
An algebra for modelling the simultaneity in agents’ behavior
in spatially explicit social-environmental models

Washington Sena de França e Silva1, Tiago Garcia de Senna Carneiro1

1Departamento de Computação – Universidade Federal de Ouro Preto (UFOP)
Ouro Preto – MG – Brazil

wsenafranca@gmail.com, tiagogsc@gmail.com

Abstract. Humanity is the major driver of spatial changes resulting from in-
teractions between social and environmental systems. Environmental models
usually apply the agent-based modeling paradigm to describe the social aspects
of spatial changes. For this reason, these models have incorporated challenges
inherent to this paradigm. One of these challenges is how to provide a seman-
tically correct way to describe and simulate the simultaneity in execution of
agents. In this context, this work describes an algebra to the development of
spatially explicit agent-based models in a way that the algebra operators im-
plicitly treat the simultaneity in agent’s execution.

1. Introduction
The most indicated modelling paradigm to describe social aspects of spatial change pro-
cesses is the Agent-Based Model [Parker et al. 2003]. In this paradigm, different types of
individuals (agents) are able to communicate and change the space through function that
represents the agent’s behavioral rules [Macal and North 2005]. However, this paradigm
does not have a syntactic structure for directly representing heterogeneous spaces. This
type of spatial structure needs different sets of attributes, resolutions and neighborhood
relations at different locations. For this reason, it is useful to combine Cellular Automa-
ton (CA) and Agent-Based Model (ABM) paradigms to describe biophysical and social
aspects of spatially explicit environmental models [d’Aquino et al. 2002].

The use of the ABM presents issues that are inherent to this paradigm. Among
these issues, there is a need to provide a semantically correct way to describe and simulate
the simultaneity in execution of agents. This simultaneity means that agents may perform
changes in the current state of simulation (present) considering the last synchronized state
of simulation (past), and perceive the changes into environment only after they synchro-
nize their own information [Michel et al. 2001]. Analogously, agents may perceive also
the changes into environment instantaneously when they perform their changes from the
present state into the same present state [Brown et al. 2005].

Ideally, the manner that agents perceive the environment or execute their behav-
ioral rules should be independent of simulation platforms and their architectures (parallel
or sequential). A same set of rules, i.e., a model should have the same semantics in any
simulator. Despite this, platforms that use the sequential architecture tend to ignore the
simultaneity in execution of agents. Consequently, these approaches deal with a strictly
simultaneous behavioral rule as a sequential one. For this reason, simulations may present
incorrect results caused by computational artifacts [Coakley et al. 2012].

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

80



On the other hand, platforms for simulation of agents that execute un-
der some parallel architecture like REPAST-HPC [Collier and North 2011], FLAME
[Coakley et al. 2012] and D-MASON [Cordasco et al. 2013], are able to deal with the
simultaneity in the execution of agents. They deal with it using parallel programming
and defining strategies to allow that tasks like scheduling, communication and synchro-
nization [Shook et al. 2013, Fujimoto 2015, Rousset et al. 2016] perform in automatized
and transparent way from the modeler’s perspective. This way, modelers can explore
high performance simulations even when they are inexperienced to deal with parallel pro-
gramming issues. However, these approaches force modelers to describe behavioral rules
in a manner that such rules have to guarantee the coherence and consistency of simu-
lations. This can be highlighted in cases in which exist concurrent access to shared re-
source like in collision avoidance [Torrens and McDaniel 2013], matching and reproduce
[Lysenko et al. 2008].

An alternative way to guarantee coherence and consistency in simulations is to
provide such simultaneity control in the language level instead of doing it in level of
the simulation engine. In this way, modelers can clearly express the expected semantics
from his/her code diminishing ambiguity in rules semantics. Sequential architectures
will find in the model code the information required to simulate simultaneity. Parallel
architectures will find the necessary information to simulate sequential behaviors. It is
possible to guarantees that a correct model will perform a correct simulation as well.
In this context, this paper defines and evaluates one approach for the specification of
simultaneity in the execution of agents through an algebra for spatially explicit agent-
based model development.

This paper is organized as follows. Section 2 highlights some related works. Next,
section 3 describes the algebra, its types, operators, syntax and semantics. Section 4
shows the experiments developed to demonstrate how the algebra has solved some prob-
lems faced in agent’s modelling and simulations and then we present the algebra usage
through a classical model. Finally, section 5 presents the conclusions of this work.

2. Related Works
Providing the simultaneity in execution of agents in modelling level is a manner to guar-
antee consistence and coherence for semantically correct models in simulation time.
In these approaches, the modelling language is able to deal with these issues. The
early works to present solutions for this are DESIRE [Dunin-Keplicz and Treur 1994],
Concurrent METATEM [Fisher 1994], ConLog [De Giacomo et al. 2000] e AALAADIN
[Michel et al. 2001].

Recently, the works that much relate to our approach are the languages ALOO
and SARL. The agent-oriented language ALOO [Ricci and Santi 2013] uses the concept
of agents (mobility entities) and objects (stationary entities) to define one semantic for
mutual exclusion on language level for scenarios where several agents are trying to access
or change a same object. ALOO is therefore able to guarantee concurrency control in
accesses to shared resource.

The general-purpose agent-oriented programming language SARL
[Rodriguez et al. 2014] provides a manner to encapsulate the model’s partition, and
the communication and synchronization of agents through concepts of multi-contexts

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

81



and spatial hierarchy. Briefly, agents can communicate only with other agents that are
located at same space and are able to access the same context. In this way, the language
make explicit the groups of agents that are able to communicate and therefore, need to
keep their states synchronized.

Comparing the previous approaches with our own. Both ALOO and our approach
have mechanisms to guarantee coherence in a scenario where exist concurrent access to
shared resource in a way that modelers do not need to deal with the concurrency control
directly. Comparing our algebra and SARL, they both use concepts as groups of agents in
language level for providing coherency in communication and synchronization of agents.

The main aspects that differ our algebra and these languages are: (1) Modelers
can clearly express the expected semantics for agent’s rules; (2) The algebra provides two
ways (simultaneous or sequential) to execute a same agent’s rule.

3. An Algebra for describing social-environmental spatially explicit model
An algebra specifies his components in a manner that makes possible to abstract the im-
plementation of these components [Frank 1999]. Hence, algebras for ABM are indepen-
dent of programming languages and of simulator’s architectures as well. In this paper, we
define an algebra by a set of types and operators applicable to these types.

3.1. Types

Types in an algebra are the kind of entities that the algebra’s operators are able to manipu-
late. Types define in which kind of entities the modeled phenomenon can be decomposed
and represented. In this work, modelers are able to describe their models in terms of
agents, collections of agent, cellular spaces, and social and spatial relations. These types
are grouped into three main categories: (1) basic, (2) collections and (3) relations.

An agent is a basic type that performs changes in the environment. An agent has an
attribute list. Each attribute in this list is a pair key-value (Figure 1). A key represents the
name of an agent property and the value represents the current state of the correspondent
property.

Attribute : (Key, V alue)
• Key : Indentifier
• V alue : Boolean|Number|String|Agent|Cell|[Attribute]|Null

Figure 1. Formal definition of an attribute.

All agents have a non-null attribute that locate them in the space. This attribute
is a reference to a certain cell. The main function of this attribute is to enable agent
movement. To perform this movement, an agent just need to replace the current value
of his location attribute by another cell. A cell describes properties of a spatial location.
Besides the attribute list, a cell also has an agent list to store all agents placed inside it and
a list of its neighbor cells (Figure 2a).

A collection represents a set of same-type entities. The figure (Figure 2b) shows
the definition of all collections in this algebra. A society is a collection for same-type
agents. Two agents have the same type when they present the same internal states and the

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

82



(a) (b)
Agent : (Attributes, Location)

• Attributes : [Attribute]
• Location : Cell

Cell : (Attributes, Agents,Neighbor)
• Attributes : [Attribute]
• Agents : [Agent]
• Neighbor : [Cell]

Society : Agents
• Agents : [Agent]

Group : Agents
• Agents : Sorted([Agent])

CellularSpace : Cells
• Cells : [Cell]

Figure 2. (a) Definition of basic types. (b) Definition of agent and cell collections.

same behavioral rules. Group is a set of agents in which every agent must satisfy a given
selection function. For example, a group of agents of same gender or a group of agents
where every agent is older than a given age. A group can sort its agents to define a kind
of precedence between them. Thus, groups are filters defined over societies, selecting the
agents that will activated in some action.

A Cellular Space is a grid of cells described by the same attributes. Each cell has
a set of cells that defines its neighborhood. This neighborhood is essential to simulate
spatial process using the CA paradigm.

A relational type is responsible for connecting agents enabling communication
between them. The relational type social network can represents any relation between
agents. A modeler defined function generate a social network. This function must de-
termine the weight of a connection between two agents in a society. A weight with 0%
means that there is no connection and 100% means a connection of maximum intensity.
In a social network, agents are nodes in a graph, their connection are edges and the edges’
weight are the strength agent’s connection [Andrade et al. 2010]. In this algebra, social
networks are like maps in which agents work as indexes which maps to lists containing
agents and weights representing their connections (Figure 3).

SocialNetwork : Agent : Connections
• Connections : [(Agent,Weight)]
• Weight : Number

SpatialNeighborhood : (CellularSpace,N,M)

• N : Number
• M : Number

Figure 3. Definition of algebra’s relational types.

Besides the social network, neighborhoods represent spatial relations between
agents. In this relation, an agent connects to another agent through the cell’s neigh-
borhood structure. Using the cell’s list of agents, an agent can access all agents from
a neighbor cell. In this manner, agents are able to connect by proximity relations. A
spatial neighborhood is defined by a reference to a cellular space and by its dimension.
The size of a neighborhood is a pair N and M (MxN), where N is the number of cells in
vertical and M is the number of cells in horizontal.

3.2. Operators
Operators are a set of functions applicable to the types previously presented. Next, we
present the syntax and semantic of each operator defined in this algebra.

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

83



The ask operator uses a message passing schema for providing interaction between
agents and other types (Figure 4). Agents send messages to receivers requesting them to
perform some actions (tasks).

ask : Function(Receiver, Action,Args)
• Receiver : Agent|Cell|Society|Group|CellularSpace|[Receiver]
• Action : Function(Receiver, Args)
• Args : [⇤]

Figure 4. Definition of ask operator.

Since actions like move, die and reproduce are very common in ABM, these op-
erators were pre-defined in this algebra using the ask operator (Algorithm 1).

Algorithm 1 Defining operators move, die and reproduce using operator ask.
function MOVE(ag, cell)

loc = ag.location
ask(loc.agents, pop, ag)
ask(ag, setLocation, cell)
ask(cell.agents, push, ag)

function DIE(ag)
loc = ag.location
ags = loc.agents
ask(ags, pop, ag)
ask(soc, pop, ag)

function REPRODUCE(ag)
loc = ag.location
child = copy(ag)
ask(society, push, child)
move(child, ag.location)

In this algebra, there is not a way for directly create basic types. Modelers must
use collection construction operators to instantiating entities of these types. In this man-
ner, every basic entity will be enclosed in at least one collection. Figure (Figure 5) briefly
defines the construction operators for collections and relations.

createSociety : Function(Instace,Quantity) ! Society
• Instace : Agent
• Quantity : Number

createGroup : Function(Society, F ilter, Compare) ! Group
• Filter : Function(Agent) ! Boolean
• Compare : Function(Agent,Agent) ! Boolean

createCellularSpace : Function(Instace,Dimension) ! CellularSpace
• Instace : Cell
• Dimension : (Width : Number,Heigh : Number)

createSocialNetwork : Function(Society, Connection) ! SocialNetwork
• Connection : Function(Agent,Agent) ! Number

createSpatialNeighborhood : Function(Space,N,M) ! SpatialNeighborhood
• Space : CellularSpace
• N : Number
• M : Number

Figure 5. Definition of agent and cell collections.

The construction operator of society creates a society using an agent definition
and a given quantity. This definition works as a template that enables the operator to
instantiate any quantity of agents in a society. The operator creates each agent as a copy
of the archetype agent. The parameter quantity determines the number of agents that
the operator will create. The construction operator for group uses a society, a selection
function and a compare function to create a group. In the same way, the construction

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

84



operator for cellular spaces instantiates cells by copying the archetype cell received as
parameter. The cellular space dimension determines the quantity of cells that the operator
will create. The construction operator for social network uses a society and a function
that determines the intensity of connections between each pair of agents to create a social
network. The construction operator for spatial neighborhood uses a cellular space and the
required neighborhood dimension to create a spatial neighborhood.

Modelers should use execution operator to simulate collection of agents provoking
changes described by the behavioral rule received as parameter. The modeler defines these
rules as functions that govern the behavior of some types of agents. This approach allows
the reuse of rule definitions, allowing the modeler to apply them to any collections able
to execute it. Three factors determine the semantics of the operator execute: The type of
collection received as parameter, the use of any relational as parameter, and the type of
behavioral rule received as parameter (Table 1).

Table 1. Syntactic and Semantic definition of execute operator.

Operator Syntax Semantic
Simultaneous
local execu-
tion

execute(Society, Rule)
• Rule : Function(Agent)

Each agent in a given soci-
ety simultaneously applies a
given rule independently of
the other agents.

Sequential
local execu-
tion

execute(Group,Rule)
• Rule : Function(Agent)

Each agent in a given group
sequentially applies a given
rule independently of the
other agents.

Simultaneous
shared exe-
cution

execute(Society, Relation,Rule)
• Relation :

– SocialNetwork
– SpatialNeighborhood

• Rule : Function(Agent,Agent)

Each agent in a given soci-
ety simultaneously applies a
given rule that enables com-
munication between agents.

Sequential
shared
execution

execute(Group,Relation,Rule)
• Relation :

– SocialNetwork
– SpatialNeighborhood

• Rule : Function(Agent,Agent)

Each agent in a given group
sequentially applies a given
rule that enables communi-
cation between agents.

When a society executes a rule, all agent simultaneously performs changes. This
means that agents will perceive the provoked changes only after all of them have ac-
complished their execution. A group enables that agents instantaneously perceives any
provoked change. Group executes agent by agent in a sorted and sequential manner. This
mode of execution guarantees mutual exclusion for agents performing the same rule. In
this context, the rule code works as a critical section. Thus, agents perceive changes as
soon as each agent finishes its execution. The group’s order function determines in which
order agents will execute.

Relational types determines how the communications between agents of a given
collection will occur. When execute operator does not receive a relation, changes are

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

85



local. This mean that, an agent will apply a change independently of the others. When an
execution has a relation, the rules will receive two agents as parameter. The first agent will
apply the rule while the second one will only take in a communication process. Usually,
these rules describe behaviors that collect information from other agents to support the
decision-making process. The second agent is a read-only object. The only way to change
the value of an attribute from the second agent is through requests using the ask operator.
This is a convention in order to guarantees coherent computations for all agents. Requests
sent through the ask operator will be served only after the simulation synchronization
stage, causing the changes requested.

The execute operator is also responsible for performing communication and syn-
chronization of agents. Synchronization of agents is transparent to the modelers. Mod-
elers do not need to deal with concurrency control to guarantee coherent computation.
For this, the ask operator sends asynchronous messages and senders do not need to wait
for receivers’ responses to resume their execution. The execute operator will synchronize
agents and process messages according to the semantics desired by the modeler, depend-
ing on the type of collection received as parameter: Society or group.

When a society invokes the execute operator, all agents perform their simulations
in parallel and a synchronization barrier forces agents to wait until all other agents to
finish. Only then, all agents will process the received asynchronous messages. This guar-
antees that all agents’ rules will execute taking in consideration the same model state,
which immediately precedes the invocation of the execute operator. In addition, no com-
munication happens while agents’ internal states are changing.

On the other hand, when a group invokes the execute operator, each agent will
execute the behavioral rule sequentially. Immediately after the execution of each agent,
all agents will perform the received messages and all agents will perceive the changes
caused by the last behavioral rule executes (Figure 6).

Figure 6. Conceptual model of algebra’s execution.

In this semantic, if a rule demands an intermediate synchronization, the modeler
should split the rule’s code into two rules: (1) One containing the code that precedes

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

86



the synchronization point, and (2) another one containing the code that comes after the
synchronization point.

To execute more than one society at the same time, the modeler should use a list
of tuples (Figure 7). When an execution will perform a local rule, a tuple has a society
and a local rule. In case of a rule demands communication between agents, the tuple will
contain a relational type as well. Semantically, a tuple execution is equals to the execute
operator (Table 1). In a practical manner, all tuples simultaneously execute before that
agents perceive any change (communication and synchronization). Execution by tuples
allows for example that two different societies, using different rules, change the space at
the same time.

ExecutionTuple : (Society, Rule)|(Society, Relation,Rule)
• Relation : SocialNetwork|SpatialNeighborhood
• Rule : Function(Agent)|Function(Agent,Agent)

Figure 7. Definition of an execution tuple.

4. Experiments
We have done two kind of experiments. (1) The first one demonstrated how the Algebra
solves some problems that are related with the simultaneity and how they may affect the
simulation results. In addition, these experiments also demonstrated how the simultaneity
and the semantic of execution are related. (2) The second one demonstrates the algebra
usage in implementing of Predator-Prey model. This classical model has features that are
relevant and frequently used in spatial-explicit social-environmental models.

4.1. Effects of simultaneity in simulation results
The experiments demonstrated the effects of simultaneity in the simulation results using
three simple models (Figure 8). In the first model, agents are trying to change simul-
taneously the energy in one shared cell of space (Figure 8a). When simulated through
a society, changes performed by most of these agents have no effects. Agents update
the cell computing their rules from the simulation past state, overwriting changes in the
current simulation state and ignoring any other changes previously simulated. This way,
only changes performed by one unique agent will be persisted and perceived in the future
computations. On the other hand, when simulate via groups, changes are sequenced and
agents will perceive the changes instantaneously.

In another model, eight agents are simultaneously trying to move to one a same
empty cell (Figure 8b). Disregarding the collision, simultaneity semantics have shown
to have a huge impact in model results. The execution by society resulted in a scenario
where all agents moved to the same cell. In this case, they sensed the environment’s state
where this cell was empty. In the other hand, execution by group resulted in another
mobility pattern, in this case only one agent has moved to the target cell. This because
after his move the other agents perceived the environment’s state where this cell was not
empty anymore.

The third model describes a rule where each agent have to collect information
from neighbor cells to decide whether he should put fire in his location (Figure 8c). When

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

87



simulating this model through groups, the order of execution of the agents affects the sim-
ulation results, possibly introducing computational artifacts in it. However, this artifact
did not appear when agents’ rules are simulated through a society, because agents sense
and change the space simultaneously, there is order in agents’ execution.

(a) Model (b) Model (c) Model

Society cell.energy: 2

Group cell.energy: 4

Figure 8. Comparison between the simulation using society and group

These experiments shows that a unique model code (syntax) can lead to different
results depending on the simultaneity semantics adopted by a given modeling language
or simulation engine. In the proposed algebra, modelers can clearly state the expected
semantic diminishing ambiguity in model specification and allowing for simulations that
produce exactly the same result no matters whether models are been executed by sequen-
tial simulators or not. Modelers may choose which semantics fits better the phenomenon
being modeled. In addition, the algebra promotes code reuse allowing modelers to apply
a same rule with different semantics.

4.2. Description of Predator-Prey model in the proposed algebra

The Predator-Prey model used in these experiments is an adaptation of Wilensky’s ver-
sion of Wolf-Sheep [Wilensky 1997]. In this simplified version, there are three types of
entities: Wolves, Sheep and Space. Wolves and Sheep are agents that, in each simulation
step, randomly move in space. Agents spend energy to move and dies once they spent all
energy. Agents eat to recover their energy. Sheep eat grass from their cells. Wolves prey
sheep that are in their cell. The space is modeled as a cellular automaton that simulates
grass periodical regrowth. Agents also reproduce by losing half of their energy for the
newborn agents.

This model demonstrates the usage of execute and ask operators in describing in-
teractions between two different societies, which individuals compete for access to shared
resources (preys and grass). The algorithm (Algorithm 2) shows the hunting rule of preda-
tors. If a predator meets a prey, predator will target this prey. After marking a prey as
target, a predator will attack it. The algorithm (Algorithm 2) describes the behavior of
an attack. The attacking rule recovers predator’s energy by the amount of target’s en-
ergy and informs that the target is going to lose its energy and then die after the next
synchronization.

One can interpret the prey’s behavior analogously to predator’s behavior (Algo-
rithm 2). Preys will target their own location cells. Then, preys will eat grass from these
cells. This case shows that different types of agent can perform a same rule since theys

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

88



Algorithm 2 Behavioral rules of hunting.
function HUNTING(predator, prey)

predator.target = prey

function TRYEAT(prey)
prey.target = prey.location

function ATTACKING(predator)
predator.energy+ = predator.target.energy/2
ask(predator.target, setEnergy, 0)

have a same set of internal states. In this experiment, preys and predators have energy
and target as attributes, and cells have the unique attribute energy (Algorithm 3). In this
manner, any agent can perform the attacking rule.

Algorithm 3 Defining predator, prey and cell.
predator = Agent{energy = 40, target = null}
prey = Agent{energy = 40, target = null}
cell = Cell{energy = 40}

The algorithm (Algorithm 4) shows the execution of predator and prey rules.
Predators and preys must sense the same environment state. Therefore, they must ex-
ecute simultaneously. For this, agents execute their rules (moving, hunting and tryEat)
using two tuples (movingExecuteTuples and huntingExecuteTuples). These tuples allow
both societies to execute at same time.

In contrast, some agent behavior demands that only one agent executes per time
in order to guarantee coherence to model results. For instance, only one predator can kill
a given prey. Therefore, a group must execute the attacking rule sequentially, meaning
that only one agent will attack a target. This way, the attacking rule is a critical section
of code in which mutual exclusion to resources (target) is guaranteed and all agents will
sense attacks at the same instant as they occurs.

Algorithm 4 Scheduling for executions of predators and preys.
function MAIN(POPULATION , DIMENSION )

predators = createSociety(predator, POPULATION)
preys = createSociety(prey, POPULATION)
space = createCellularSpace(cell,DIMENSION)
neighs = createNeighborhood(space, 1, 1)
movingTuples = [(predators,moving), (preys,moving)]
huntingTuples = [(predators, neighs, hunting), (preys, tryEat)]
for t = 1...1000 do

execute(movingExecuteTuples)
execute(huntingExecuteTuples)
predatorsGroup = createGroup(predators, hasTarget)
preysGroup = createGroup(preys, hasTarget)
execute(predatorsGroup, attacking)
execute(preysGroup, attacking)

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

89



Group also filters the society allowing only few agents to execute the attacking
rule, the ones who have targets. The predatorsGroup) and preys (preysGroup groups do
not have an order function defined by the modeler. By default, groups will randomly
organize their agents. Hence, all agents have the same chance to attempt an attack to a
prey.

In order to evaluate the performance that can be attained by a C++ and OpenMP
[Dagum and Menon 1998] implementation of this algebra (Figure 9), the predator-prey
model was simulated for spaces of different sizes and, therefore, different population
sizes.

(a)
100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

500 600 700 800 900 1000

(b)
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Figure 9. (a) Population growth of predators and preys in a cellular space of
dimension 1000 x 1000. (b) Performance results of Predator-Prey simulation.

Initial experiments have shown that simulations using the proposed algebra may
achieve a performance curve near to linear in relation of the number of cells in space.
This demonstrates that this algebra is also a viable solution from the performance point
of view.

5. Conclusions
This paper has presented an algebra for modeling the social aspects of spatial changes in
accordance to the Agent-Based Model paradigm. Experiments have demonstrated how
this algebra can handle some problems that relates to the simultaneity in execution of
agents. Beside this, experiments have demonstrated also the usage of the algebra in the
development of a model that has features that are common to many spatially explicit
socio-environmental models. The contributions of this algebra are as follow:

1. To allow the definition of behavioral rules independently of the agents that will
execute them.

2. To show one way of decoupling model description from the issues that rises from
the parallel simulation of multiple agents.

3. To allow for modeler decides the execution semantics of agent’s rules.

For these reasons, we believe that this algebra can facilitate the development of
models that use the agent-based modeling paradigm. It is still necessary to evaluate the
algebra in the development and simulation of other models. Thus, determining if there
are models that this algebra is not sufficient to describe them. Furthermore, we wish to
evaluate this algebra in large-scale simulations in order to understand the pros and cons
of this approach from the high performance point of view.

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

90



References
Andrade, P. R., Monteiro, A. M. V., and Camara, G. (2010). Entities and relations for

agent-based modelling of complex spatial systems. In Social Simulation (BWSS), 2010
Second Brazilian Workshop on, pages 111–118. IEEE.

Brown, D. G., Riolo, R., Robinson, D. T., North, M., and Rand, W. (2005). Spatial
process and data models: Toward integration of agent-based models and gis. Journal
of Geographical Systems, 7(1):25–47.

Coakley, S., Gheorghe, M., Holcombe, M., Chin, S., Worth, D., and Greenough, C.
(2012). Exploitation of high performance computing in the flame agent-based simula-
tion framework. In High Performance Computing and Communication & 2012 IEEE
9th International Conference on Embedded Software and Systems (HPCC-ICESS),
2012 IEEE 14th International Conference on, pages 538–545. IEEE.

Collier, N. and North, M. (2011). Repast HPC: A platform for large-scale agentbased
modeling. Wiley.

Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., and Spagnuolo, C.
(2013). Bringing together efficiency and effectiveness in distributed simulations: the
experience with d-mason. Simulation, 89(10):1236–1253.

Dagum, L. and Menon, R. (1998). Openmp: an industry standard api for shared-memory
programming. IEEE computational science and engineering, 5(1):46–55.

De Giacomo, G., Lespérance, Y., and Levesque, H. J. (2000). Congolog, a concur-
rent programming language based on the situation calculus. Artificial Intelligence,
121(1):109–169.

Dunin-Keplicz, B. and Treur, J. (1994). Compositional formal specification of multi-agent
systems. In International Workshop on Agent Theories, Architectures, and Languages,
pages 102–117. Springer.

d’Aquino, P., August, P., Balmann, A., Berger, T., Bousquet, F., Brondı́zio, E., Brown,
D. G., Couclelis, H., Deadman, P., Goodchild, M. F., et al. (2002). Agent-based models
of land-use and land-cover change. In Proc. of an International Workshop, pages 4–7.

Fisher, M. (1994). Representing and executing agent-based systems. In International
Workshop on Agent Theories, Architectures, and Languages, pages 307–323. Springer.

Frank, A. U. (1999). One step up the abstraction ladder: Combining algebras-from func-
tional pieces to a whole. In International Conference on Spatial Information Theory,
pages 95–107. Springer.

Fujimoto, R. (2015). Parallel and distributed simulation. In Proceedings of the 2015
Winter Simulation Conference, pages 45–59. IEEE Press.

Lysenko, M., D’Souza, R. M., et al. (2008). A framework for megascale agent based
model simulations on graphics processing units. Journal of Artificial Societies and
Social Simulation, 11(4):10.

Macal, C. M. and North, M. J. (2005). Tutorial on agent-based modeling and simula-
tion. In Proceedings of the 37th conference on Winter simulation, pages 2–15. Winter
Simulation Conference.

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

91



Michel, F., Ferber, J., and Gutknecht, O. (2001). Generic simulation tools based on mas
organization. In 10th European Workshop on Modelling Autonomous Agents in a Multi
Agent World MAMAAW, volume 1.

Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., and Deadman, P. (2003).
Multi-agent systems for the simulation of land-use and land-cover change: a review.
Annals of the association of American Geographers, 93(2):314–337.

Ricci, A. and Santi, A. (2013). Concurrent object-oriented programming with agent-
oriented abstractions: the aloo approach. In Proceedings of the 2013 workshop on Pro-
gramming based on actors, agents, and decentralized control, pages 127–138. ACM.

Rodriguez, S., Gaud, N., and Galland, S. (2014). Sarl: a general-purpose agent-oriented
programming language. In Web Intelligence (WI) and Intelligent Agent Technolo-
gies (IAT), 2014 IEEE/WIC/ACM International Joint Conferences on, volume 3, pages
103–110. IEEE.

Rousset, A., Herrmann, B., Lang, C., and Philippe, L. (2016). A survey on parallel and
distributed multi-agent systems for high performance computing simulations. Com-
puter Science Review.

Shook, E., Wang, S., and Tang, W. (2013). A communication-aware framework for par-
allel spatially explicit agent-based models. International Journal of Geographical In-
formation Science, 27(11):2160–2181.

Torrens, P. M. and McDaniel, A. W. (2013). Modeling geographic behavior in riotous
crowds. Annals of the Association of American Geographers, 103(1):20–46.

Wilensky, U. (1997). Netlogo wolf sheep predation model. URL http://ccl. north-
western. edu/netlogo/models/WolfSheepPredation. Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston, IL.

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

92


