
Exact intersection of 3D geometric models
Salles V. G. de Magalhães 1,2, Marcus V. A. Andrade 1,

W. Randolph Franklin2, Wenli Li2, Maurı́cio G. Gruppi 1

1Departamento de Informática – Universidade Federal de Viçosa (UFV)
Viçosa – MG – Brazil

2Rensselaer Polytechnic Institute (RPI), Troy – NY – USA

{salles,marcus,mauricio.gruppi}@ufv.br, mail@wrfranklin.org,
liw9@rpi.edu

Abstract. We present 3D-EPUG-OVERLAY, an exact algorithm for computing
the intersection of two 3D triangulated meshes. This is useful in GIS and CAD.
3D-EPUG-OVERLAY has several innovations, including the use of exact ra-
tional arithmetic to avoid floating roundoff errors and the ensuing topological
impossibilities. It also uses a uniform grid to efficiently index the geometric data.
3D-EPUG-OVERLAY was designed to be easily parallelizable. We are now in-
corporating Simulation of Simplicity, to correctly handle geometric degeneracies
(coincidences). Our current implementation can easily process examples with
millions of triangles.

1. Introduction
Computing intersections or overlays is important to CAD, GIS, computer games and
computational geometry. E.g., in 2D, consider two maps A and B, each composed of faces
or polygons representing a partition of the E2 plane. The overlay of A with B is a map
C where each polygon of C is the intersection of a polygon of A with a polygon of B.
For example, if A represents the coterminous states of the United States, and B represents
drainage basins, then C is a new map where each polygon represents the part of each basin
that is in each state.

While GIS usually deal with 2D geometric data, there are several applications
for 3D GIS. For example, while a 2D map could model the street network of a city, the
hydrological network of a state, or the different kinds of soil in a region, a 3D model
could model more complex features such as layers of soil in a mine, the subway tunnels
in a city, the buildings in region, etc Yanbing et al. (2007). Computing intersections is
an important operation often required by these systems. An example of application is to
intersect polyhedra representing layers of soil with a polyhedron representing a section of
the soil to be digged in a mine. The resulting intersection represents the different kinds of
soil that will be extracted during the excavation.

According to Feito et al. (2013), although 3D models have been widely used,
processing is still a challenge. Due to the algorithm complexity caused by the need to
handle special cases, the necessity of processing big volumes of data, and the loss if
precision problems caused by floating point arithmetic, they note that software packages
occasionally “fail to give a correct result, or they refuse to give a result at all”. The
likelihood of failure increases as datasets get bigger.

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

44

An algorithm that occasionally fails might be acceptable. Nevertheless, an efficient,
robust, and even exact, algorithm is especially important when it is a subroutine of another
algorithm.

Hachenberger et al. (2007) presented, and CGAL (2016) implemented, an algorithm
for computing the exact intersection of Nef polyhedra. A Nef polyhedron is a finite sequence
of complement and intersection operations on half-spaces. However, according to Leconte
et al. (2010), these algorithms have some limitations such as poor performance. Another
limitation is their use of Nef Polyhedra, which are uncommon. Bernstein and Fussell (2009)
also presented an intersection algorithm that tries to achieve robustness. Their basic idea is
to represent the polyhedra using binary space partitioning (BSP) trees with fixed-precision
coordinates. They mention that the main limitation is that the process to convert BSPs to
widely used representations (such as meshes) is slow and inexact.

In previous works we have developed exact and efficient algorithms for processing
2D (polygonal maps) and 3D models (triangulated meshes). More specifically, we have
developed algorithms for intersecting polygonal maps (Magalhães et al., 2015) and per-
forming point location queries (Magalhães et al., 2016) in both polygonal maps and 3D
meshes. These algorithms employ a combination of five separate techniques to achieve
both robustness and efficiency. Exact arithmetic is employed to completely avoid errors
caused by floating point numbers. Special cases (geometric degeneracies) are treated us-
ing Simulation of Simplicity (SoS) (Edelsbrunner and Mücke, 1990). The computation is
performed using simple local information to make the algorithm easily parallelizable and
to easily ensure robustness. Efficient indexing techniques with a uniform grid, and High
Performance Computing (HPC) are used to mitigate the overhead of exact arithmetic.

In all these algorithms our spatial data is represented using simple topological
formats. The 2D maps are represented using sets of oriented edges where each edge
contains the labels of the polygons on its positive and negative sides. In 3D, the meshes
are represented using a set of oriented triangles and each triangle has the labels of the
polyhedra on its positive and negative sides.

In this paper we will present a brief description of these previous works and present
our current research: 3D-EPUG-OVERLAY (3D-Exact Parallel Uniform Grid-Overlay), a
parallel algorithm for exactly intersecting 3D triangulated meshes.

2. Roundoff errors
Non-integer numbers are usually approximated with floating-point values. The difference
between a non-integer and its approximation is often referred as roundoff error. Even
though these differences are usually small, arithmetic operations frequently create more
errors, which accumulate, becoming larger.

In geometry, roundoff errors can generate topological inconsistencies causing
globally impossible results for predicates like point-inside-polygon. For example, Kettner
et al. (2008) presented a study of the failures caused by roundoff errors in geometric
problems such as the planar orientation computation.

Several techniques have been proposed to overcome this problem. The simplest
one consists of using an ✏ tolerance, and then consider two values x and y as equal if
|x�y| ✏. However this is not a good strategy because equality is no longer transitive, nor

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

45

invariant under scaling. In practice, epsilon-tweaking fails in several situations, (Kettner
et al., 2008).

Snap rounding is another method to approximate arbitrary precision segments into
fixed-precision numbers (Hobby, 1999). However, snap rounding can generate inconsis-
tencies and deforms the original topology if applied consecutively on a data set. Some
variations of this technique attempt to get around these issues (Hershberger, 2013; Belussi
et al., 2016).

Shewchuk (1996) presents the Adaptive Precision Floating-Point technique, that
focus on exactly evaluating predicates. The idea is to perform this evaluation using the
minimum amount of precision necessary to achieve correctness. As mentioned by the
author, this technique focus on geometric predicates and it is not suitable to solve all
geometric problems. For example, “a program that computes line intersections requires
rational arithmetic”.

The formally proper way to eliminate roundoff errors and guarantee robustness is to
use exact computation based on rational numbers with arbitrary precision (Li et al., 2005;
Hoffman, 1989; Kettner et al., 2008). In this work, our algorithms perform computation
using arbitrary precision rationals provided by the GMP library. Computing in the algebraic
field of the rational numbers over the integers, with the integers allowed to grow as long
as necessary, allows the traditional arithmetic operations to be computed exactly, with no
roundoff error. The cost is that the number of digits in the result of an operation is about
equal to the sum of the numbers of digits in the two inputs. This behavior is acceptable if
the depth of the computation tree is small, which is true for the algorithms we will present.

Besides ensuring exact results, the use of arbitrary precision rationals has other
advantages. First, Simulation of Simplicity, a technique for treating degeneracies, requires
exact arithmetic. Second, our algorithms will be able to support input data where the
coordinates are represented using rationals and, thus, we will be able to process meshes
that cannot be exactly represented using floating point numbers.

3. Previous works
In this section, EPUG-OVERLAY (Magalhães et al., 2015) and PINMESH (Magalhães
et al., 2016), two previous algorithms developed for, respectively, intersecting maps and
performing point location queries in 3D meshes will be presented.

First, two important techniques applied in these works will be briefly described:
the use of a uniform grid for indexing the data and the application of the Simulation of
Simplicity technique for handling special cases. Both techniques will be also applied in
the intersection algorithm described in this paper.

Understanding EPUG-OVERLAY, PINMESH and Sections 3.1 and 3.2 is important
because techniques similar to the ones described in these sections are applied to 3D-
EPUG-OVERLAY.

3.1. Indexing data with a uniform grid
Franklin et al. (1989) proposed a uniform grid to accelerate his algorithm for computing
the area of overlaid polygons. When a polygonal map (or triangular mesh) is indexed with
a uniform grid, a 2D grid (or 3D grid for meshes) is created, superimposed over the input

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

46

datasets, and then the edges (or triangles) intersecting each cell c are inserted into c. The
efficiency of this idea depends on a careful choice of the concrete data structure. After the
grid is created, it can be employed to accelerate the geometric algorithms. For example,
given two maps indexed by the grid, the intersection of pairs of edges from the two maps
can be found by processing each cell and comparing the edges in that cell pair-by-pair (one
edge from each map) to compute the intersection points.

The uniform grid works well even for unevenly distributed data for various rea-
sons (Akman et al., 1989; Franklin et al., 1988). First, the total time is the sum of one
component (constructing the grid) that runs slower with a finer grid, plus other components
(e.g., intersecting edges) that run faster. The total running-time varies slowly with changing
grid resolutions. Second, an empty grid cell is very inexpensive, so that sizing the grid for
the densest part of the data works.

Nevertheless, to process very uneven data, in EPUG-OVERLAY and PINMESH
we have incorporated a second level grid into those few cells that are densely populated.
The exact criteria for determine what cell to refine depends on the algorithm that will use
the grid. For example, since in the intersection computation pairs of edges in the cells are
tested for intersection, one could refine the grid cells where the number of intersection
tests (i.e, the number of pairs of edges from the two maps) is greater than a threshold.

This nesting could be recursively repeated until all grid cells have fewer elements
than a given threshold, creating a structure similar to quadtree (or octree), although with
more branching. However, the general solution uses more space for pointers (or is expensive
to modify) and is irregular enough that parallelization is difficult. Also, experiments have
shown that the best performance is achieved using just a second level (Magalhães et al.,
2015). This can be explained because the first level grid, in general, has many cells with
more elements than the threshold justifying the second level refinement. But, in the second
level, only a few number of cells exceed the threshold and the overhead (processing time
and memory use) to refine those cells is never recaptured.

3.2. Simulation of Simplicity
To correctly handle special cases such as coincident edges when intersecting maps, we
apply Simulation of Simplicity (SoS) Edelsbrunner and Mücke (1990). This is a general
purpose symbolic perturbation technique designed to treat special (degenerate) cases. The
inspiration for SoS is that if the coordinates of the points are perturbed, the degeneracies
disappear. However, too big a perturbation may create new problems, while a too small
one may be ineffective because of the limited precision of floating point numbers.

SoS is a solution that uses a symbolic perturbation by an indeterminate infinitesimal
value ✏i, for some natural number i. Its mathematical formalization extends some exactly
computable field, such as rationals, by adding orders of infinitesimals, ✏i. Floating point
numbers with roundoff error cannot be the base. The infinitesimal ✏ is an indeterminate. It
has no meaning apart from the rules for how it combines. All positive first-order infinitesi-
mals are smaller than the smallest positive number. All positive second-order infinitesimals
are smaller than the smallest positive first-order infinitesimal, and so on. All this is logically
consistent and satisfies the axioms of an abstract algrebra field.

The result of SoS is that degeneracies are resolved in a way that is globally con-
sistent. For example, consider Figure 1. Two identical rectangles (abcd represented using

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

47

solid edges and efgh represented using dashed edges) are overlaid, but all the vertices of
efgh are slightly translated using the vector (✏, ✏2). This translation is globally consistent,
i.e., even if the rectangle is stored as separate edges an intersection test with edge ef will
return true only when this test is performed against the edge ad while an intersection test
performed with gf will return true only when the test is performed against cd.

Figure 1. Effect caused by SoS during the intersection computation.

a

b c

d

e

f g

h

The infinitesimals do not need to be explicitly used in the program since they will
be used only to determine signs of expressions. The only time that the infinitesimals change
the result is when there is a tie in a predicate. Then, the infinitesimals break the tie. The
effect is to make the code harder to write and longer. However, unless a degeneracy occurs,
the execution speed is the same. When a degeneracy does occur, the code is slightly slower.

3.3. Point location

PINMESH (Magalhães et al., 2016) is an exact and efficient algorithm for performing point
location queries in 3D meshes. It is based on the idea of ray-casting: given a query point q,
a semi-infinite vertical ray r is traced from q, and then the triangle t whose intersection
with r is the lowest is used to determine q’s location. Since t is the lowest triangle to
intersect r, because of the Jordan Curve Theorem, q will necessarily be on the polyhedron
below t (this polyhedron can be quickly determined since all triangles contain the labels of
the two polyhedra it bounds).

A uniform grid is used to reduce the number of ray-triangle intersection computation
tests. Also, empty grid cells, which are each necessarily completely inside one polyhedron,
are labeled with that containing polyhedron. That accelerates many queries. As a result of a
careful implementation and use of parallelization, PINMESH is very efficient, being able to
index a dataset and perform 1 million queries on a 16-core processor up to 27 times faster
than RCT (Liu et al., 2010), a sequential and inexact algorithm, which was previously the
fastest.

To summarize, PINMESH, represents coordinates with rational numbers to com-
pletely prevent roundoff errors, and handles special cases with simulation of simplicity.

3.4. Exact 2D map overlay

EPUG-OVERLAY (Magalhães et al., 2015) is an exact and efficient algorithm for overlaying
two polygonal maps. Given two maps A and B composed of faces represented implicitly
as sets of edges, the goal is to create a map where each face represents the intersection of
a face of A with a face of B. Parallel programming plus efficient indexing make EPUG-
OVERLAY very efficient. It can process maps with more than 50 million edges faster than
GRASS GIS, which is sequential and subject to roundoff error, since it does not use exact
arithmetic.

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

48

As described in (Magalhães et al., 2015), EPUG-OVERLAY has the following
basic steps:
1. Create a 2-level uniform grid to index the edges from the two input maps A and B.
2. Compute all intersection points between an edge of A with an edge of B using the

uniform grid is applied to accelerate the process, by iterating through the grid cells
and testing all pairs of edges in each grid cell for intersection. The intersecting edges
are split at the intersection point. After that, edges intersections will happen only at
vertices.

3. Label the resulting split edges with their adjacent polygons.
Figure 2 illustrates this process: map A (in dotted blue) contains 4 edges and two polygons
(polygon A1 and polygon A0, representing the exterior of the map) while map B (solid
black lines) contains 7 edges and 4 polygons. After the intersections are detected and the
edges are split at the intersection points (in red) the resulting edges are classified. For
example, edge (u, w) bounds polygons A0 (positive side) and A1 (negative side). Edge
(i2, i3) (generated after (u, w) was split) is inside polygon B2 of the other map and, thus,
in the output map (i2, i3) will bound polygon A0 \ B2 (this polygon is equivalent to the
exterior of the resulting map) on its positive side and A1 \B2 on the negative side.

Since the edges are split at the intersection points, after this process all edges will
be completely inside a polygon of the other map. Thus, one strategy to determine in what
polygon an edge e is consists in using a fast 2D point location algorithm to locate a point
from e in the other map (for example, the location of m3 from Figure 2 can determine in
what polygon (i2, i3) is).

Figure 2. Intersecting two polygonal maps.

B1

A1

B2 B3

u wi1 i2 i3 i4m3
m5

B0

A0

This strategy uses only local information to compute intersections. That is, instead
of intersecting pairs of faces, the individual edges are intersected and classified; the resulting
faces will be represented implicitly by the edges. This has several advantages. First, it is
easier to test a pair of edges for possible intersection than to test a pair of faces, which
would devolve to testing pairs of edges anyway. Second, knowing an intersection of a pair
of edges contributes information about four output faces. Third, as an edge is fixed size but
a face is not, parallel operations on edges are more efficient.

Degenerate cases are handled with Simulation of Simplicity (SoS). The idea is to
pretend that map A is slightly below and to the left of map B. Thus no edge from A
will coincide with an edge from B during the intersection computation. Oversimplified
slightly, the process proceeds by translating map B by (✏, ✏2), where ✏ is an infinitesimal.
As mentioned before, we do not actually compute with infinitesimals, but instead determine
the effect that they would have on the predicates in the code, and modify the predicates to
have the same effect when evaluated as if the variables could have infinitesimal values. For
instance, the test for (a0 b0)&(b0 a1) becomes (a0 b0)&(b0 < a1). With SoS, no
point in A is identical to any point in B, and neither do two any edges coincide.

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

49

4. Exact 3D mesh intersection
Similarly to our 2D intersection algorithm, in 3D the computation is performed using only
local information stored in the individual triangles. That is, the triangles from one mesh
are intersected with the triangles from the other one. Then a new mesh containing the
triangles from the two original meshes is created and the original triangles are split at
the intersection points. That is, if a pair of triangles in this new mesh intersect, then this
intersection will happen necessarily in a common edge or vertex. Finally, the adjacency
information stored in each triangle is updated to ensure that the new mesh will consistently
represent the intersection of the original ones.

4.1. Intersecting triangles and remeshing
For performance, a strategy similar to the one used in EPUG-OVERLAY was adopted:
for each uniform grid cell, the intersections between pairs of triangles from the two
triangulations are computed. The pairs of triangles are intersected using the algorithm
presented by Möller (1997), that uses several techniques to avoid unnecessary computation
by detecting as soon as possible if the pair of triangles does not intersect.

More specifically, a two-level 3D uniform grid is employed to accelerate the com-
putation using an strategy similar to the one we used in the 2D map intersection algorithm.
That is, the grid will be created by inserting in its cells triangles from both meshes M1 and
M2. Then, for each grid cell c, the pairs of triangles from both meshes in c are intersected. If
the resolution of the uniform grid is chosen such that the expected number of triangles per
grid cell is a constant K, then it is expected that each triangle will be tested for intersection
with the other K triangles in its grid cell. Thus, the expected total number of intersections
tests performed will be linear in the size of the input maps.

Since the cells do not influence each other, the process of intersecting the triangles
can be trivially parallelized: the grid cells can be processed in parallel by different threads
using a parallel programming API such as OpenMP.

After computing the intersections between each pair of triangles, the next step is to
split the triangles where they intersect to create new ones, so that now all the intersections
will happen only on common vertices or edges. When a triangle is split, the labels of its
two bounding objects will be copied to the new triangles. This process is similar to the
2D map overlay step where the edges are split at the intersection points to ensure that all
intersections happen in vertices.

Figure 3 presents an example of intersection computation. In Figure 3(a), we have
two meshes representing two tetrahedra with one region in each one: the brown mesh
(mesh M1) bounds the exterior region and region 1 while the yellow mesh (mesh M2)
bounds the exterior region and region 2.

After the intersections between the triangles are computed, the triangles from one
mesh that intersect triangles from the other one are split into several triangles, creating
meshes M 0

1 and M 0
2 (for clarity, these two meshes are displayed separately in Figures 3(b)

and (c), respectively). The only triangle from mesh M1 that intersects mesh M2 is the
triangle BCD. Since BCD intersects three triangles from M2, it was split in 7 triangles
when M 0

1 was created (triangles LMN , CLN , CBN , BDN , DMN , DLM and CDL).
Similarly, each of the three triangles from M2 intersecting M1 was split into 3 smaller
triangles.

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

50

Figure 3. Computing the intersection of two tetrahedra.

(a) (b)

(c) (d)

4.2. Classifying triangles

After the intersections are detected and all the triangles that intersect other triangles are
split at the intersection points, two new meshes M 0

1 and M 0
2 are created such that each new

mesh M 0
i

will have the following two kinds of triangles:

• Triangles from the original mesh: if a triangle t from M
i

did not intersect any triangle
from the other mesh (or if this intersection was located on a vertex or edge), then t will
be in M 0

i

.
• New triangles: if a triangle t from M

i

intersects one or more triangles from the other
mesh (and this intersection is not located on a common vertex or edge), then t will be
split into several smaller triangles and these smaller triangles will be inserted into M 0

i

.

It is clear that each mesh M 0
1 will exactly represent the same regions that M1 represents.

In fact, if no triangle from M1 intersects the mesh M2, then M 0
1 will be equal to M1.

Otherwise, each triangle t from M
i

that intersects M2 will be split in n triangles t1, t2, ..., tn
and these new triangles will be inserted into M 0

i

instead of t. Since the union of the triangles
t1, t2, ..., tn is t and these split triangles contain the same attributes as t, then M 0

1 represents
the same regions M1 represents. This observation is also valid for M 0

2.

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

51

Thus, computing the intersection between M 0
1 and M 0

2 is equivalent to computing
the intersection of M1 with M2. However, M 0

1 and M 0
2 are easier to process: since the

triangles from one mesh intersect with the triangles of the other one only in common
vertices or edges, then each triangle t from M 0

1 will be completely inside a region from M 0
2.

Suppose a triangle t from M 0
1 bounds regions R

a

and R
b

and is completely inside region
R

c

from mesh M 0
2. When M 0

1 is intersected with M 0
2, t will be in the resulting mesh and

it will bound regions R
a

\R
c

and R
b

\R
c

. The same process can be performed with the
triangles from M2.

Therefore, the process of classifying the triangles to create the output mesh consists
in processing each triangle t from the mesh M 0

1, determining in what region of M 0
2 t is

and, then, updating the information about the regions t bounds such that we will have a
consistent mesh. The same process needs to be performed with triangles from M 0

2.

To determine in what region from the other mesh a triangle is, the point location
algorithm from Section 3.3 is applied. That is, since point location queries can be quickly
performed, an efficient way to locate a triangle that is completely inside a region consists
in locating one of its interior points (for example, its centroid).

This classification can also be performed in parallel since updating the regions that
a triangle bounds does not influence other triangles.

If a triangle t is in the exterior of the other mesh, in the resulting mesh the two
regions t bounds will be the exterior region. To maintain the mesh consistency, the triangles
bounding only the exterior region can be ignored and not stored in the output mesh.

Figure 3(d) illustrates the classification step. All the intersections happen at com-
mon edges, and the only triangle from M 0

1 that is completely inside region 2 (of M 0
2) is

triangle LMN . Since LMN bounds region 1 and the exterior region in M 0
1, in the resulting

intersection LMN will bound region 1 \ 2 and the exterior region. All the other triangles
from M 0

1 are in the exterior region of M 0
2 and, thus, they will only bound the exterior

region in the resulting intersection (therefore, they will be ignored when the output mesh is
computed). Similarly, in M 0

1 the only triangles that are inside region 1 of M 0
1 are triangles

EMN , ELM and ELN . These three triangles will also bound the exterior region and
region 1 \ 2 in the resulting mesh.

4.3. Handling the special cases
The current version of 3D-EPUG-OVERLAY does not handle special cases (degeneracies)
yet. However, the ideas we intend to apply in order to handle these cases have already been
successfully implemented for EPUG-OVERLAY and PINMESH, and therefore we believe
they will suitable to 3D-EPUG-OVERLAY.

Without SoS, it would be too difficult to guarantee that all degeneracies are consid-
ered (this is particularly true in 3D). An adequate perturbation scheme associated with the
use of exact arithmetic and a careful implementation will ensure our intersection algorithm
is robust.

5. Preliminary results
3D-EPUG-OVERLAY was implemented in C++, and several experiments performed.
Figure 4 presents an example of intersection computed using 3D-EPUG-OVERLAY: the

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

52

model Ramesses (a) and Neptune (b) were intersected. These two models were downloaded
from the repository in AIM@SHAPE (2016), and were produced by, respectively, Marco
Attene and Laurent Saboret. The Ramesses model contains more than 1 million triangles
while the Neptune model contains more than 4 million triangles. Figure 4(c) shows the
result of the intersection.

Figure 4(d) presents a zoom that detaches the region of the resulting mesh where
the triangles from the two models intersect. We see that the remeshing process generates
several thin triangles (displayed in the vertical center of the figure), which are usually hard
to process with methods using floating-point arithmetic.

Figure 4. Computing the intersection of two 3D models.

(a) (b)

(c) (d)

Since some features of 3D-EPUG-OVERLAY, such as SoS, are still under imple-
mentation, and the main feature of 3D-EPUG-OVERLAY is its exactness, we intend to
optimize its performance only after those features are implemented. However, we intend to
employ the same strategies successfully used in EPUG-OVERLAY and PINMESH. They
include:
1. Trading memory for computation, pre-computing and storing results that will be needed

several times.
2. Parallelization of the bottlenecks of the algorithm using OpenMP: similarly to our

previous work, 3D-EPUG-OVERLAY was designed specifically for being easily paral-
lelizable.

3. Reduction of memory allocations on the heap since they cannot be efficiently performed
in parallel. Our previous experience has showed that this should be avoided especially
inside parallelized blocks of code. However, as rationals grow, memory needs to be
allocated. Therefore we pre-allocate enough temporary rationals that creating them
inside parallelized functions is not necessary.

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

53

Since these techniques were so sucessful in our previous works, so that they even outper-
formed inexact algorithms, we believe they will also make 3D-EPUG-OVERLAY very
efficient.

6. Conclusion and future work
We have presented 3D-EPUG-OVERLAY, an exact and parallel algorithm for computing
the intersection of 3D models represented by triangulated meshes. 3D-EPUG-OVERLAY
uses arbitrary precision rational numbers to store all the geometric coordinates and perform
computation, and so is roundoff error free.

Even though the current implementation of 3D-EPUG-OVERLAY does not treat
special cases, preliminary experiments have indicated that 3D-EPUG-OVERLAY can
successfully intersect some big meshes available in public repositories.

Next, we intend to implement a symbolic-perturbation scheme on 3D-EPUG-
OVERLAY to ensure that all the special cases are properly handled. Furthermore, the
optimization techniques that have been so successful in our previous works will be also
applied to 3D-EPUG-OVERLAY.

7. Acknowledgement
This research was partially supported by CNPq, CAPES (Ciência sem Fronteiras),
FAPEMIG and NSF grant IIS-1117277.

References
AIM@SHAPE (2016). AIM@SHAPE-VISIONAIR Shape Repository. http://
visionair.ge.imati.cnr.it// (accessed on Sep-2016).

Akman, V., Franklin, W. R., Kankanhalli, M., and Narayanaswami, C. (1989). Geometric
computing and the uniform grid data technique. Comput. Aided Design, 21(7):410–420.

Belussi, A., Migliorini, S., Negri, M., and Pelagatti, G. (2016). Snap rounding with restore:
An algorithm for producing robust geometric datasets. ACM Trans. Spatial Algorithms
Syst., 2(1):1:1–1:36.

Bernstein, G. and Fussell, D. (2009). Fast, exact, linear booleans. Eurographics Symposium
on Geometry Processing, 28(5):1269–1278.

CGAL (2016). CGAL, Computational Geometry Algorithms Library. http://www.cgal.org
(accessed on Sep-2016).

Edelsbrunner, H. and Mücke, E. P. (1990). Simulation of simplicity: a technique to cope
with degenerate cases in geometric algorithms. ACM Transactions on Graphics (TOG),
9(1):66–104.

Feito, F., Ogayar, C., Segura, R., and Rivero, M. (2013). Fast and accurate evaluation
of regularized boolean operations on triangulated solids. Computer-Aided Design,
45(3):705 – 716.

Franklin, W. R., Chandrasekhar, N., Kankanhalli, M., Seshan, M., and Akman, V. (1988).
Efficiency of uniform grids for intersection detection on serial and parallel machines. In
Magnenat-Thalmann, N. and Thalmann, D., editors, New Trends in Computer Graphics
(Proc. Computer Graphics International’88), pages 288–297. Springer-Verlag.

Franklin, W. R., Sun, D., Zhou, M.-C., and Wu, P. Y. (1989). Uniform grids: A technique
for intersection detection on serial and parallel machines. In Proceedings of Auto Carto
9, pages 100–109, Baltimore, Maryland.

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

54

Hachenberger, P., Kettner, L., and Mehlhorn, K. (2007). Boolean operations on 3d selective
nef complexes: Data structure, algorithms, optimized implementation and experiments.
Computational Geometry, 38(1):64–99.

Hershberger, J. (2013). Stable snap rounding. Computational Geometry, 46(4):403–416.
Hobby, J. D. (1999). Practical segment intersection with finite precision output. Comput.

Geom., 13(4):199–214.
Hoffman, C. M. (1989). The problems of accuracy and robustness in geometric computation.

Computer, 22(3):31–40.
Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., and Yap, C. (2008). Classroom examples

of robustness problems in geometric computations. Comput. Geom. Theory Appl.,
40(1):61–78.

Leconte, C., Barki, H., and Dupont, F. (2010). Exact and efficient booleans for polyhedra.
Citeseer.

Li, C., Pion, S., and Yap, C.-K. (2005). Recent progress in exact geometric computation.
The Journal of Logic and Algebraic Programming, pages 85–111.

Liu, J., Chen, Y. Q., Maisog, J. M., and Luta, G. (2010). A new point containment test
algorithm based on preprocessing and determining triangles. Comput. Aided Des.,
42(12):1143–1150.

Magalhães, S. V., Andrade, M. V., Franklin, W. R., and Li, W. (2016). Pinmesh - fast and
exact 3d point location queries using a uniform grid. Computers & Graphics, 58:1 – 11.
Shape Modeling International 2016.

Magalhães, S. V. G., Andrade, M. V. A. A., Franklin, W. R., and Li, W. (2015). Fast exact
parallel map overlay using a two-level uniform grid. In Proc. of the 4th ACM Bigspatial,
BigSpatial ’15, New York, NY, USA. ACM.

Möller, T. (1997). A fast triangle-triangle intersection test. Journal of graphics tools,
2(2):25–30.

Shewchuk, J. R. (1996). Adaptive precision floating-point arithmetic and fast robust
geometric predicates. Discrete & Computational Geometry, 18:305–363.

Yanbing, W., Lixin, W., Wenzhong, S., and Xiaomeng, L. (2007). On 3d gis spatial
modeling. In Proceedings of the ISPRS Workshop on Updating Geo-spatial Databases
with Imagery and the 5th ISPRS Workshop on DMGISs, Urumchi, Xinjiang, China, pages
237–240. Citeseer.

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

55

