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4Santa Catarina Electrical Central (CELESC)

Av Itamarati, 160 - 88034-900 - Florianópolis-SC, BRAZIL
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Abstract. This paper proposes a knowledge-based model to support spatial
and temporal analysis of complex networks in data warehouses. The proposed
model, inspired from geography, represents the dynamics of spatial elements in
the network. Ontologies, describing element classes from a domain, space par-
titions, and time periods, respectively, help to define dimensions of data marts
customized for specific analysis needs. This model has been implemented in
a prototypical framework, with a GUI supporting spatial OLAP and visualiza-
tion of the varying state of network portions in graphs and maps. It supports
the investigation of spatial and temporal patterns and tendencies, as has been
observed in an electricity distribution case study.

1. Introduction
On-Line Analytical Processing (OLAP) [Kimball and Ross 2002] in traditional data
warehouses (DW) organized according to the conventional multidimensional model can
only handle categoric dimensions and numeric measures [Inmon 2005]. On the other
hand, some studies show that around 80% of data are related to some spatial infor-
mation [Malinowski and Zimányi 2008]. GIS [Chang 2007] are also important to pro-
vide information for decision making purposes. The composition of these technolo-
gies, DW and GIS, can be useful for several applications, such as the spatial analysis of
bird migration, traffic behavior, and power grids [Malinowski and Zimányi 2008]. Spa-
tial data warehouses (SDW) [Bimonte et al. 2006, Escribano et al. 2007] try to reconcile
these two successful technologies. In SDW’s multi-dimensional and spatial data mod-
els [Damiani and Spaccapietra 2006, Malinowski and Zimányi 2008], spatial objects can
arise as members of dimensions (e.g., polygons representing states and cities) and as
measures of fact tables (e.g., geographic points where equipments are installed). Spatial
On-Line Analytical Processing (SOLAP) [Rivest et al. 2005] handle spatial elements in-
tegrated to the dimensional model, using a wide variety of operators and aggregation func-
tions for handling spatial objects [Ruiz and Times 2009], besides the traditional OLAP



operators and aggregation functions used to handle conventional data. It enables informa-
tion analysis using geographic features, where topological relations are used to filter and
aggregate conventional and spatial measures [Malinowski and Zimányi 2008].

However, current SDW technologies have limited means to handle complex net-
works of spatial elements (objects located in the space). Complex networks have been
used to model and analyze a wide variety of systems and phenomena, ranging from the
Internet and the social Web to traffic and power grids [Strogatz 2001, Newman 2003].
This paper proposes a model for handling complex network data in a SDW. This model
represents spatial elements, their functions, connections and dynamics as proposed by
[Santos 2008]. The forms of these elements are represented as geographic extensions.
Their functions are defined by concepts from domain ontologies. These concepts also
influence the measures that can be taken from the spatial elements taking part in a pro-
cess. The domain ontology, along with an ontology about spatial partitions and another
ontology about time periods, help to define the dimensions of data marts. We have built
a framework based on this model which has a knowledge-based graphical user interface
(GUI) for domain experts with basic TI skills to use SOLAP to analyze large amounts
of data from vast complex networks, and visualize the results in graphs and maps. The
facilities of this GUI include sliders for the user to track the temporal changes of mea-
sures of the state of spatial elements in the complex network (such as the load on energy
distribution equipments), according to absolute and cyclic time periods. These facilities
have been tested using a case study in the area of electricity distribution.

1.1. Related Work

Several SDW models have been proposed in the literature
[Damiani and Spaccapietra 2006, Malinowski and Zimányi 2008]. In addition to
conventional and spatial data, many applications involve the handling of historical series.
Representations of time have to take into account the granularity of the periods of time and
cycles of time [Malinowski and Zimányi 2008]. Thus, some multidimensional models
have been enriched with temporal [Mendelzon and Vaisman 2000, Moreno et al. 2009]
and spatio-temporal [Bertino et al. 2009, Golfarelli and Rizzi 2009] features, giving rise
to spatio-temporal data warehouses (STDW) [Savary et al. 2004]. However these models
do not consider spatial elements connected in a network.

Works about visualization of the state of complex networks, such as those pro-
posed for the analysis of power grids [Overbye et al. 2007, Moreno-Munoz et al. 2009],
on the other hand, do not provide systematic means like SOLAP for the analysis of
large volumes of spatial and temporal data from these networks. Other works address
the analysis and visualization of trajectories, in applications like the analysis of the traf-
fic [Braz et al. 2007, Leonardi et al. 2010], but they do not incorporate the topology of the
spatial network and precise measures of the state of network elements in the data model.

Dynamic networks of elements on earth have been addressed by geogra-
phy [Santos 2006, Santos 2008, Câmara et al. 2001]. In order to give a better understand-
ing of the complex relationships of geographical elements over time [Santos 2008] pro-
poses to model such elements with respect to four aspects: form, function, structure (con-
nections), and the processes that the connected elements participate. [Câmara et al. 2001]
suggests that future geographic information systems would use such ideas from the geog-



raphy, along with means for knowledge representation, such as ontologies, to cope with
dynamic systems in the space.

The remainder of this paper starts with a review of some foundations from geogra-
phy in Section 2. Section 3 describes the proposed model for handling data from complex
networks of spatial elements in data warehouses. Section 4 presents some information
analysis using the proposed knowledge-based model and GUI in a case study. Finally,
Section 5 enumerates the conclusions and future work.

2. The Geographic Space

The geographic space has such a complexity that it requires an analytical model that frag-
ments the totality of the objects and phenomena taking place in the space [Santos 2006].
A model for spatial analysis of networks of spatial elements connected or interacting with
each other is proposed [Santos 2008]. This model is based on descriptions of complex
spatial elements, their interrelations, and measures characterizing their state, according to
four aspects: form, function, structure, and process.

The form is the visible aspect of a spatial element in a given instant. It can be
influenced, though in an imperfect way, by the role of the spatial element in an informa-
tion analysis from a particular viewpoint. The form carries an idea of the purpose and
relevance of the spatial element, for performing one or more functions in a system.

The function is the action performed by or with the use of the spatial element.
It is what is expected to be executed by the spatial element with a given form. The
same form of a spatial element can have one or more functions, according to the context,
which includes the space and time where the element is inserted. This variation is the
consequence of constant changes in the physical environment and the society. Though
some forms can last for long periods, they can have new functions assigned to them.

The relationships between spatial elements, i.e., the components of the spatial
whole, results in the structure. The form-function pairs of the spatial elements can be
organized according to flows of relationships among elementary units and their significant
combinations [Perroux 1969].

The process, by its turn, is a continuous action developing towards some result,
which can only be apprehended in a spatio-temporal view [Santos 2008]. By analyzing
the process it can be possible to understand the patterns and trends in the evolution of the
structure, and the interactions among spatial elements to reach a given result.

The conceptualization of these aspects of the description of spatial elements and
their connections is necessary for a complete description of what happens in networks of
elements in the space as time goes on. It allows a concrete and precise interpretation of
the evolving processes in the geographical space [Santos 2008].

In the real world, the concepts for describing spatial elements are highly dependent
on the application domain. For example, the evolution of the traffic can be analyzed in
a mesh composed of highways, roads, streets, and other elements of transport networks.
On the other hand electricity distribution and consumption occur in networks composed of
power generation stations, wires, switches, voltage converters, and consumption meters,
among other equipments. However, the partitions of the space and the time periods used



for information analysis have many concepts that apply to a variety of domains. Thus, the
time and space conceptualizations necessary for information analysis can sometimes be
reused in different domains with some customization.

3. The Proposed Model
Our dimensional model for handling information from complex networks in spatial data
warehouses extends the model proposed in [Malinowski and Zimányi 2008]. It also relies
on ideas of [Santos 2008] and ontologies. Due to space limitations we abstract details of
the dimensional model in this paper. We show how our model organizes information of a
complex network of spatial elements and how it supports analysis of this information.

3.1. Complex Networks of Spatial Elements
A complex network in our model is represented as a directed graph G(V, E). Each vertex
v � V represents a spatial element. Each directed edge e � E represents a connection
from an element v to an element v0 (v, v0 � V ). Each vertex v � V has the form:

v = (�, �, P (v, t), N(v, t), S(v, t))
where:

• � is a set of forms of v (including spatial location in some coordinate system)1,
• � is a set of functions (roles) of v (functions can be defined by concepts in the

domain ontology and be associated with forms),
• P (v, t) : V ⇥ T � 2{V �v} is a function that gives the preceding elements of v in

the complex network in a given time period t � T ,
• N(v, t) : V ⇥ T � 2{V �v} is a function that gives the following elements of v in

the complex network in a given time period t � T , and
• S(v, t) : V ⇥ T � Rn, (n � N, n > 0) is a function that gives the values of a set

of n state variables of the spatial element v (each spatial element can be a complex
non-linear system with n state variables [Strogatz 2001]).

The time T is represented a sequence of periods of some duration (e.g., hour). The
complex network G has a connection e = (v, v0) � E from vertex v � V to vertex v0 � V
in a given time period t � T if and only if v0 � N(v, t) and v � P (v0, t). For simplicity we
only consider in this paper the dynamics of the internal states (S(v, t) varying in time) for
each v � V , but not the dynamics of the network topology. In other words, we consider
the set of network links E fixed, i.e., �v � V, t, t0 � T : P (v, t) = P (v, t0) � N(v, t) =
N(v, t0).

3.2. Linked Spatial Elements
Figure 1 illustrates the Complex GeoObjects representing spatial elements of complex net-
works in our model. The methods for accessing these objects cover the four aspects of the
geographic reality (form, function, structure and process) introduced by [Santos 2008].
The method getForm returns the form(s) of the object valid for the context provided as
argument. The context can include a geographic region (defined by a concept from the
Space Partitions Ontology), a time period (defined by a concept from the Time Periods
Ontology) and a scale. The set of returned forms varies with the context and the state of

1We intentionally avoid commitment to any standard for representing forms.



the object in the time period specified in the context. The method getFunction returns
one or more concepts from the domain ontology describing the function(s) of the object
in the context provided as argument. The methods previousObjects and nextObjects re-
turn the sets of objects representing previous and next elements in the complex network,
respectively. With these methods one can trace the structure of connected components of
the complex network. Finally, getValue, returns the value of an aggregate measure (e.g.,
maximum, minimum, average) of a variable of the internal state of the spatial object in
the context provided as argument. It enables the analysis of the processes occurring in the
complex network, by giving access to information about the time varying state of each
spatial element in the complex network.

Figure 1. Objects representing spatial elements of complex networks

3.3. Ontologies
The three ontologies referenced in Figure 1 describe the spatial elements and support
consolidated analysis of the state of different parts of the complex network along time.
Figures 2-a, 2-b and 3 present the top conceptualizations of these ontologies2. Analyt-
ical dimensions of data marts for addressing specific analysis needs can be specified as
views of these ontologies, i.e., extracts with selected concepts, instances and relation-
ships. These subsets constrain the data mart to some focus, avoiding a large, cumbersome
and inefficient analytical cube.

The Spatial Partitions Ontology and the Time Periods Ontology are more stable
in our model than the Domain Ontology, which describes and classifies specific domain

2These are just illustrative portions of the complete ontologies. Many concepts, semantic relationships
and all instances are omitted for simplicity and due to space limitation.

Figure 2. Fragments of ontologies used in the proposed model



concepts. Thus, the latter needs to be changed in order to support information analysis
for different application domains. The major concepts of the former ontologies, require
minor customizations for different domain. For example, the analysis of electric power
grids can use different regions and time periods (more related to social life) than those
used for the analysis of and environmental issues (more related to nature).

3.3.1. Spatial Partitions Ontology

Analysis of spatial information requires spatial knowledge, including:

• relationships between spatial partitions and between components of these parti-
tions (e.g., states, which composed of counties);

• homonyms, i.e., different entities referenced by the same name (e.g., Santa Cata-
rina referring to a Brazilian State or the island with the same name in that state);

• synonyms, i.e., alternative names referring to the same entity (e.g., Florianópolis,
Floripa or The Island of Magic referring to the capital of Santa Catarina State) .

The Spatial Partitions Ontology addresses all these issues. It describes hierarchies
of partitions of the space in land parcels that can be relevant for information analysis.
Land parcels can be countries, states, cities and other regions defined by some criteria
(e.g., relief, vegetation, economic and demographic issues). Figure 2-a shows that both
State and City are specializations of LandParcel, and that an instance of State is composed
of instances of City or, alternatively, by instances of Regional, another specialization of
LandParcel to divide the territory for energy distribution purposes. The Spatial Partitions
Ontology also includes instances of these concepts, containment relationships between in-
stances (e.g., Santa Catarina, the state, contains the city of Florianópolis) and synonyms.
Thus, it can be used as a gazetteer to identify and help to solve ambiguities.

3.3.2. Time Periods Ontology

Analysis of a complex network dynamics can refer to two major kinds of time intervals:

• linear time periods, which succeed each other in the calendar, such as specific
days, weeks, months and years;

• cyclic time periods, which repeat in cycles, such as daily periods (e.g., morning,
afternoon, evening and night) and yearly periods (e.g., the year seasons).

The Time Periods Ontology classifies and describes different kinds of time periods
used for information analysis. One user can be interested in analyzing the changing state
of portions of a complex network according to linear time (e.g., the evolution of a measure
as time goes on) or some cyclic time periods (e.g., the variation pattern of some measure
along the seasons or daily periods, considering all the recorded years or days). Figure 2-b
shows an extract of the ontology of time periods. This ontology addresses, among other
details, the classification on cyclic and absolute time periods, their relationships, and spa-
tial customization of certain time periods according to the geographic location (e.g., the
seasons of the year occur in different months in the northern and southern hemispheres).



3.3.3. Electricity Distribution Equipment Ontology

The Domain Ontology describes the hierarchy of classes of spatial elements. Concepts
of this ontology are used in our model to define the functions of the spatial elements,
according to domain specific knowledge. Figure 3 illustrates the high level class hierarchy
on domain ontology about components of an electrical distribution grid, used in our case
study. This ontology classifies the electricity distribution equipments according to their
function and voltage range.

Figure 3. Electrical grid equipments ontology

4. Case Study
The electricity distribution companies provide services for different categories of con-
sumers: residential, business, industrial and rural. The Brazilian Electricity Regulatory
Agency (ANEEL) imposes certain rules relative to the quality levels that must be observed
for these services. These rules force the companies to develop solutions to optimize their
operation and reach quality standards. The control of their activities, the planning of in-
vestments and the understanding of technical problems and limitations require the spatial
and temporal analysis of the performance of their network of electricity distribution as-
sets. The domain expert needs systematic ways to assess the temporal evolution of the
topology and the operation (level of load, number of faults) of the electricity network
equipments installed in the geographic space. The analysis of the behavior of these vari-
ables is fundamental for right and fast decision making.

4.1. Data Mart for Analyzing an Electricity Distribution Grid
Figure 4 presents the star schema of a data mart developed for the load analysis of the
power grid of an electricity distributor: Santa Catarina Electrical Central (CELESC). The
three analytical dimensions of this data mart, Space, Time, and Equipment are views of the
ontologies presented in section 3.3 specified for addressing some specific analysis needs
in this data mart. The levels of the dimension Space are specializations of the concept
Land Parcel: State, Regional (set of cities from a state under the same electricity distri-
bution manager), City and UrbanArea. The members of these levels have geographical
extents to represent the respective land parcels in maps. Some members are associated to
each other according to containment relationships (e.g., Florianópolis is a city of Santa
Catarina State). The level equipmentType of the dimensional Equipment has as mem-
bers the types of electricity distribution equipments described in the domain ontology of



Figure 4. DM schema for an electricity distribution grid

figure 3 and are associated according to the conceptualization defined in that ontology.
These equipments can be owned by CELESC or third parties, including consumers in
some cases. The fact table maintains the numeric measure LoadPercentage (the maxi-
mum, minimum or average load percentage for all the equipments installed in a certain
region during a time period) and the spatial measure Equipments (complex objects repre-
senting the equipments and measures of their state along time, as described in section 3).

4.2. Information Analysis

The model proposed in section 3 supports analysis of information from complex networks
on the geographic space using OLAP and tracing of the state of the interconnected com-
ponents of the network in different time periods. In the following we present some spatial
information analysis that can be done on this model, using the data mart illustrated in
figure 4 as a case study.

4.2.1. Spatial OLAP

The user can initiate his analysis of an extensive complex network by using SOLAP to
have an overview of the situation and investigate the consolidated state of the network in
different regions and time periods. SOLAP provide systematic means for doing informa-
tion analysis for strategic and tactic purposes, before going into operational details of the
network. Figure 5 illustrates the results of a sequence of drill-down operations applied to
the data mart illustrated in figure 4 to investigate the distribution of the maximum load
percentage of the capacity of the power grid across different regions. As the user identi-
fies the regions with high load he can drill-down into these regions to see zoomed-in maps
of the distribution of the load in their sub regions. Figure 5(a) shows the distribution of
the maximum load percentage of electricity distribution equipments across the cities in
the Florianópolis metropolitan area, Figure 5(b) shows details of the load in Tijucas, a
particularly loaded city, and Figure 5(c) shows the load on specific equipments installed
its urban area. These maximum loads are taken from the SDW measures S(v, t) of each
spatial element v contained in the corresponding region, with t = April 2010.

The calculus of the measure LoadPercentual presented in figure 5 for each spatial
element is based on the relation between the nominal power (kVA) and the energy de-
mand. The nominal power is obtained by summing the power supplied by the medium to



Figure 5. Drill-Down on regions to analyze the distribution of the load

low voltage transformers located in the each land parcel. The demand is derived from the
total energy consumption (kWh) measured in the consumption units. This estimation can
be done by using a statistic approximation function. The calculus of the measures follows
a sequence of steps for each land parcel3:

1. search for the lvsegments connected in each transformers and consumption units
located in the land parcel;

2. sum the nominal power of the transformers in the parcel;
3. sum the power consumed by the consumption units in the parcel, and derive the

maximum demand;
4. calculate the relation between the nominal power and the maximum demand.

4.2.2. Trace Analysis of the Network

The trace operation analyses the state of the connected spatial elements of portions of
the complex network in different time periods. In the case study of the electric energy
distribution it is possible to assess, for example, the energy flow across the equipments
installed in the geographic space. Figure 6 shows the evolution of the maximum load
of a major electrical energy feeder located in Florianópolis downtown. The user can
move the time slides under the graphic showing the variation of the overall load on the
feeder in different months (in the right side) in order to visualize the temporal evolution
of the distribution of the load in the map (in the left side), month by month. Figure 6(a)
shows the load in May 2009 and Figure 6(b) in December 2009. These graphs plotted by
following the function N(v, t) (next spatial element) for each equipment v, starting in the
Feeder Start Point for the respective month.

The maps presented in Figure 6 show an estimation of the maximum electrical
current flowing on each distribution equipment. This measure is calculated from an esti-
mation of the maximum demand on each equipment, using the formula:

I =
DEM

V ⇥ �
3

Where:
3We consider the time period fix in order to simplify the explanations. The measures can be aggregated

for different time periods as well.



Figure 6. Spatio-temporal analysis of the load in a power grid portion

I is the maximum current consumed (A);
DEM is the maximum estimated demand (kVA); and
V is the operation voltage (V).

The estimation of the demand on the equipments begins in the feeder start point,
where it is estimated using the total current injected in the circuit and the total energy
consumption. The demand for each other equipment in the same feeder is estimated
using the demand in the previous equipments (previous elements in the complex network)
and the consumption in the connected consumption units (leaves of the transitive closure
of following elements in the network).

Finally, some issues observed in Figure 6 deserve explanations:

• Outliers are due to error in the collection of basic measures such as the energy
consumption (from the consumer’s meters) and commercial losses due to factors
like the joule effect, and energy thieving.

• Some measures of energy consumption are higher than the energy injected in the
corresponding portion of the circuit, due to measurement faults and, sometimes,
due to modification in the topology of the power grid which are not communicated
to electricity supply company.

• The temporal analysis of the load enables the identification of some seasonal pat-
terns. The graphic in Figure 6 shows that the energy consumption is higher during
the summer (due to the high proportion of tourists in Florianópolis at this time
and the use of air conditioning) and that there has been a vegetative growth in the
energy consumption during the last two years.



5. Conclusions and Future Work
The knowledge-based model presented in this paper enables the representation and anal-
ysis of historical series of data about the state of interconnected elements of complex
networks in a spatial data warehouse. The measures about the state of the network compo-
nents are estimated and aggregated according to the network topology and a dimensional
schema. It supports the analysis of portions of the network using SOLAP, as well as trac-
ing the state of network portions. These analyses are oriented by analytical dimensions
like element types, space, and time, which can be derived from ontologies describing the
respective conceptualizations. Information visualization in graphs and maps facilitates
the identification of spatial and temporal patterns and tendencies.

Currently the proposed model is being tested using a case study in the area of
electricity distribution. Future work include: (i) improve the representation of the network
topology and dynamic states of the network elements, in order to efficiently store data and
process queries for information analysis; (ii) use data sampling from sensors installed in
different kinds of network elements to calibrate methods to estimate the distribution of
measures of the state of network elements in different time periods; (iii) develop and
test knowledge-based human-computer interfaces to help the users to specify the data
marts to address specific analysis needs; (iv) exploit inference techniques to help in the
specification of data marts and information analysis; and (v) test the proposed model for
analyzing information of complex networks in other domains, like the traffic.
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