
Fast Spatially Coupled Bayesian Linearized Acoustic Seismic
Inversion in Time Domain

Fernando Bordignon1, Leandro Figueiredo2, Mauro Roisenberg1, Bruno B. Rodrigues 3

1Instituto de Informática e Estatı́stica
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Petróleo Brasileiro SA - PETROBRAS

{bordi,mauro}@inf.ufsc.br

Abstract. Bayesian methods for seismic inversion assume multi-Gaussian dis-
tributions for the variables involved and can apply a linearization to the forward
model to offer a mathematically tractable solution and uncertainty analysis. Re-
sults of the maximum a posteriori are robust, produced fast and have a high syn-
thetic to real seismic correlation. The drawbacks of this inversion method are
related to the lack of spatial continuity patterns, when the solution is computed
trace-by-trace. This work proposes a methodology to tackle the scalability prob-
lem of the Bayesian linearized inversion when adding spatial continuity in the
time domain. A sliding window and a manipulation of the equations are used to
solve the problem locally and avoid boundary effects.

1. Introduction
Acoustic seismic inversion aims to infer the acoustic impedance property of the Earth’s
subsurface via recorded seismic reflection data. It plays a key role in hydrocar-
bons reservoir modeling and characterization, and it is an ill-posed, nonlinear inverse
problem [Tarantola 2005]. Despite its nonlinearity and ambiguousness, methodologies
that linearizes the problem were proposed in the last decades [Buland and Omre 2003,
Figueiredo et al. 2014]. The methodology results that are comparable to commer-
cial software and is broadly used in the industry nowadays [Figueiredo et al. 2014,
Grana and Della Rossa 2010].

The linearized Bayesian acoustic inversion uses a framework based on the Bayes
rule and assumes log-normal distributions for the acoustic impedance and normal distri-
bution for the error term of the seismic data. The solution is computed fast in the time
domain if done trace-by-trace, because one can reuse calculations when the area of inter-
est have stationary covariances. Performing the inversion trace-by-trace limits the spatial
coupling of the results because no horizontal correlation is imposed, inheriting the conti-
nuity solely from the seismic data [Buland et al. 2003].

To impose lateral continuity into the solution, it is necessary to define a model
covariance matrix that is n ⇥ n being n the number of cells in the area of interest. This
leads to an exponential complexity on n, i.e. O(n3

), which makes the process impractical
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due to the amount of memory needed to process big volumes of seismic data. To overcome
this issue, [Buland et al. 2003] proposes an inversion in the frequency domain, lowering
the complexity to O(n log n).

This paper proposes a moving window technique to account only for the neigh-
boring seismic traces while imposing lateral continuity, overcoming the border effects by
using a sliding window that inverts only the central trace at a time. The algorithm exe-
cution time is highly dependent on the window size but it is of linear complexity on the
number of inversion cells, i.e. O(n). Two applications examples are shown comparing
the trace-by-trace inversion with the proposed method. The run time of the proposal is
acceptable, exhibiting up to a tenfold increase in run time compared to the trace-by-trace
method for the studied cases, in addition to the algorithm being easy to implement.

2. Bayesian Linearized Inversion
In the discrete domain, the seismic data d is given from its relation to the reflectivity r
by:

d = Sr + e (1)

where S is the convolutional matrix constructed with a known wavelet. The relation
between the reflectivity and the impedance z is given by:

r(t) =
z(t+ �t)� z(t)

z(t+ �t) + z(t)
(2)

With the reflectivity smaller than 0.3, the relation above can be approximated by
[Stolt and Weglein 1985]:

r(t) =
1

2

� ln(z(t)) (3)

If we consider the model vector to be log-normal, e.g. m = ln(z), and the differ-
ential matrix D, the relationship between the seismic and the acoustic impedance is given
by the linear operator G =

1
2
SD plus a white noise error term e as follows:

d = Gm + e (4)

The Gaussian likelihoods between the seismic data and the model parameters are
written as in the following equations:

p(d|µd,⌃d) = N(µd,⌃d), (5)

p(m|µm,⌃m) = N(µm,⌃m), (6)

where µd = Gm, ⌃d the covariance matrix of the seismic, µm the low frequency model
(LFM) and ⌃m the covariance matrix for the model parameters, e.g. defined by an normal
decaying correlation neighborhood as in [Figueiredo et al. 2014]:
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where L is the desired correlation distance and ⌫
t,t

0 is then multiplied by the variance to
obtain the covariance.

Making use of this Bayesian linearized framework, the posterior distribution is
written according to:

p(m|d, s, µ
m

, �2
d

, �2
m

) / p(d|s,m, �2
d

)p(m|µ
m

, �2
m

) (8)

where s is the wavelet and �2
d

and �2
m

are seismic and model variances respectively.

The posterior mean and covariance matrix are given by [Figueiredo et al. 2014]:
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where the mean is also referred to as maximum a posteriori (MAP), as the mean of a
multivariate normal distribution is the most likely values of the vector, or the vector values
with the highest likelihood.

The methodology presented is to invert a 3D seismic cube in a trace-by-trace man-
ner. In this case, nothing but vertical correlations are imposed to the results, allowing
horizontal continuity to be derived from seismic data alone. When performing the trace-
by-trace inversion, one can reuse the computation of the matrix inversion in Equation (9)
for an area with similar covariances, reducing the computational cost to a matrix inver-
sion, sized according to the number of vertical samples, and matrix-vector products for
each trace.

It is possible to invert all the 3D region of interest at once, defining a model co-
variance matrix ⌃

m

that imposes correlations in every desired direction. A drawback of
this approach is the quadratic growth of the covariance matrices, as the number of cells to
be inverted grows, which then propagates its size to the matrix inversion in Equations (9)
and (10) yielding an exponential computational complexity, i.e. O(n3

).

Results of the trace-by-trace method are reported to be robust and can be consid-
ered a smooth representation of the subsurface properties of interest. The procedure is
easy to implement and faster compared to commercial available software whereas pro-
ducing similar impedance models [Figueiredo et al. 2014]. Although the methodology
does not have the practical ability to model complex spatial continuities, it is suitable for
an expeditious inversion used for interpretation or simpler purposes.

3. Fast Bayesian Linearized Inversion with Spatial Coupling
The Bayesian inversion methodology presented is the solution to a linear problem in the
form x = Ay + b, where x is the acoustic impedance, A = ⌃

m

GT

(G⌃

m

GT

+⌃

d

)

�1,
y = (d

o

�Gµ
m

) and b = µ
m

.

Adding spatial coupling, as the problem is linearized, does not change the form
of the solution. The spatial coupling is added via a linear function of the y vector. In
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other words, A gets bigger and more complicated but it is still a linear operator over y.
As the area of interest grows, A becomes even more sparse. This effect is due to the
correlation length being limited to the nearest neighbours, i.e. the solution of the problem
only depends on the samples that are in a close horizontal vicinity, having very little
relation to distant samples.

Using the Equation 7 to define horizontal correlation, the sparsity of the matrix A
is notable for L = 2. At the fourth horizontal index away from the diagonal, i.e. t�t0 = 4,
the covariance is already 50 times smaller than the diagonal. Therefore, it is reasonable
to truncate the horizontal covariance at two times the L distance in this case.

To implement a linear complexity inversion methodology we explore the linearity
of the solution and use a truncation of the lateral continuity model. Assume the goal is
to invert a 3D grid with coordinates G 2 Z3 where |G| = n = ijk, being i the number
of cells in x direction, j the number of cells in y direction and k the number of cells in
time t. Assume a contiguous window W ⇢ G where |W | = w2k being w the size of the
window both in x and y directions with w < i and w < j.

Following, the problem is fully defined as we would invert only the traces inside
the 3D window W , i.e. we define the covariance matrices and stack the seismic traces and
LFM traces in its respective vectors d

o

and µ
m

. Accordingly, the covariance matrices will
have size w2k⇥w2k. Next, a new covariance matrix ⌃

0
m

is defined using only the lines of
⌃

m

correspondent to the central trace of W , i.e. only the lines relative to the coordinates
(dw

2 e, d
w

2 e, t)8t 2 k are selected from ⌃

m

to compose ⌃

0
m

.

Finally a operator is computed with a modified Equation 9 as follows:

O = ⌃

0
m

GT

(G⌃

m

GT

+⌃

d

)

�1 (11)

The matrix O has k lines and w2k columns, which when multiplied by
(d

o

�Gµ
m

), defined with all samples inside the window W , gives the impedance so-
lution for the central trace of the window. The window is then slided to the next x or y
coordinate of the 3D grid by 1 index, overlapping most of the samples with the previous
window. The O operator is applied again to compute the next central impedance trace of
the window, wich is 1 index far from the previous central trace. The steps are repeated
for every possible window in coordinates of the 3D grid G. The central traces are saved
to compose the final solution to the problem. Figure 1 shows the graphic representation
of the sliding window inside the 3D grid with its central trace at a (x, y) plane.

The truncation of O can also be applied at the vertical direction so that theoreti-
cally the algorithm will have O(n) complexity. But, for most cases, the size k of the 3D
grid is limited to a maximum of 1000 samples. Therefore, the procedure described above
is of complexity O(n) if k is considered a constant, i.e. the growth of n is mainly due to
the growth of i and j.

4. Application Examples
In this section two datasets were used to compare the results of the inversion with om-
nidirectional correlation, also called spatially coupled inversion or coupled inversion for
short, against the trace-by-trace inversion.
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Figure 1. Graphic representation of the sliding window at the 3D grid

4.1. Synthetic Dataset

The first experiment was conducted on a synthetic dataset with 101⇥ 101⇥ 90 cells. The
seismic data has no noise, hence a trace-by-trace inversion of the original data is used as a
gold standard for the inversion. A white noise with amplitude of 10% of the seismic data
RMS value was added to the seismic data, therefore it is possible to compare the trace-by-
trace inversion with the coupled inversion, evidentiating the lateral continuity imposed.
Figure 2 depicts a vertical section of the trace-by-trace inversion with the original noise
free seismic data.

For this case, the correlation distance L was set to 1.3 in all directions. A constant
low frequency model was used with 13000g/cm3m/s for all cell nodes. A previously
extracted wavelet was provided by geophysicists. The model variance �2

m

from Equation
7 was set to 0.0077 which was extracted from the logarithm of the high-pass filtered
impedance well logs (cutoff frequency of 8Hz). The seismic variance �2

d

was set to 10%

of the seismic data RMS value. The window W was defined as being of size 5 ⇥ 5 ⇥ 90

for the inversion with horizontal correlation.

The trace-by-trace inversion took 2 seconds to run and yielded a synthetic to real
seismic correlation coefficient of 0.99. Figure 3 shows a vertical section of the trace-by-
trace inversion of the noisy seismic data. Notice the vertical stripes of noise that appear
due to the lack of lateral coupling of the results.

The coupled inversion took 18 seconds to run for the entire grid, yielding a syn-
thetic to real seismic correlation coefficient of 0.99. The impedance results are shown at
Figure 4. As a result of spatial coupling, some noise is filtered and it is possible to see the
improvement at the definition of the deepest layer at around the time index 80, which is
now smoother and has more contrast compared to the trace-by-trace inversion.
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Figure 2. Impedance result from trace-by-trace inversion without noise for the
synthetic dataset

Figure 3. Impedance result from trace-by-trace inversion with noise for the syn-
thetic dataset
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Figure 4. Impedance result from the coupled inversion for the synthetic dataset

4.2. Real case application

For this case, a real dataset was used that has a relatively high signal to noise ratio. A
2D arbitrary line that passes through the 4 wells was selected for the inversion. The
section has 707 traces with 250 time samples each. The window W has size 5 ⇥ 250

because the inversion is 2D. The trace-by-trace inversion took 0.6 seconds to execute,
while the coupled inversion 2.2 seconds. The acoustic impedance result of the trace-by-
trace inversion is shown at Figure 5.

Figure 5. Impedance result from trace-by-trace inversion with noise for the real
dataset
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In this case it is possible to notice some noise throughout the section, specially at
the upper right part. Note that the vertical continuity is present, while at the noisy areas
there are abrupt discontinuities in the horizontal direction, indicating noise still left on the
data.

The coupled inversion result is depicted at Figure 6. In this case the horizontal
continuity is present, as it is possible to see mainly at the upper right area of the section.

Figure 6. Impedance result from the coupled inversion for the real dataset

To better demonstrate the horizontal correlation imposed on the results, a high
pass filter with cutoff frequency of 8Hz was applied vertically to the results and the
autocorrelation function was calculated for a horizontal line in both cases. The filtering
was applied to remove the low frequency provided by the low frequency model, leaving
only the higher frequencies provided by the seismic data, containing noise and signal, to
be examined by the autocorrelation function. Figure 7 shows both sample autocorrelation
functions.

As expected, the coupled inversion has a greater correlation distance due to higher
correlation at the near lags, reducing slowly until lag 25 while the trace-by-trace inversion
has lower correlations and goes to near zero at lag number 15.

5. Discussion
The proposed methodology adds spatial coupling to the impedance results of the seismic
inversion via a simple manipulation of the inversion operator. This manipulation was
possible because of the linear nature in which the problem was casted and its solution.
The assumptions are the same as in [Buland et al. 2003], which is a stationary prior model
for all traces in the 3D model. The boundary effects cited by the same authors are now
treated, as the sliding operator proposed in this paper explores the linearity and sparsity
of the solution.
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(a) Autocorrelation function for the coupled in-
version

(b) Autocorrelation function for the trace-by-
trace inversion

Figure 7. Autocorrelation of a horizontal 1D line at t = 150

The main reason why the proposal works is that, even when coupling all cell
nodes at once, the correlations imposed comes from a linear operator on the seismic data.
Hence, the result is mathematically independent from the neighbor impedance traces, in
other words, the resulting spatial coupling is the result of a linear filter applied to the
seismic data.

Another positive effect observed in this proposal is the coupling of samples at
greater distances than the window size w, which is evidentiated by having correlations up
until lag 25 with a window size of 5, shown at Figure 7.

6. Conclusion

In this paper we presented a simple technique for spatially coupled acoustic seismic in-
version in the time domain, which has linear computation time, i.e. O(n) on the number
of cells to be inverted. The two test cases showed the addition of spatial coupling without
any boundary effects. The proposed technique has a time overhead compared to the trace-
by-trace inversion that is a constant which depends on the window size. The window size
is determined based on the correlation distance L, in a similar way in which is defined the
search radius of kriging algorithms [Caers 2011].

The proposal can be further optimized if the vertical sparsity of the solution is
explored. In the cases studied, the vertical number of cells was not enough to justify the
truncation of the operator in t. Considering that the vertical dependency of samples are
larger vertically due to the effect of the wavelet.
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