for placing contention barriers for oil leaked 
into the sea without considering whether the teams will have the necessary time to do 
so. These processes represent partial views precisely because they only consider a 
subset of all the elements involved. 



 

 

 

 
Figure 1. (a) A cellular automaton process represented by a succession of 
states over time. (b) A workflow process represented by a set of actions in 
time. 

 Our approach for dealing with this problem is to integrate these isolated 
processes into a single simulation execution environment, even if they are expressed in 
different formalisms. Naturally, the simulation must consider all the interferences 
between them. In order to achieve this, it is necessary to provide a common high-level 
formalism capable of representing different kinds of processes, such as plans and 
physical simulations. Also, the simulation environment must be capable of executing 
interfering processes in parallel. 
 The most straightforward way to integrate a number of different processes in a 
simulation environment probably is to run all of them in parallel, propagating causality 
every time a process generates an event that will possibly affect another process. Fig. 2 
depicts two interfering processes being simulated in parallel. The sinuous arrows 
indicate causality being propagated between those processes. 

 
Figure 2. Two interfering processes being executed in parallel. 

 Three problems must be addressed to integrate processes of different natures. 
First, we need a common formalism which must be general enough to express the 
behavior of all individual processes as well as the interferences between them. Second, 
we need to map the formalisms in which the individual processes are described to this 
general formalism. Lastly, we need a simulation environment to execute all processes 
together. 



 

 

 

3.2. On the Process Definition Formalism 
Abstractly speaking, a process represents change in time. In the simulation field, a wide 
variety of formalisms to model change in time have been proposed. These formalisms 
may differ from each other even in the most fundamental aspects such as time 
representation. Some of them use a continuous numeric scale while others are restricted 
to discrete time values. They also differ with respect to how they represent changes in 
the world state with time. Again, some represent changes as discrete instantaneous 
events while others are able to represent continuous changes by means of differential 
equations. A complete discussion however is out of the scope of this work. Instead, we 
shall just point out that generality and the ability to integrate different formalisms is 
what is important to achieve our goals. Previous research about simulation formalisms 
have suggested that the discrete event approach has good potential for serving as the 
basis for integrating different simulation formalisms [Vangheluwe 2000, Zeigler et al. 
2000]. Therefore, the principles of the discrete event approach were used as basis for the 
formalism designed to describe processes in a general way. 
 Each process evolves in a continuous timeline in which instantaneous events 
cause changes to the internal state of the process. Additionally, a process can generate 
events that are sent to other processes that are coupled to it. The coupling structure is 
defined separately from the definition of the processes behavior, thus increasing 
modularity and reuse. The coupling structure is also dynamic and can be changed 
during the execution of the simulation. Changes made to the coupling structure are also 
instantaneous in time, so it can be treated in the same way as a regular event. 
 Another aspect that was included in the approach is the lifetime of a process. 
During the course of a simulation, new processes can be started and existing ones can 
finish their executions. Each process must have definite start and end times. A process 
can only alter the state of the world within its lifetime. In consonance with other types 
of changes in the simulation, the start of a new process and the finish of an active one 
are also treated in the same way as other instantaneous events. 
 In order to allow GIS-based simulation, a notion of a GIS environment is created 
as a spatio-temporal data repository which represents the physical world. It has a state 
that changes instantaneously at some points in time, as the simulation advances and new 
events alter some geographical feature. Fig. 3 shows two processes and their interaction 
with the GIS environment, as well as with each other. 

 
Figure 3. Two processes interacting with the GIS environment. 



 

 

 

 Because of the generality of the discrete event approach to simulation, it is 
usually possible to map other dynamic models into it [Zeigler 2000]. Discrete time 
models such as cellular automata, continuous models such as system dynamics and 
other hybrid approaches can be implemented on top of the discrete event approach  
[Vangheluwe 2000]. This makes it possible to reuse most models developed in the GIS 
field such as physical phenomena, social and economical behaviors and transportation, 
among others. The idea is to integrate all the relevant dynamic models into one 
synchronized set of processes and, on top of that, add some extra processes representing 
the business processes of an organization in that scenario. Then, it will be possible to 
the organization to foresee the effects of any given course of action. 

4. Mapping Workflows to Discrete Event Simulation Processes 
In this section, we describe in detail how to map workflow processes into a discrete-
event process formalism. This is relevant since workflows are the most common way to 
represent business processes, as mentioned before, and since we are particularly 
interested in how organizations may create action plans. It is out of the scope of this 
paper to discuss how other types of processes are mapped into the discrete event process 
formalism. 

4.1. Workflow Definition 
Since there are many different languages and representations for workflows, this section 
starts by describing the workflow definition used here. 
 A workflow defines a set of actions and a control flow which imposes 
restrictions on the order at which the actions should be executed. With respect to their 
control flow, workflow representations may differ from each other in some of the 
patterns they use. For the sake of simplicity, we shall consider only the basic patterns 
defined in [van der Aalst et al. 2003]. Those are sequence, parallel split, 
synchronization, exclusive choice and simple merge. Fig. 4 depicts these patterns.  
 Each basic pattern connects some preceding actions to some following actions. 
In Fig. 4, all preceding actions are represented as rectangles on the left side of each 
pattern and all following actions are placed on the right side. In some cases it makes 
sense to connect a pattern directly to another pattern instead of an action. However, 
considering a direct connection between two patterns, placing a dummy action between 
them will not alter the behavior of the process described by the workflow. In fact, the 
two will be equivalent. Therefore, it is enough to describe the behavior of the patterns 
considering that they are only connected to actions. Table 1 lists some of the 
characteristics of each basic pattern. 
 The number of preceding and following actions indicates the number of action 
connections each pattern may have. The trigger time indicates the condition upon which 
the pattern is triggered. Finally, the following activity describes which of the following 
actions should be started when the pattern is triggered. 
 



 

 

 

 
Figure 4. Basic workflow patterns. 

 
Table 1. Properties and behaviors of basic patterns. 

 
pattern number of 

preceding actions 
number of 

following actions 
trigger time following activity 

sequence 1 1 completion of 
preceding action 

start following 
action 

parallel split 1 n completion of 
preceding action 

start all following 
actions in parallel 

synchronization n 1 completion of all 
preceding actions 

start following 
action 

exclusive choice 1 2 (or n) completion of 
preceding action 

start one of the 
following actions 

simple merge n 1 completion of any 
preceding action 

start following 
action 

  
 Optionally, the parameters or inputs of the individual actions are also 
represented. Likewise, an action may also produce some data as output. That data could 
be consumed either by another action executed after it or by some conditional split 
operator in the control flow. Therefore, in order to represent action input and output, a 



 

 

 

data flow must also be represented. It is important to notice that the data flow does not 
follow the same paths as the control flow. However, it should obviously obey the 
ordering restrictions imposed by it since an action cannot consume output data from 
another action that has not yet been executed. 
 The simplest way to model the data flow is to define a set of variables that will 
compose the internal state of the workflow process. These variables are accessible by 
any action. Every time an action or a control operator needs some input data, it can get 
it from one or more variables. Whenever an action produces some data, it should store it 
in variables so that later actions can read it. Information stored in variables can also be 
used by exclusive choice operators to evaluate their conditions when they are triggered. 
Fig. 5 illustrates a workflow with the basic patterns and some variables. 

 
Figure 5. Workflow example with control and data flows. 

4.2. Workflow as a Simulation Process 
In our approach, we introduce a simulation process to represent the workflow, which we 
simply call the workflow process. This process will fork one individual action process 
every time it executes one action, as illustrated in Fig. 6. For that reason, the workflow 
process must be able to indicate the start time for each of its actions. Likewise, it needs 
to receive back the exact finish time of each action process so that the workflow can 
continue executing the next steps. 
 For any of the basic patterns, the start time of its following actions is given by a 
function that takes as input the trigger time of the pattern and, optionally, some values 
from variables. Actions that are not following actions of any pattern are started at the 
beginning of the workflow execution. When an action finishes its execution, it must 
inform the workflow process that it has finished by sending an event to it. That event 
may cause another pattern to trigger and so on until there are no more actions to 
execute. The finish time of the workflow process is the same as the finish time of its last 
executed action. The flow of all this timing information is illustrated in Fig. 6 as dotted 
arrows. As in the previous section, continuous arrows indicate the control flow and the 
dashed arrows indicate the data flow. 



 

 

 

 
Figure 6. Processes involved in the simulation of a workflow. 

Now that the processes to simulate a workflow are defined, we can combine 
them with processes of a different nature and consider how they interfere with each 
other. It is worth noting that the workflow variables could be updated by events sent by 
some process other than the action processes. This is actually a way for a process of a 
different nature to interfere with a workflow process. Likewise, an action process may 
send events to processes other than the workflow process, therefore interfering with 
them. 
 With the definitions presented in this section, it is possible to identify all the 
requirements of a workflow representation necessary to simulate a workflow together 
with other interfering processes. The requirements are summarized in the following list: 

• Provide all actions with typing information so that they can be associated 
with simulation processes. Some human-readable workflow representations 
define the information about what an action does textually. In order to allow 
automatic simulation, actions must be more strongly typed. Besides, some 
additional information may be needed providing more detail for enabling 
simulation. For example, describing the weather conditions as “low tide with 
south wind” may not be precise enough for a physical simulation. 

• Provide functions to specify the start time of actions and condition 
evaluation. As seen before, this is essential to simulate the situation correctly. 



 

 

 

• Provide a way to receive the end times of the actions. Specific events may be 
created for providing the workflow process with information about when its 
executed actions have finished their execution. 

• Provide the workflow process with all necessary information so that it can 
keep its variables up to date. By sending events to it, other processes may 
provide the workflow process with information it needs for correct simulation. 
 

5. Conclusion and Future Work 
The paper discusses aspects regarding the integration of different types of processes into 
a common simulation engine and, in particular, how to handle business processes 
described as workflows. In this sense, it presents the simulation process, describes a 
method for mapping a workflow into the simulation process and it identifies which 
information needs to be added to the workflow description to make it possible to 
simulate it.  

 In order to illustrate the ideas proposed, the aspects regarding management of an 
emergency situation are discussed. The discussion considered the differents processes 
involved with it and the use of computational simulation  to help manage the emergency 
situation and . Section 3 discussed the use of discrete event approach to simulation, 
which proved to be a good way of integrating different processes and Section 4 showed 
how to map workflows into the simulation processes. Finally, it is discussed what a 
workflow representation must provide in order to enable the engine to simulate it. 
 As for future work, one possibility is to consider other wofkflow patterns. 
Indeed, Section 4.1 considered only five patterns, whereas [van der Aalst 2003] defines 
another fifteen patterns. 
 Another interesting challenge is that some workflow representations allow the 
definition of sub-workflows in a hierarchical composition. The approach could be 
extended to simulate a workflow hierarchy. 
 The requirements listed in Section 4.2 provide a roadmap to add some 
simulation functionality to an existing BPM system. For example, the InfoPAE system 
features a workflow language called XPAE [Casanova et al. 2002] that facilitates 
defining action plans. However, the current version of the language is not able to 
consider the dynamic aspect of a real emergency. Extend the language with the 
requirements presented would be extremely valuable.   
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