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Abstract. By using differential equations, evolutionary gatheory shows that
most of the games of competition for resources hexyailibrium strategies
named Evolutionary Stable. Although this approash deduce these points, it
is not possible to say how or whether a populatiihreach such equilibrium.
We present an evolutionary agent-based model whdreiduals compete for
space using mixed strategies. Agents belong taadpatations that settle with
whom they can interact, but they can freely movectmtiguous partitions
according to a definition of satisfiability. Thensilation results show that,
although the agents do not have any knowledge abquilibrium points,
the population’s mean strategy always convergea &table state, close and
above to the analytic equilibrium. Moreover, itréached independently of the
initial population.

Keywords. Spatial Games, Agent-Based Modelling, Chicken G&#S.

1 Introduction

Since the works of Maynard Smith on evolution ane theory of games [1], it has
been shown that Game Theory can be used for swydsfrecies competing for
resources. By using replicator equations, evolatiprygame theory shows that there
exist equilibrium points named Evolutionary StaBleategy (ESS). It means that, if
all members of a population adopt this strategy the mutant strategy could spread
under the influence of natural selection.

Although this approach can deduce equilibrium iit does not say how or
whether the population will reach such equilibritBomputer models are the way to
show how this happens by growing the patterns ebsein real world, because
finding equilibrium points is not enough to shovattta population will reach such
equilibrium: it is necessary to build these pattdma generative way [2].

Authors that propose simulation models try to télidie some assumptions of the
mathematical model, criticizing the fact that somg its assumptions are not
applicable to the real world. The critics rely nigim the use of infinite populations.
An example is the work of Orzack and Hines, showimgt the probability an ESS
will evolve is proportional to the population si@. Another example is the work of
Fogel and others, which describes models with auladipn starting at ESS but,



instead of staying stable, the models evolve terostrategies [4]. In both cases, each
agent competes with all other agents of the modarder to calculate its fitness.
These models have two main disadvantages. Fimsy, trely converge to a stable
state, be it an ESS or not. Second, they are dyralggpendant on the composition of
their initial population.

By adding space as a new dimension for studyingetitempetitions, we can relax
the assumptions of agents having to compete witth esther and working with
infinite populations. There are some experimentstha literature showing that
members of populations compete for space because nbed to guarantee food,
which can decide their fate. An experimental evagethat owning space may lead to
survivor is presented by [5]. The author descrithes percentage of diary corporal
weight change of spiders. There are two groupspadess: one that owns some
territory and another that does not. Most of sgdbat do not own a territory lose
weight, while almost all owners increase their viatigvhich leads to a greater chance
to survive.

However, much of the simulation studies that addcepas a fundamental
component of the model are interested in the eiwludf cooperation using only pure
strategies or meta-strategies that use the laskises choose the next action [6]. In
these works, only the strategy spreads over theespa, in some other cases, the
agents have little mobility, mainly waiting for ampty cell to move [7]. In this work,
we study the evolution of a population that comgetespace usingnixedstrategies,
and whose members can freely move according tdiitien of satisfiability.

The main objective of this work is to investigathether a population evolves to a
stable equilibrium within this environment, and hdte reached equilibrium is
related to the theoretical equilibrium. We presaittal results of the proposed model,
analysing the effects of mutation and initial patign on the evolutive process.

2 Non-cooperative Games, Nash Equilibrium, and ESS

A game with n players is said to be non-cooperatikien we have, for each player:

1. afinite set of pure strategies (actions);

2. a payoff function, mapping all n-tuples with puteategies to real numbers.
One mixed strategy is a collection of non-negativembers adding up to 1,
corresponding to probabilities of using each ofpghee strategies. The mixed strategy
defines the tendencies of a player. Each timeayglit will choose randomly one of
its pure strategies, based on the probabilitiemdéfby the mixed strategy.

For example, let us take the chicken game. Twogptakiave the choice to escalate
(E) or not to escalate (~E) a brawl. If none ofnthescalates, nothing happens. If only
one escalates, the other player runs away, anditireer receives 1 from the coward
player. But, if both decide to escalate, each plagss 10 due to medical care. This
game is said to be symmetric, because both plaamoy the same pure strategies
and payoffs, as shown in Table 1. Given that thisg has only two pure strategies,
we say thas,, 0< x < 1, is the mixed strategy of escalating with pralitgbx.



Table 1. Chicken game payoffs, in pairs (A, B).

B escalate® does not escalate
A escalates (-10,-10) (+1,-1)
A does not escalate(-1, +1) (0, 0)

Nash proved that, given any non-cooperative ganrepéyers, there is always an
equilibrium point, a set of mixed strategies fockealayer that, if a player changes its
mixed strategy, the best result it may get willtbe same as in the equilibrium [8].
No player has incentive to deviate one-sidedly fitsystrategy as long as the other
players remain in the equilibrium. This is knowrtlas Nash equilibrium.

But this concept of equilibrium may cause contrgyet et the chicken game and
two players, A and B, following strategiesamd g, respectively. The expected payoff
of Ais —10ss, + & — $- If A would know exactly the value of,st would be possible
to calculate the best action for A. If is greater than 10%, the best choice for A is
never to shoot {(s= 0), implying in a payoff of s If 5, is less than 10%, A should
always shoot (s= 1), because its payoff would be 1—-11But, if g, is exactly 10%,
all strategies for A lead to the same payoff (=0Thus, if g is also fixed at 10%, no
other strategy could increase its payoff againblyAhanging its own mixed strategy.
Applying the same reasoning for B, we arrive to ttenclusion that when both
players follow g, the game is in a Nash equilibrium. Most game tiséoagree on
S.1 as the rational solution for this game, but thguarent is weak [9]. Although
deviating from the equilibrium does not increase thility of a player, it does not
decrease as well, as long as the opponent follgwdilerium. Thus, this equilibrium
it is notstrict.

A clearer explanation can be found when it is pthget by only two players, but
within a population. Maynard Smith viewed this gamea population-dynamical
setting. In his model, an infinite number of play@neet randomly in contests where
they have to decide whether to escalate or ndahelfestimated overall probability is
greater than 0.1, it is better not to escalaté.i#f less than 0.1, it is better to escalate.
But if it is exactly 0.1, then there is no bettérategy than ;. In this sense, self-
regulation leads togs — self-regulation, not between two players, buthimi a
population. Nash has also proposed a similar int¢aion for the equilibrium points,
themass-actiorj8], forgotten for decades in his unpublished ithes

Maynard Smith pointed out two possible interpretadi for the ESS. The first
interpretation refers mixed strategies, meaning #zh member of the population
follows the same equilibrium mixed strategy. In tese of the chicken game, the
whole population would followys. The second solution works with pure strategies.
We have players following different pure strategiessuch a way that the mean
strategy of the overall population is at equililniuAgain with the chicken, the stable
state has 90% of the population following and 10% following .

In this work, we will study how this non-strict dlijjorium behaves in a spatial
context where the agents’ mobility is based onrésellts of the games. We relax the
assumptions of finite population and matches amahghembers of the population,
and add new parameters such as fitness, satigfrabihd mutation.



3 TheBasic Modd

The approach of this work is based on a non-ew@utiodel proposed Andrade and
others [10]. The model takes place in a cellulacsp A cellular space is a network of
cells connected by neighbourhood relations. Theksst example of a cellular space
is a grid, with square cells having four touchingighbours. The cellular space is
populated with agents. Each agent belongs to awhith has enough space for it to
live. Initially, a cell contains a set of agentdiigh have to compete for it through a
non-cooperative game. Whenever an agent is playimgn-cooperative game, we call
it player.

The basic assumption of this model is that whenaweagent arrives at a cell it is
satisfied with it, and it will not move until it bemes dissatisfied. Two agents within
the same cell may play a game competing for it,taedresult of the game affects the
satisfaction of both agents. This is the only mgnar agent has, and it is called the
local satisfaction. It starts with a positive valvben an agent arrives at a cell, and
when this value reaches zero or less, the agedbnaly picks a neighbour cell and
moves to it, looking for a better cell to compete. fTherefore, this movement is a
random walk.

Each agent also has a global satisfaction, stawtitiga positive value significantly
greater than the local satisfaction, but also &ffdy the payoffs of the games. All
agents have the same global satisfaction at thimiieg of the model. An agent that
got dissatisfied many times and its global satisfacreaches zero or less leaves the
model. As we need local and global satisfactiorreesing along the simulation, the
expected payoff of the game used in the modeldas almost always negative.

To create a metric for satisfaction, we say thesfsation of an agent is measured
by its fitness. Local satisfaction represents tlaximum effort one can dispend when
competing for a cell and global satisfaction isitiigal fitness. Agents are identical if
we consider satisfaction, but they differ in theiixed strategies, which cannot be
identified by any other agent.

The basic model has a finite number of turns, eawh with two steps. The first
step establishes the games, randomly choosing plagents in each cell, and then
carries out the games with each pair. Cells wittodd number of agents have one
random idle agent. No agent will play more thaneoimceach turn.

The second step defines the dynamical part of théein Once each agent already
knows its own payoff, it updates its local and glbbatisfactions with the earned
payoff. Then, it checks if any satisfaction hascheal zero or less to perform a
movement or to leave the model. The model exeaunds it reaches a stable state,
which can be when there is at most one agent ih eatl, or when the overall
satisfaction stops to decrease.

The model of games on cellular space can be fozstlas a 9-tuple:

M=(@C,nSp ASsKkagl),where
» Cis the cellular space in which the games takeeplac
* nis the number of players involved in the non-coafiee game,
 Sis the set of actions (pure strategies) each pleae take,
e p: X - [0, X=, is the payoff function,
» Ais the set of sorts of agents,



* s: AxS - [0,1], 0alA, 3,nsSa, b) = 1, represents the mixed strategies,
» KON, is initial number of agents of each given sort,

e g 00, is the global satisfaction threshold,

« | 00O, is the local satisfaction threshold.

Therefore, given,swe have thad(s,, E)=x ands(s,, ~E)=1-x. An agent using a mixed
strategy commits to a randomization device. Eatie the agent plays, it chooses one
of its pure strategies, based on the probabilgpeified by its mixed strategy. As an
example of model, the following describes the tiadal chicken game:

M. = (Cc, 2, ,u, {Sy, §}, S, 1, 00, o).

The cellular spac€c has one cell with two agents, one followiggand the other
S. They have the same set of possible actions, fastaand “not escalate,” and the
same payoff matrix u (shown in Table 1), but theyribt have to follow the same
mixed strategy. Both agents always stay in the aall never leave the model.

In this work, we apply the chicken within this agramework. The expected
payoff of chicken is almost always negative, onlythe case where both players
never escalate it is zero. Thus, this game fitwith the need of reducing satisfaction
to make the agents move. C is a squared grid V@ix2@ cells, such that the possible
movements are at most to four neighbours (up, ddefh, and right). Cells on the
edges have three choices, and cells on the cdnagesonly two.

4 TheEvolutionary Mode

The evolutive model is based on the idea that agiatt own cells at the end of the
basic model deserve to pass their strategies taéxé generation. Therefore, the
model considers a competition of the basic moderesevolutive step, a survival of
the fittest. Once a competition finishes, each aglest has conquered a partition of
space produces descendants within the cell it lo@gjuered. The agent tries to
transfer its own strategy to its offsprings, bugithearning ability is limited, and then
they may have a strategy slightly different frora father, according to a predefined
mutation probability. Whenever this mutation isieated, the offspring has the
strategy of its father with some random changeemtise it takes exactly the same
strategy. Therefore, there are three additionahrpaters if compared with the basic
model: number of descendants, mutation probabdity the mutation itself.

The father leaves the model right after it generdtte descendants. This leads to
non-overlapping generations, which is a common @ggr in the literature. This
evolutive process can be repeated indefinetly, iindepends only on the initial
population of the basic model.

The model has five stochastic ingredients, threthefn coming from the original
model, and the other two added by the evolutivé gérey are:

1. selecting pairs of agents within the same celllay,p

2. choosing the agent'’s pure strategy based on itedrsirategy,



3. relocating, once one agent is unsatisfied,
4. mutating or not a given strategy to a descendaut, a
5. choosing the mutation change, once it is activated.

5 Experiments

In this work, we present early results that exanthe convergence of a population
and the effect of mutation on evolution. The paramgechosen were: 3 as the number
of descendants, 0.1% as chance of mutation, arid a®the change in the inherited
strategy, with 50% of probability of each, once thetation is activated. Agents
following s0and s, can only produce mutants gf;sand g o, respectively.

The model was implemented using TerraME framewad4.[Although the model
has five random ingredients, the simulations hadilai development. Thus, the
results presented in this section are single rfitiseomodel.

5.1 Evolutionary equilibrium

As initial test for studying the evolutionary capiies of the model, we examine a
model whose population is initially composed hy agents. The model has the
following arrangement:

Mo = (Cc, 2, {E, ~E}, u, {s1.¢ S, 1200, 200, 20).

Figure 1 shows the results, with the left side shgwa zoom in the first
generations of the simulation. We can see thatstarts filling the whole cellular
space, but it cannot maintain this situation, $itsbg with agents in 75% of the
cellular space. This happens because two agentinvétcell may shoot, reach the
threshold, and leave the cell.

When the first mutation toyg arises in the population, this new strategy rapidl
spreads, crushing gand dominating the whole cellular space. Thistatyacan then
produce agents following, g then g, and so on, each one surpassing the previous
strategy, until §; appears, as shown in the left part of Figure *.Bucannot get rid
of s, and both compete undefinetly. The results agreb {#0], that state that as
more frequently an agent escalates, greater @bitiy to realize cells with a higher
number of agents that also escalate frequently,veill reach its threshold for moving
faster than the ones that escalate less. Moreih\gats even more important because
the agents have limited fitness and need to stag.alhis leads to an increase in the
surviving chance of sub-optimal strategies suclgasand g Therefore, although
there is a single theoretical equilibrium, therenis single best strategy in this
competition for space.
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Fig. 1. Development of strategies in a simulation with yagon of § ;.

Although neither strategy can surpass all othexteies and dominate the overall
population, an evolutive process indeed occuraeltalculate the average strategy of
the population by summing the mixed strategies \adre owner at the end of a
generation and divide by the total number of ageméscan verify that the population
indeed converges to a stable state. In Figure 2hawe the average strategy of the
population, with a dashed line showing the theoattequilibrium point. The average
strategy converges to a stable state before th8 g6@eration and stays close and
above the equilibrium point until the end of theglation.

The generative result of this model is a mixing tbE two definitions of
equilibrium pointed by Maynard Smith. In the resulive do not have the overall
population following the same equilibrium strategwgr agents following only pure
strategies, but what really happens is a combinatb mixed strategies whose
average is a stable equilibruim point.
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Fig. 2. Convergence of the mean strategy using differatiaipopulations.



5.2 Mutation Effects

A question that arises from the result of the ahithodel is how the mutation rate can
affect the model development. Eight simulationsevearried out, each one with a
single mutation rate, varying from 0.1% (the presieexperiment) to 50%. It is not
feasible to have the mutation rate greater than bé&ause, in this case, most of the
descendants would follow a strategy different fithieir predecessors.

It is straightforward that increasing mutation lead a faster convergence to a
stable state, as shown in Figure 3. With mutatib®.4%, it takes more than 150
generations to converge, while with 50% it converigeless than 25 generations. But
note that the distance between the average stratedjyhe theoretical equilibrium is
proportional to the mutation rate. It is difficuth see comparing two consecultive
mutation rates, but we can see clearly compariagdhults of 0.1% and 50%.
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Fig. 3. Effects of changing the mutation rate in the cogeace of the model.

Mutation induces other impacts in the developménthe model. Increasing it
leads to a greater diversity of strategies, and thea higher probability of generating
far from equilibrium strategies. However, thereaionsequence of increasing the
mutation rate that is not straightforward. Figuresdows the number of agents
following each strategy at the end of each germmatin the same simulations of
Figure 3. After the model converges to a stable mstategy, each individual
strategy reduces its oscillation as the mutati@neiases, stabilizing in a well-defined
small interval. That happens because, with highetation, the model has a more
homogeneous distribution of strategies in spac@gbdifficult for a strategy to
conquer many cells, and easy for it to maintaini@mum number of cells.

The increase in the mutation rate makes possibde appearance of agents
following almost each possible strategy. Strategigs a higher chance of escalating
have a major disadvantage when they interact witlkeroagents following a similar
strategy. But, as they can avoid themselves motongther cells, it is possible to



keep a few of them in the model. Consequently, ehfessv agents away from
equilibrium increase the average strategy sigmfigaas shown in Figure 3.
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Fig. 4. Effects of mutation on the stability of the firditribution of individual strategies.

The increase in the mutation rate also makes tlstrilolition of individual
strategies converge towards a discretized gamntabdigon. This result can be seen
in Figure 5, where g decreases ang sincreases as mutation increases, until they
almost draw when we have mutation of 50%. Note ithatasing mutation allows the
development of strategies away from the theoretcglilibrium, making the overall
distribution smoother.
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Fig. 5. Mean number of agents of each strategy after agenee, with eight mutation rates.

Another result of changing the mutation rate isrthenber of agents that survive at
the end of each simulation. There can exist somptyeroells at the end of the



simulation because, when there are only two ageititén a cell, both might escalate,
reach the threshold, and decide to leave thelgglire 6 shows the number of agents
that give rise to descendants in each generatitie dight simulations have a
minimum around 70% of the cellular space in thdyegenerations. After that, the
number of agents grows and stabilizes. In eachhizathere is a dashed line pointing
out 90% of occupation of the space. In mutatiod4).the population stabilizes below
this line, while in mutation 10% or more, the meamber of cells surpasses the line.
A greater diversity in the number of strategieow a better occupation of the
cellular space at the end of each generation. Aethre more agents with different
strategies with the increase in the mutation, ttmeg$s of the agents is reduced more
heterogeneously, which leads to a lower probabiftiwo agents remove themselves
from the model simultaneously.
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Fig. 6. Effects of mutation on the number of occupiedscatithe end of each generation. Note
that it also means the number of agents, once we dr@e agent in each occupied cell.

5.3 Different Initial Populations

The previous results show the impact of mutatiorerothe evolution of the
population, but they cannot enlighten whether thalgive process always happens.
To test the evolutionary capability of the modeg need to examine different initial
populations. This section presents four modelsheage with a single initial
population, with the following arrangements:

My = (Cc, 2, {E, ~E}, u, {sd, s, 1200, 200, 20),

wherek [0 {0.0, 0.1, 0.5, 1.0}. That is, the first populatiof each model has a single
strategy. They are: never escalate, equilibriumdoan, and always escalate.

Figure 7 shows the results of the four modelshinleft, it contains the number of
agents following each strategy at the end of eametion, with the three most
successful strategies) (9.2 and §3) as coloured lines. These strategies have similar



development in the four cases, with none of thempassing the other two and

dominating the whole population, similarly to theeyious results. In the right side,

the figure shows the mean strategy of the ovegutation in each simulation. The

four simulations converge to the same stable sthspite the initial arrangement of

the models. Both results show that the model islokpto converge to a stable state
independently of the initial population. It makée tmodel stronger, and shows that,
although there are five random ingredients in tloeleh their effects do not make the
model chaotic.
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Fig. 7. Individual strategies using different initial pdations.

6 Concluding Remarks

In this work, the evolution of a population is defd by adding simple rules of
reproduction and mutation over a previous workha literature. The selective step,
proposed by Andrade and others, selects the begéegies in a given population,
whatever average strategy it follows. The mutatibows some change in the strategy
when creating a new generation, which can repreaanerror when passing the
strategy to the descendants. This error leadsealiversity on the population and
allows the evolutive process to take place.

The results of our experiments show that, althotighagents do not have any
knowledge about equilibrium points and cannot ewdrange their individual
strategies along their lifetime, the average sgatef the population always
converges to a stable state, close and above tm#dgtic equilibrium. Moreover, this
equilibrium is reached independently of the init@dpulation. These two points
corroborate the hypothesis that populations evtdva stable state even if we use a
finite population. The results also agree with gh@tements of Nash, who said that
“we can only expect some sort of approximate elguilim, since [...] the stability of
the average frequencies will be imperfect” [8]. iAgs almost impossible to validate
this kind of model with real world data, showingtlthe model is independent of the
initial population is a reasonable way to makeustworthy.



A coupple of questions are still not solved withie context of the proposed
model. As changing the chance of mutation proddifeets on the evolutive process,
other parameters may also lead to different reslescan cite:

= Reduce the interval of mutation, for example frothltto +0.01, or even
allow the complete [0,1] range,
= Change parameters such as initial population simk faness, number of
descendants, and mobility threshold, and
= Use games with other equilibrium points.
If we change these parameters, will the model cayevéo closer and above to the
theoretical equilibrium point? Another point thabh some investigation is, can
these results be inferred from mathematical egnstior only simulation models can
produce that?
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