

Using OGC Services to Interoperate Spatial Data Stored in

SQL and NoSQL Databases

Cláudio de Souza Baptista, Odilon Francisco de Lima Junior,

Maxwell Guimarães de Oliveira, Fabio Gomes de Andrade,

Tiago Eduardo da Silva, Carlos Eduardo Santos Pires

Laboratory of Information Systems – Computer Science Department

Federal University of Campina Grande (UFCG)

Av. Aprígio Veloso 882, Bloco CN, Bairro Universitário – 58.429-140

Campina Grande – PB – Brazil

{baptista, cesp}@dsc.ufcg.edu.br,

{odilonflj, maxmcz, fabiocefetpb, tiagoes}@gmail.com

Abstract. Spatially-enabled social networks like Twitter and Foursquare have

produced huge volumes of geo-referenced information which has been in

general stored in NoSQL databases. The need to bring together the entire

spectrum of geo-referenced information takes us to the traditional problem of

interoperability between SQL and NoSQL spatial databases. This paper

proposes a solution for the integration of geographic data stored in both SQL

and NoSQL databases using OGC WMS and WFS interoperability services.

Experiments conducted on PostgreSQL-PostGIS and CouchDB-GeoCouch

spatial databases have demonstrated that it is possible to submit queries using

the same syntax for SQL and NoSQL spatial databases in a simple and

transparent manner for the user’s application.

1 Introduction

Due to the large volume of data generated on the Internet today, new forms of data

storage and data processing are required. We are living in an era of social networks that

generate a huge amount of information. For instance, Twitter generates more than 12

Terabytes/day of information which needs to be stored for future reference. Such

information can be geocoded. Moreover, the Web 2.0 technology has given rise to

several location-based social network services, e.g. Foursquare, Gowalla, Whrrl, Loopt,

and Brightkite.

The traditional architectures of Database Management Systems (DBMS) for

storing structured data have proven inadequate to deal with this enormous volume of

data, known as big data. For these applications, NoSQL databases provide distributed

storage and indexing techniques using map/reduce functions [Dean and Ghemawat

2008]. However, the ubiquitous spatial dimension in data sets along with the popularity

of spatial applications and also the supporting devices for geo-referenced data gathering,

such as smartphones, GPS and cameras, have all contributed to an increase in this

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 61-72.

61

information volume. As a result, some NoSQL databases, such as CouchDB
1
 and

MongoDB
2
, provide support for spatial data.

There is still the pressing need to combine this volume of georeferenced

information that emerges from social networks like Twitter and Foursquare with the

traditional geo-referenced information, stored, for example, in SQL spatial databases or

in spatial data infrastructures. For instance, to view checkin or checkout data from a

particular group of users who are shopping within one kilometer buffer of a particular

street in the city. This problem involves interoperability between SQL spatial DBMS

such as PostgreSQL
3
 - PostGIS

4
 or Oracle Spatial

5
; and NoSQL spatial database, such

as CouchDB - GeoCouch
6
 or MongoDB. In other words, we are addressing a problem

of geographical data interoperability from highly heterogeneous information sources. At

least two strategies may be used to solve this problem. One of them would be to employ

a mediator-wrapper architecture [Wiederhold 1992], in which a wrapper would be

written to communicate with the NoSQL spatial database, and integrate all database

schemas into a common, single relational data schema.

The second strategy would be to implement OGC interoperability services
7

among spatial data, such as Web Map Service (WMS) and Web Feature Service (WFS)

on the NoSQL spatial database layer, so as to integrate it to the SQL spatial DBMS by

means of a map server; as for instance, GeoServer. This second solution allows any

client that implements the WMS and WFS services, for example, the OpenLayers, to

submit a query by using the same syntax for SQL and NoSQL spatial databases.

Given these two strategies, we have opted for the second one, which is our main

contribution in this paper. To the best of our knowledge, there has been no such NoSQL

and SQL spatial database integration using standard OGC web services so far.

Consequently, the main contributions of this paper include:

• the implementation of a service layer (OGC WMS and WFS) for the NoSQL

CouchDB-GeoCouch database;

• the design and implementation of an architecture to enable interoperability

between spatial data stored in SQL and NoSQL databases through OGC

services standards; and

• the implementation of a Web map viewer to deploy spatially-aware

applications using the proposed interoperable architecture.

1
 The Apache CouchDB Project, http://couchdb.apache.org/

2
 The MongoDB Official Website, http://www.mongodb.org/

3
 The PostgreSQL OpenSource Database, http://www.postgresql.org/

4
 The PostGIS support for geographic objects to PostgreSQL, http://postgis.refractions.net/

5
 The Oracle Spatial, http://www.oracle.com/technetwork/database/options/spatial/overview/introduction/index.html

6
 The GeoCouch – A Spatial index for CouchDB, https://github.com/couchbase/geocouch/

7
 OGC Interoperability Services, http://www.opengeospatial.org/

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 61-72.

62

The remaining of the paper is organized as follows: section 2 discusses related

work. Section 3 focuses on the proposed architecture. Section 4 addresses a case study

to validate the proposed ideas. Finally, section 5 concludes the paper and points out

further work to be undertaken.

2 Related Work

The integration of geographic data stored in different information sources constitutes an

old challenge for the geospatial data community; a challenge that has been extensively

approached in the literature. An important work was proposed by the project SANY

[Havlik et al. 2009]. In this project, a service was designed to provide a single point of

access to data spread across the various nodes of a network of sensors. However, this

service only supports data provided by the standard Sensor Observation Service
8
. On

the other hand, the ORCHESTRA project [Usländer 2007] describes a spatial data

infrastructure for risk management applications. The architecture used for its

implementation permits the addition of geographic data coming from different sources

of information. However, the data must be provided in the form of feature types

encapsulated in OGC web services so as to be associated with the infrastructure.

In recent years, the need to process and manage large volumes of data has called

for the implementation of effective alternatives to accommodate these tasks. This need

has contributed towards the popularization of cloud computing in the geospatial

domain. For instance, the map/reduce functions have been used to carry out a number of

tasks in the geographical domain, such as the generation of spatial indexes [Akdogan et

al. 2010] [Cary et al. 2009], query processing [Jardak et al. 2010], and prediction of

natural disasters [Hasenkamp et al. 2010]. However, none of these articles addresses the

need for providing the interoperability of their data sets with other existing data.

Moreover, a NoSQL database application to the geospatial domain was proposed

by [Miller et al. 2011]. In their work, spatial data are stored in a database implemented

in CouchDB. The approach is to use a two-tier architecture for retrieving data from

mobile devices. However, in that work there is no interoperability between SQL and

NoSQL spatial databases.

The increasing volume of data provided by some geographic data applications

has placed a great demand for new ways of storing and managing this kind of

information. Lately, these tasks are being addressed via NoSQL databases. Currently,

the data offered by this type of database can only be accessed through its native

interfaces, which limits access by users and its interoperability with data coming from

other platforms. This limitation reinforces the need for a service that allows geographic

data to be retrieved using open and standardized interfaces, for which no knowledge of

data storage is required.

8
 OGC Sensor Observation Service, http://www.opengeospatial.org/standards/sos/

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 61-72.

63

3 Proposed Architecture

This section describes the architecture used to solve the interoperability problem

addressed by this paper. The architecture of our system was developed on three layers:

application, service, and persistence. Figure 1 shows the proposed architecture.

Figure 1: Three-tier architecture for interoperability of spatial data stored in
SQL and NoSQL databases.

The application layer is responsible for the interaction between users and

services. In our prototype, we used GEO-STAT (Geographic Spatio-Temporal Analysis

Tool), a Web map viewer that we have developed (see component 1 of Figure 1). The

GEO-STAT tool is based on the Google Maps API, and it works with any server that

offers spatial data via WMS and WFS services. This tool provides components to

visualize spatial data and spatiotemporal data. It also allows the implementation of

spatial queries and the application of spatial filters. In addition, the tool offers an

intuitive interface for data mining, based on spatio-temporal clustering and association

rules, enabling the visualization of results through map layers. This makes possible, for

instance, the implementation of comparative studies between transactional and derived

data. Finally, GEO-STAT enables the immediate, practical and intuitive integration and

visualization of spatial data available on any publicly accessible server that offers WMS

and WFS services.

The service layer defines an interface of how certain features can be accessed by

the application layer. Our main contribution lies on this layer, through the

GeoCouchServices module, a spatial data server that implements WMS and WFS

services for the NoSQL GeoCouch database. By means of GeoCouchServices one can

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 61-72.

64

pose queries to a NoSQL database with the same syntax used to query a SQL database

in a simple and transparent manner (see Figure 1). The syntax is defined by WMS and

WFS standards. It is simple because only the service operations (e.g. GetCapabilities,

GetMap, and GetFeature) must be invoked in order to formulate both spatial and non-

spatial queries. Transparency to the user is obtained since these services work regardless

of the data sources (e.g. GeoServer, Map Server, and GeoCouchServices). It is

worthwhile mentioning that the proposed integration between SQL and NoSQL

databases is also applicable to non-spatial data.

The GeoCouchServices was developed according to the Model-View-Controller

(MVC) architectural pattern. Its purpose is to separate business logic from presentation

logic and from application flow control. Figure 2 shows the dependence relationships

and the architecture of the GeoCouchServices model (highlighted), component 2 of the

architecture, described in Figure 1, for service requests.

Figure 2: GeoCouchServices MVC architecture.

Upon receiving a request from the application layer, the controller of this service

analyzes the request and redirects it to its model responsible for carrying out the request.

The service first checks whether the attributes needed to meet the request have been

provided. In case a required attribute has not been provided, a service exception is

transmitted and a response is generated in the required format. Whatever the outcome,

the controller receives a response from the model and forwards the response to the

application layer.

For instance, when a GetMap request – including all its mandatory parameters –

is submitted, the GeoCouchServices forwards it to the WMS module. The WMS

module – via the Repository module – performs a Bounding Box search for the

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 61-72.

65

requested layer in GeoCouch which then returns a file in the GeoJSON format (an open

format for encoding a variety of geographic data structures). The Repository module

performs a parsing of the GeoJSON file, and transforms it into a collection of features.

This collection is then sent to the WMS module which generates the requested map.

Regarding the GeoCouchServices, versions 1.3.0 and 1.1.0 of the WMS and

WFS services were implemented, respectively. The implementation of the WMS

protocol included only the mandatory operations (GetCapabilities and GetMap). The

optional GetFeatureInfo operation is currently being developed. We have also

implemented the read-only WFS protocol, including the operations GetCapabilities,

DescribeFeatureType and GetFeature.

To implement the WMS and WFS services, we used the GeoTools library

[Turton 2008]. The Repository module is a component of the model responsible for

forwarding spatial queries to GeoCouch. It is also responsible for querying non-spatial

data in CouchDB; through the EKTORP library
9
.

At the persistence layer we used CouchDB-GeoCouch for NoSQL data. Despite

the possibility of manipulating spatial data in NoSQL with CouchDB and MongoDB,

we preferred the former because of the existence of a more complete API that supports

most types of existing spatial data.

CouchDB is a document-oriented schema free database. A database is stored as

a collection of documents JSON (JavaScript Object Notation), and all interaction is

performed entirely by using the HTTP protocol through a RESTful interface [Fielding

2000]. The data are indexed and searched by setting map-reduce views, similar to stored

procedures. A view consists of a map function and, optionally, of a reduce function.

In the proposed architecture, we used a spatial extension for CouchDB, called

GeoCouch. This architecture stores documents in the GeoJSON format. The GeoJSON
10

emerged as a simple pattern of spatial data format for the Web. This format can represent

the following geometric types: point, multipoint, line, multiline, polygon, and

multipolygon [Mische 2011].

4 Case Study

This section presents a case study aiming to validate the solution proposed in this paper.

Setup

We configured two servers; each providing WMS and WFS services. The first server

used a SQL database; while the second one used a NoSQL database. Both servers stored

spatial records about the Brazilian state of Paraíba, including all its 223 municipalities,

the highways that cross the state, and all fire outbreaks detected in the state in 2010. All

9
 EKTORP Library – Java API for CouchDB, http://code.google.com/p/ektorp/

10
 GeoJSON – JSON geometry and feature description, http://geojson.org/

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 61-72.

66

records are stored using the WGS84 projection. The records used are real-world data,

and were obtained from the Water Management Executive Agency of the State of

Paraíba (AESA) and from the National Institute for Space Research (INPE).

For the server that stores a SQL database, we have used the PostgreSQL 8.4

DBMS with a PostGIS spatial extension, version 1.5. In this server, OGC services were

made accessible via GeoServer 2.1.0 map server. For the server with a NoSQL

database, we have used the CouchDB database with a GeoCouch spatial extension made

available by the CouchBase 1.1 package. The OGC services were available from the

GeoCouchServices.

Based on this previously established design, we conducted two experiments for

the present case study. The goal of the first experiment was to observe the functionality

of the OGC requests made to the WMS and WFS services offered by

GeoCouchServices. The second experiment evaluated the possibility of interoperability

between spatial databases based on SQL and NoSQL.

Experiment 1: Checking OGC requests placed to WMS and WFS services

Functional tests were performed on the implemented GeoCouchServices accessing the

NoSQL server. The result set was compared to GeoServer in order to validate the

accuracy of our implementation. These tests aimed at exploring GetCapabilities and

GetMap requests from the WMS service; and GetFeature from WFS, through the use of

resources from both servers by means of the GEO-STAT map viewer.

Two servers were configured using the GEO-STAT environment: the server

based on GeoServer (SQL), and the other one based on GeoCouchServices (NoSQL).

At this stage, for each server, it was only necessary to define an identifying name (alias)

for the connection and to provide a way to access the server.

Once the connection configuration through GEO-STAT was established, it was

possible to add geospatial layers, and then run the required tests. On selecting a layer to

be displayed on the map, the GEO-STAT used the GetCapabilities request (WMS) to

return to the list of available layers. Figure 3(a) shows how layers are added using our

map viewer. The list of layers available is generated by the application using the

response from the GetCapabilities request. Figure 3(b) shows how a spatial filter may

be applied to the selected layers. It is possible to spatially filter all added layers in the

map (regardless of the source server) by applying a selection filter in to one of them,

e.g. filter by municipalities layer where cities with ‘uf’ attribute equals ‘PB’ (Paraíba),

and ‘name’ attribute equals ‘Santa Rita’.

Figure 4 shows a map containing the municipalities in the state of Paraíba (223

multipolygons); and the highways that cross the state (959 multilines). These data were

obtained using the GetMap request (WMS) sent to the GeoCouchServices.

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 61-72.

67

Figure 3: Some GEO-STAT forms to: a) add layers; b) apply a spatial filter to the
added layers.

Figure 4: Municipalities and highways in the state of Paraíba provided by the
GeoCouchServices using the GEO-STAT map viewer.

The exploitation of the GetFeature (WFS) request was also made possible

through the GEO-STAT viewer, which allows us to specify a query using its intuitive

graphical interface shown in Figure 3 (b).

Figure 5 shows the result of a query which inquires about all fires that happened

in the city of Santa Rita in 2010 (141 points). The data are received by the application

as a response of a GetFeature (WFS) request sent to the GeoCouchServices.

To perform this query we first added the layers MUNICIPALITIES and FIRES

from GeoCouchServices. Then we applied a spatial filter based on municipalities layer

(a)

(b)

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 61-72.

68

where the attribute name is equals to ‘Santa Rita’. The GEO-STAT viewer, through the

GetFeature request, receives all geometry from MUNICIPALITIES corresponding to

applied filter and, using again the GetFeature request, uses this received response to

request geometries from FIRES that spatially intersects with the geometry of the city of

Santa Rita.

Figure 5: Fires occurred in Santa Rita in 2010 viewed in GEO-STAT, using data
provided by the GeoCouchServices.

The comparative tests using the WMS and WFS requests showed that the

GeoCouchServices worked satisfactorily, and returned the information similar to

GeoServer, as it was expected.

Experiment 2: Evaluation of interoperability between the GeoCouchServices and

the GeoServer

To evaluate the interoperability between GeoCouchServices and the GeoServer, i.e., the

interoperability between spatial databases based on SQL and NoSQL, we posed queries

using WMS and WFS services so that these could access spatial data from both servers.

 Since our main goal is to analyze interoperability, we did some modifications

on the data stored in the servers. In the first server, based on SQL, we left available only

data related to municipalities and highways in the state of Paraiba. In the second server,

based on NoSQL, we left available only data about fire outbreaks.

Again we used the GEO-STAT viewer to carry out this assessment. From it, we

inserted into the map the MUNICIPALITIES and HIGHWAYS layers provided by the

GeoServer. Then we inserted into the same map the FIRES layer made available from

the GeoCouchServices. From this point onwards, we made the following spatial query:

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 61-72.

69

Show all fires detected in the city of Monteiro in 2010.

This query may be formulated in the same way as shown in Figure 3 (b). The

query is conducted by the GEO-STAT map viewer following two steps. In the first step,

the GEO-STAT retrieves along with the GeoServer the geometry and the corresponding

identifier of the city of Monteiro in the GML format. Afterwards, the GEO-STAT uses

the GetMap (WMS) request to apply the filter in the MUNICIPALITIES layer

providing the parameter ‘featureid’ in the request.

In the second step, the geometry that comes from the first step is used as a filter

for a new query sent to the GeoCouchServices, where information is requested on all

fires (geometries) that are inside the area represented by that geometry. Table 2 shows

the GetFeature request to GeoCouchServices with the geometry of the city of Monteiro

retrieved from GeoServer.

Table 2: GetFeature request to GeoCouchServices formed by data from GeoServer.

http://150.165.80.245:8080/geoservices/wfs?

 request=GetFeature&version=1.1.0&

 typeName=fires&outputFormat=GML3&

 FILTER=

<Filter xmlns="http://www.opengis.net/ogc"

 xmlns:gml="http://www.opengis.net/gml">

 <Intersects>

 <PropertyName>geometry</PropertyName>

 <gml:MultiSurface srsDimension="2"

 srsName="urn:x-ogc:def:crs:EPSG:4326">

 <gml:surfaceMember>

 <gml:Polygon>

 <gml:exterior>

 <gml:LinearRing>

 <gml:posList>

 -7.94818296 -37.34987508

 -7.945308 -37.34184996

 -7.94235897 -37.3172821

 -7.93552302 -37.31436

 -7.93376604 -37.30863384

 ...

 -7.94818296 -37.34987508

 </gml:posList>

 </gml:LinearRing>

 </gml:exterior>

 </gml:Polygon>

 </gml:surfaceMember>

 </gml:MultiSurface>

 </Intersects>

</Filter>

The response to this query is received by GEO-STAT in GML format. It

contains the geometries and corresponding identifiers (54 points). Then, a new GetMap

request with the ‘featureid’ parameter is sent to GeoCouchServices. The parameter

contains all the ids of geometries (fires) separated by commas. The result is shown in

Figure 6.

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 61-72.

70

We have successfully implemented interoperability between spatial databases

based on SQL and NoSQL in a simple and transparent manner for the user application,

satisfying, as a result, our case study and validating the proposed solution.

Figure 6: Fires occurred in Monteiro in 2010 using data provided by the
GeoCouchServices and the GeoServer.

5 Conclusion and Future Work

This paper proposed a solution that enables interoperability between geographic data

stored in SQL and NoSQL databases, using OGC WMS and WFS services.

The functional tests of requests to WMS and WFS services offered by NoSQL

server have showed that they work satisfactorily, returning information in much the

same way the GeoServer does. Additional tests have demonstrated that it is possible to

achieve interoperability between spatial databases based on SQL and NoSQL in a

simple and transparent way that will certainly help the user application.

There are at present many ongoing research issues related to the proposed

interoperability solution. An objective that will certainly be the focus of our future

endeavors will be to conduct experiments on the performance and scalability of services

delivered. Another important issue is related to how to add other NoSQL spatial

databases such as MongoDB to our architecture.

References

Akdogan, A., Demiryurek, U., Banaei-Kashani, F., and Shahabi, C. (2010). Voronoi-

based geospatial query processing with mapreduce. In Proceedings of the 2010 IEEE

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 61-72.

71

Second International Conference on Cloud Computing Technology and Science,

CLOUDCOM ’10, pages 9–16, Washington, DC, USA.

Cary, A., Sun, Z., Hristidis, V., and Rishe, N. (2009). Experiences on processing spatial

data with mapreduce. In Proceedings of the 21
st
 International Conference on

Scientific and Statistical Database Management, SSDBM 2009, pages 302–319,

Berlin, Heidelberg. Springer-Verlag.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data processing on large

clusters. Communications of the ACM, 51:107–113.

Fielding, R. T. (2000). Architectural styles and the design of network-based software

architectures. PhD thesis. University of California, Irvine, USA

Hasenkamp, D., Sim, A., Wehner, M., and Wu, K. (2010). Finding tropical cyclones on

a cloud computing cluster: Using parallel virtualization for large-scale climate

simulation analysis. In Proceedings of the IEEE 2
nd

 International Conference on

Cloud Computing Technology and Science, CLOUDCOM’10, pages 201–208,

Washington, DC, USA.

Havlik, D., Bleier, T., and Schimak, G. (2009). Sharing sensor data with sensors and

cascading sensor observation service. Sensors, 9(7):5493–5502.

Jardak, C., Riihijärvi, J., Oldewurtel, F., and Mähönen, P. (2010). Parallel processing of

data from very large-scale wireless sensor networks. In Proceedings of the 19
th

 ACM

International Symposium on High Performance Distributed Computing, HPDC ’10,

pages 787–794, New York, NY, USA. ACM.

Miller, M., Medak, D., and D., O. (2011). Two-tier architecture for web mapping with

nosql database couchdb. Geoinformatics Forum, pages 62–71.

Mische, V. (2011). CouchDB and GeoCouch. Erlang Factory Lite Munich,

http://www.erlang-factory.com/upload/presentations/359/geocouch-online.pdf.

Turton, I. (2008). Open Source Approaches in Spatial Data Handling. Chapter 8:

GeoTools. In Advances in Geographic Information Science 2, Springer Berlin

Heidelberg, pages 153–169.

Usländer, T. (2007). Reference model for the orchestra architecture. Available at:

http://portal.opengeospatial.org/files/?artifact_id=20300.

Wiederhold, G. (1992). Mediators in the architecture of future information systems.

Computer, 25:38–49.

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 61-72.

72

