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Abstract. Work on multiscale issues presents countless challenges that have
been long attacked by GIScience researchers. Most results either concentrate
on modeling or on data structures/database aspects. Solutions go either to-
wards generalization (and/or virtualization of distinct scales) or towards link-
ing entities of interest across scales. However, researchers seldom take into
account the fact that multiscale scenarios are increasingly constructed coop-
eratively, and require distinct perspectives of the world. The combination of
multiscale and multiple perspectives per scale constitutes what we call multi-
focus research. This paper presents our solution to these issues. It builds upon
a specific database version model – the multiversion MVBD – which has already
been successfully implemented in several geospatial scenarios, being extended
here to support multi-focus research.

1. Introduction
Geological societies, all over the world, are adopting the term ”Anthropocene” to desig-
nate a new geological epoch whose start coincides with the impact of human activities on
the Earth’s ecosystems and their dynamics.

The discussion on the Anthropocene shows a trend in multidisciplinary research
directly concerned with the issues raised in this paper – scientists increasingly need to
integrate results of research conducted under multiple foci and scales. Anthropocenic
research requires considering multiscale interactions – e.g., in climate change studies, this
may vary from the small granularity (e.g., a human) to the macro one (e.g., the Earth).
To exploit the evolution and interaction of such complex systems, research groups (and
disciplines) must consider distinct entities of study, submitted to particular time and space
dynamics. Multiscale research is not restricted to geographic phenomena; this paper,
however, will consider only two kinds of scales – temporal and geographic.

For such scenarios, one can no longer consider data heterogeneity alone, but also
the heterogeneity of processes that occur within and across scales.This is complicated by
the following: (a) there are distinct fields of knowledge involved (hence different data
collection methodologies, models and practices); and (b) the study of complex systems
requires complementary ways of analyzing a problem, looking at evidence at distinct
aggregation/generalization levels – a multi-focus approach. Since it is impossible to work
at all scales and representations at once, each group of scientists will focus on a given
(sub)problem and try to understand its complex processes. The set of analyses performed
under a given focus has implications on others. From now on, this paper will use the term
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”multi-focus” to refer to these problems, where a ”focus” is a perspective of a problem,
including data (and data representations), but also modeling, analysis and dynamics of the
spatio-temporal entities of interest, within and across scales.

This scenario opens a wide range of new problems to be investigated
[Longo et al. 2012]. This paper has chosen to concentrate on the following challenges:

• How can GIScience researchers provide support to research that is characterized
by the need to analyze data, models, processes and events at distinct space and
time scales, and represented at varying levels of detail?

• How to keep track of events as they percolate bottom-up, top-down and across
space, time and foci of interest?

• How to provide adequate management of these multi-focus multi-expertise sce-
narios and their evolution?

A good example of multi-focus Anthropocene research in a geographic context is
multimodal transportation. At a given granularity, engineers are interested in individual
vehicles, for which data are collected (e.g., itineraries). Other experts may store and
query trajectories, and associate semantics to stops. At a higher level, traffic planners
study trends - the individual vehicles disappear and the entities of study become clusters
of vehicles and/or traffic flow – e.g., [Medeiros et al. 2010]. A complementary focus
comes from climate research (e.g., floods cause major traffic disturbances) or political
upheavals. This can be generalized to several interacting granularity levels. In spite of
advances in transportation research, e.g., in moving objects, there are very few results in
representation and interaction of multiple foci.

Environmental changes present a different set of challenges to multi-focus work.
Studies consider a hierarchy of ecological levels, from community to ecosystem, to land-
scape, to a whole biome. Though ecosystems are often considered closed systems for
study purposes, the same does not apply to landscapes, e.g., they can include rivers that
run into (or out of) boundaries1. A landscape contains multiple habitats, vegetation types,
land uses, which are inter-related by many spatio-temporal relationships. And a study
may focus on vegetation patches, or in insect-plant interactions.

In agriculture – the case study in this paper – the focus varies from sensors to
satellites, analyzed under land use practices or crop strains and lifecycles. Each of the
disciplines involved has its own work practices, which require analyzing data at several
granularity levels; when all disciplines and data sets are put together, one is faced with a
highly heterogeneous set of data and processes that vary on space and time, and for which
there are no consensual storage, indexation, analysis or visualization procedures.

Previous work of ours in traffic management, agriculture and biodiversity brought
to light the limitations of present research on spatio-temporal information management,
when it comes to supporting multi-focus studies. As will be seen, our work combines
the main solution trends found in the literature, handling both data and processes in a
homogeneous way, expanding the paradigm of multiversion databases, under the model
of [Cellary and Jomier 1990]. We have recently extended it to support multiple spatial
scales [Longo et al. 2012], and here explore multiple foci and interactions across scales.

1Similar to studies in traffic in and out of a region...
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2. Related work
Research on multiscale data management involves state-of-the-art work in countless
fields. As pointed out in, for instance, [Spaccapietra et al. 2002], multiple cartographic
representations are just one example of the need for managing multiple scales. In cli-
mate change studies, or agriculture, for instance, a considerable amount of the data are
geospatial – e.g., human factors.

Present research on multiscale issues has several limitations in this broader sce-
nario. To start with, it is most frequently limited to vectorial data, whereas many domains,
including agriculture, require other kinds of representation and modeling (including raster
data) [Leibovicia and Jackson 2011]. Also, it is essentially concerned with the represen-
tation of geographic entities (in special at the cartographic level), while other kinds of
requirements must also be considered.

The example reported in [Benda et al. 2002], concerning riverine ecosystems, is
representative of challenges to be faced and which are not solved by research on spatio-
temporal data management. It shows that such ecosystems involve, among others, anal-
ysis of spatio-temporal data and processes on human activities (e.g., urbanization, agri-
cultural practices), on hydrologic properties (e.g., precipitation, flow routing), and on the
environment (e.g., vegetation and aquatic fauna). This, in turn, requires cooperation of (at
least) hydrologists, geomorphologists, social scientists and ecologists.

Literature on the management of spatio-temporal data and processes at multiple
scales concentrates on two directions: (a) generalization algorithms, which are mostly
geared towards handling multiple spatial scales via algorithmic processes; and (b) multi-
representation databases (MRDBs), which are geared towards data management at mul-
tiple spatial scales. These two approaches respectively correspond to Zhou and Jones’
[Zhou and Jones 2003] multi-representation spatial databases and linked multi-version
databases2. Most solutions, nevertheless, concentrate on spatial ”snapshots” at the same
time, and frequently do not consider evolution with time or focus variation.

Generalization-based solutions rely on the construction of virtual spatial scales
from a basic initial geographic scale - for instance, [Oosterom and Stoter 2010] in their
model mention that managing scales require ”zooming in and out”, operations usu-
ally associated with visualization (but not data management). Here, as pointed out
by [Zhou and Jones 2003], scale and spatial resolution are usually treated as one sin-
gle concept. Generalization itself is far from being a solved subject. As stressed by
[Buttenfield et al. 2010], for instance, effective multiscale representation requires that the
algorithm to be applied be tuned to a given region, e.g., due to landscape differences. Gen-
eralization solutions are more flexible than MRDBs, but require more computing time.

While generalization approaches compute multiple virtual scales, approaches
based on data structures rely on managing stored data. Options may vary from main-
taining separate databases (one for each scale) to using MRDBs.The latter concern data
structures to store and link different objects of several representation of the same entity
or phenomenon [Sarjakoski 2007]. They have been successfully reported in, for instance,
urban planning, or in the aggregation of large amounts of geospatial data and in cases that
applications require data in different levels of detail [Oosterom 2009, Gao et al. 2010,

2We point out that our definition of version is not the same as that of Zhou and Jones
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Parent et al. 2009]. The multiple representation work of [Oosterom and Stoter 2010]
comments on the possibility of storing the most detailed data and computing other scales
via generalization. This presents the advantage of preserving consistency across scales
(since all except for a basis are computed), but multiple foci cannot be considered.

The previous paragraphs discussed work that concentrates on spatial, and some-
times spatio-temporal issues3. Several authors have considered multiscale issues from a
conceptual formalization point of view, thus being able to come closer to our focus con-
cept. An example is [Spaccapietra et al. 2002], which considers classification and inher-
itance as useful conceptual constructs to conceive and manage multiple scales, including
multiple foci. The work of [Duce and Janowicz 2010] is concerned with multiple (hier-
archical) conceptualizations of the world, restricted to spatial administrative boundaries
(e.g., the concept of rivers in Spain or in Germany). While this is related to our problem
(as multi-focus studies also require multiple ontologies), it is restricted to ontology con-
struction. We, on the other hand, though also concerned with multiple conceptualizations
of geographic space, need to support many views at several scales – e.g., a given entity,
for the same administrative boundary, may play distinct roles, and be present or not.

We point out that the work of [Parent et al. 2006] concerning the MADS model,
though centered on conceptual issues concerning space, time and perspective (which has
similar points with our focus concept), also covers implementation issues in a spatio-
temporal database. Several implementation initiatives are reported. However, a perspec-
tive (focus) does not encompass several scales, and the authors do not concern themselves
with performance issues. Our extension to the MVBD approach, discussed next, covers
all these points, and allows managing both materialized and virtual data objects within
a single framework, encompassing both vector and raster data, and letting a focus cover
multiple spatial or temporal scales.

3. Case study

Let us briefly introduce our case study - agricultural monitoring. In this domain, phe-
nomena within a given region must be accompanied through time. Data to be monitored
include, for instance, temperature, rainfall, but also soil management practices, and even
crop responses to such practices. More complex scenarios combine these factors with
economic, transportation, or cultural factors.

Data need to be gathered at several spatial and temporal scales – e.g., from chem-
ical analysis on a farm’s crop every year, to sensor data every 10 minutes. Analyses are
conducted by distinct groups of experts, with multiple foci – agro-environmentalists will
look for impact on the environment, others will think of optimizing yield, and so on.

We restrict ourselves to two data sources, satellite images (typically, one image
every 10 days) and ground sensors, abstracting details on the actual data being produced.
From a high level perspective, both kinds of sources give origin to time series, since
they periodically produce data that are stored together with timestamps. We point out
that these series are very heterogeneous. Sensor (stream) series data are being studied
under distinct research perspectives, in particular data fusion and summarization e.g.,

3The notion of scale, more often than not, is associated with spatial resolution, and time plays a sec-
ondary role.
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[McGuire et al. 2011]. Some of these methods are specific for comparing entire time
series, while others can work with subsequences. Satellite images are seldom considered
under a time series perspective: data are collected less frequently, values are not atomic,
and processing algorithms are totally different – research on satellite image analysis is
conducted within remote sensing literature – e.g., [Xavier et al. 2006]. Our multi-focus
approach, however, can treat both kinds of data source homogenously.

Satellite time series are usually adopted to provide long-term monitoring, and to
predict yield; sensor time series are reserved for real time monitoring. However, data
from both sources must be combined to provide adequate monitoring. Such combinations
present many open problems. The standard, practical, solution is to aggregate sensor
data temporally (usually producing averages over a period of time), and then aggregate
them spatially. In the spatial aggregation, a local sensor network becomes a point, whose
value is the average of the temporal averages of each sensor in the network. Next, Voronoi
polygons are constructed, in which the ”content” of a polygon is this global average value.
Finally, these polygons can be combined with the contents of the images. Joint time series
evolution is not considered. Our solution, as will be seen, allows solving these issues
within the database itself.

4. Solving anthropocenic issues using MVDBs
Our solution is based on the Multiversion Database (MVDB) model, which will be
only introduced in an informal way. For more details the reader is referred to
[Cellary and Jomier 1990]. The solution is illustrated by considering the monitoring of
a farm within a given region, for which time-evolving data are: (a) satellite images
(database object S); (b) the farm’s boundaries (database object P), and (c) weather sta-
tions at several places in the region, with several sensors each (database object G).

4.1. Introducing MVBD
Intuitively, a given real world entity can correspond to many distinct digital items express-
ing, for example, its alternative representations, or capturing its different states along time.
Each of these ”expressions” will be treated in this work as a version of the object. Con-
sider the example illustrated in Figure 1. On the left, there are two identified database
objects: a satellite image (Obj S) and a polygon to be superimposed on the image (Obj
P). delimiting the boundaries of the farm to be monitored.

As illustrated by the table on the right of the figure, both objects can change along
time, reflecting changes in the world, e.g., a new satellite image will be periodically pro-
vided, or the boundaries of the farm can change. For each real world entity, instead of
considering that these are new database objects, such changes can be interpreted as many
versions of the same object4. This object has a single, unique, identifier – called an Object
Identifier Oid5.

A challenge when many interrelated objects have multiple versions is how to
group them coherently. For example, since the satellite image and the farm polygon
change along time, a given version of the satellite image from 12/05/2010 must be related
with a temporally compatible version of the farm polygon. This is the central focus of

4Here, both raster and vector representations are supported. An MVDB object is a database entity
5Oids are artificial constructs. The actual disambiguation of an object in the world is not an issue here
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the Multiversion Database (MVDB) model. It can handle multiple versions of an arbi-
trary number of objects, which are organized in database versions - DBVs. A DBV is a
logical construct. It represents an entire, consistent database constructed from a MVDB
which gathers together consistent versions of interrelated objects. Intuitively, it can be
interpreted as a complex view on a MVDB. However, as shall be seen, unlike standard
database views, DBVs are not constructed from queries.

Figure 1. Practical scenario of a polygon over a satellite image.

To handle the relation between an object and its versions, the MDBV distinguishes
their identifications by using object and physical identifiers respectively. Each object has
a single object identifier (Oid), which will be the same independently of its multiple
versions. Each version of this object, materialized in the database by a digital item – e.g.,
an image, a polygon etc. – will receive a distinct physical version identifier PVid. In the
example of Figure 1, there is a single Oid for each object – satellite image (Obj S) and
the farm boundaries (Obj P). Every time a new image or a new polygon is stored, it will
receive its own PVid.

DBVs are the means to manage the relationship between an Oid (say, S) and a
given PVid (of S). Figure 2 introduces a graphical illustration of the relationship among
these three elements: DBV, Oid and PVid. In the middle there are two DBVs identified
by DBVids – DBV 1 and DBV 1.1 – and represented as planes containing logical slices
(the ”views”) of the MVDB. The figure shows that each DBV has versions of P and S,
but each DBV is monoversion (i.e., it cannot contain two different versions of an object).
The right part of the figure shows the physical storage, in which there are two physical
versions of S (identified by Ph1 and Ph9), and just one version of P.

DBV 1 relates S with a specific satellite image and P with a specific polygon,
which form together a consistent version of the world. Notice that here nothing is being
said about temporal or spatial scales. For instance, the two satellite images can correspond
to images obtained by different sensors aboard the same satellite (e.g., heat sensor, water
sensor), and thus have the same timestamp. Alternatively, they can be images taken in
different days. The role of the DBV is to gather together compatible versions of its objects,
under whichever perspective applies.

Since DBVs are logical constructs, each object in a DBV has its own logical iden-
tifier. Figure 2 shows on the left an alternative tabular representation, in which DBVids
identify rows and Oids identify columns. Each pair (DBVid, Oid) identifies the logical
version of an object and is related to a single PVid, e.g., (DBV 1, ObjS)!Ph1. The
asterisk in cell (DBV 1.1, Obj P) means that the state of the object did not change
from DBV 1 to DBV 1.1, and therefore it will address the same physical identifier Ph
5.

Proceedings XIII GEOINFO, November 25-27, 2012, Campos do Jordão, Brazil. p 1-10.

6



Figure 2. The relationship between DBVs, logical and physical identifiers.

4.2. DBV Evolution and Traceability
DBVs can be constructed from scratch or from other DBVs6. The identifier of a DBV
(DBVid) indicates its derivation history. This is aligned to the idea that versions are not
necessarily related to time changes, affording alternative variations of the same source, as
well as multiple foci – see section 5.

The distinction between logical and physical identifications is explored by an
MVDB to provide storage efficiency. In most of the derivations, only a partial set of
objects will change in a new derived DBV. In this case, the MVDB has a strategy in
which it stores only the differences from the previous version. Returning to the example
presented in Figure 2 on the left table, DBV 1.1 is derived from DBV 1, by changing
the state of Obj S. Thus, a new PVid is stored for it, but the state of Obj P has not
changed – no new polygon is stored, and thus there is no new PVid.

The evolution of a DBV is recorded in a derivation tree of DBVids. To retrieve
the proper PVid for each (virtual) object in a DBV, the MVDB adopts two strategies:
provided and inferred references7, through navigation in the tree. This allows keeping
track of real world evolution. We take advantage of these concepts in our extension of the
MVDB model, implemented to support multiple spatial scales [Longo et al. 2012]. First,
we create one tree per spatial scales, and all trees grow and shrink together. Second, the
notion of object id is extended to associate the id with the scale in which that object exists
- (Oid, Scaleid). This paper extends this proposal in two directions: (1) we generalize
the notion of spatial scale to that of focus, where a given spatial or temporal scale can
accomodate multiple foci, and the evolution of these foci within a single derivation tree;
(2) we provide a detailed case study to illustrate the internals of our solution.

5. From Multiversion to Multi-focus
This paper extends the MVDB model to support the several flavors of multi-focus. This
implies in synthesizing the multiple foci which can be applied to objects – scales, rep-
resentations etc. – as specializations of versions. Figure 3 illustrates an example of this
extension. There are three perspectives within the logical view - see the Figure.

In the Physical perspective, there are three objects – two versions of satellite im-
age S (with identifiers Ph1 and Ph2), and one version of a set of sensor data streams,
corresponding to a set of weather stations G – global identifier Ph7). Satellite image and

6DBV derivation trees, part of the model, will not be presented here.
7For the logical version (DBV 1.1, Obj P), the reference will be inferred by traversing the chain of

derivations.
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sensor data are to be combined in Applications, which can only access DBVs (and not the
database). So, several DBVs are built, each of which corresponding to a distinct focus.
The arrows between DBV objects and stored objects appear whenever an object is copied
into a DBV, without any additional computation. In the figure, the DBV corresponding
to Focus 1 makes available the satellite image version Ph1 and all data from all weather
stations G. The DBV corresponding to Focus 2 makes available the satellite image version
Ph2, and computes a set of Voronoi polygons from the weather station data streams – the
resulting polygon is displayed in the figure with a dotted line to show that it is not directly
copied from the database, but is computed from it. Finally, DBV-Focus3 contains only
one image, which has been computed from DBV-Focus2.

Applications access these three DBVs in the following way. Application Scale
A is built from DBV-Focus2; it corresponds to a particular spatio-temporal focus of the
database, in which the image is directly extracted from the DBV, and a set of Voronoi
polygons is computed from the DBV. Application Scale B is built from DBV-Focus1; it
corresponds to another spatio-temporal focus of the database, in which the image and
the polygons are directly copied from the DBV. The third DBV is not being used by any
application.

Figure 3. Handling multiple foci.

Figure 3 reflects the following facts. First, DBVs can contain just objects that are
in the database, or computed objects, or a mix of both. Second, applications constructed
on top of the DBVs can use exactly the same objects (the one on Scale A directly uses
the same contents of DBV-Focus2), but also compute other objects (the polygon on Scale
B, computed from DBV-Focus1). Third, DBVs now can be interrelated by many kinds of
derivation operations.

In our case study, each application corresponds to one spatial scale (scale B
smaller than scale A), and sensor data are preprocessed either at the application, or by
the DBMS, to allow combination of these distinct data sources. DBV-Focus 3 is an ex-
ample of at least three possible scenarios: in one, S corresponds to an even smaller spatial
scale, for which sensor data do no longer make sense; in another, S is the result of combi-
nation of satellite image and sensor data; in the third, the focus is in some characteristics
of the satellite image, and sensor data can be ignored for the purposes of that DBV.

In order to support these kinds of DBV, the classical MVDB model was extended:
(i) we added more types of relationships between DBVs; (ii) we introduced the notion
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of scale to be part of an OID. In the classical MVDB the only relationship between two
DBVs is the derivation relationship, explained in the previous section. Our multi-focus
approach requires a wider set of relationships. Therefore, now the relationship between
two DBVs becomes typed: generalization, aggregation etc. This typing system is exten-
sible, affording new types. This requires that new information be stored concerning each
DBV, and that the semantics of each object be stored alongside the object, e.g., using
ontologies.

Returning to our example in Figure 3 consider an application that will access
the contents of S in DBV-Focus3. Since there is no explicit reference to it in the
DBV-Focus2, the only information is that the state of S in the third focus has been de-
rived in some kind of relationship with the state of S in the second DBV. Let us consider
that this is a generalization relationship, i.e., the state of S in the third DBV is a carto-
graphic generalization of the state of S in the DBV-Focus2. In order to use this logical
version of S in an application, the construction of DBV-Focus3 will require an algorithm
that will: (1) verify that the type of the relationship is generalization; therefore, Smust be
transformed to the proper scale; (2) check the semantics of S, verifying that it is a satellite
image, and therefore generalization concerns image processing, and scaling.

6. Conclusions and ongoing work
This paper presents our approach to handling multi-focus problems, for geospatial data,
based on adapting the MDBV (multiversion database) approach to handle not only mul-
tiple scales, but multiple foci at each scale. Most approaches in the geospatial field con-
centrate on the management of multiple spatial or temporal scales (either by computing
additional scales via generalization, or keeping track of all scales within a database via
link mechanisms). Our solution encompasses both kinds of approach in a single environ-
ment, where an ad hoc working scenario (the focus) can be built either by getting together
consistent spatio-temporal versions of geospatial entities, or by computing the appropriate
states, or a combination of both. Since a DBV can be seen as a consistent view of the mul-
tiversion database, our approach also supports construction of any kind of arbitrary work
scenarios, thereby allowing cooperative work. Moreover, derivation trees allow keeping
track of the evolution of objects as they are updated, appear or disappear across scales.

Our ongoing work follows several directions. One of them includes domain on-
tologies, to support communication among experts and interactions across levels and foci.
We are also concerned with formalizing constraints across DBVs (and thus across scales
and foci).
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