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Abstract. Next generation imaging spectrometers with higher signal-to-noise ratio and broader
swath-width bring new perspectives for crop classification over large areas. Here, we used
Hyperion/Earth Observing-One data collected over Brazilian soybean fields to evaluate the
performance of four classification techniques (maximum likelihood — ML; spectral angle
mapper — SAM; spectral information divergence — SID; support vector machine — SVM) to
discriminate five soybean varieties. The spectral resolution influence on classifying them was
analyzed by simulating the spectral bands of seven multispectral sensors using Hyperion data.
Before classification, the Waikato environment for knowledge analysis was used for feature
selection. Results showed the importance of the green, red-edge, near-infrared, and shortwave
infrared to discriminate the soybean varieties. Because the soybean variety Monsoy 8411 was
sensed by Hyperion in a later reproductive stage, it was more easily discriminated than the other
varieties. The best classification techniques were ML and SVM with overall accuracy of 89.80%
and 81.76%, respectively. The accuracy of spectral matching techniques was lower (70.84%
for SAM and 72.20% for SID). When ML was applied to the simulated spectral resolution
of the multispectral sensors, moderate resolution imaging spectroradiometer and enhanced
thematic mapper plus presented the highest accuracy, whereas advanced very high resolution
radiometer showed the lowest one. C© 2011 Society of Photo-Optical Instrumentation Engineers (SPIE).
[DOI: 10.1117/1.3604787]
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1 Introduction

Imaging spectrometry, also known as hyperspectral remote sensing, can be potentially used for
the monitoring, classification, and grain yield estimation of perennial,1,2 semiperennial,3,4 and
annual crops.5–8 It can be also used for cultivar discrimination, which is important for inventory,
crop certification, and for improving the performance of crop yield models.9–11 For crop type
discrimination, the possibilities in the near future of having orbital imaging spectrometers with
better signal-to-noise ratio (SNR) and larger swath width than the available hyperspectral sensors
introduce new perspectives to improve classification accuracy. For example, when compared
to the available Hyperion/Earth Observing-One (EO-1),12 which acquires data on demand over
narrow swath width (7.7 km) and with low SNR [40 in the shortwave infrared (SWIR)], NASA’s
planned hyperspectral infrared imager will acquire images in more than 200 bands with swath
width of 150 km and SNR of 400 in the SWIR.13 Therefore, some limitations of multispectral
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data for crop type discrimination may be overcome with a hyperspectral Landsat/TM alike
sensor.14–17

Despite the low SNR and narrow swath width, Hyperion acquired data over Brazilian
agricultural fields providing an opportunity to test different classification techniques and to
simulate the spectral resolution of distinct multispectral sensors. Classification results can be then
compared between the Hyperion and simulated multispectral sensors for cultivar discrimination.
Maximum likelihood (ML), spectral angle mapper (SAM), spectral information divergence
(SID), and support vector machine (SVM) are four examples of very distinct classification
techniques usually used in hyperspectral analyses. ML assumes that the statistics for each class
in each band are normally distributed and calculates the probability that a given pixel belongs
to a specific class.18 SAM calculates the angular similarity between a reference spectra and
each pixel spectrum comparing the shape between the reflectance curves.19,20 SID differs from
SAM by using a measure of divergence to match pixel to reference spectra.21–23 Finally, SVM
is especially useful for classification of high dimensional and noisy data discriminating classes
with a decision surface that maximizes the margin between them.24,25 In general, classification
of hyperspectral data using ML requires feature selection to avoid the Hughes phenomenon,
that is, the loss of accuracy when data dimensionality increases while the training sample size
remains fixed.26,27 However, even for SVM, feature selection is recommended, as demonstrated
recently by Ref. 28. The objective of feature selection is to identify a subset of original features
(variables) that preserve the essential information, excluding the highly correlated and redundant
features from classification.28

Soybean is an important agricultural commodity, which has presented an expressive ex-
pansion in the last decades in Brazil.29,30 On February 8, 2005, Hyperion acquired data over a
soybean farm located in the Brazilian state of Mato Grosso. Five soybean varieties were sensed
by Hyperion at different reproductive stages. Thus, in this work we test the hypothesis that
different classification techniques applied to hyperspectral data can improve cultivar discrim-
ination when compared to simulated spectral resolution data of selected multispectral sensors.
Furthermore, we consider the hypothesis that the discrimination of some varieties is much
more related to small differences in phenological stages rather than to differences in canopy
characteristics between them.

Thus, the objectives of this work were: a. to evaluate the performance of different classifica-
tion techniques for the discrimination of soybean varieties, when using Hyperion data, and b. to
analyze the spectral resolution influence on discriminating them by simulating band positioning
of selected multispectral sensors from Hyperion.

2 Methodology

2.1 Study Area and Soybean Agronomic Data

The study area is the Tanguro farm located in Querência municipality, Mato Grosso state,
central Brazil (Fig. 1). This area is characterized by a flat topography (350 m of altitude) with
soil predominance of Latossolo Vermelho-Amarelo distrófico (Typic Acrustox, in the USA Soil
Taxonomy).31 The climate type is designated as tropical, with mean temperature of 26◦C and
annual rainfall of 1850 mm, with a well-defined dry season from May to September and a rainy
season from October to April. The native vegetation comprises the transition between savannas
(Cerrado) and Amazonian tropical rainforest.

Soybean varieties are continuously developed to improve the yield, the resistance to natural
diseases, and environmental stresses (soil adaptation; heavy rain or water stress), and the adap-
tation to the local photoperiod.32 As shown in the reference map (Fig. 1), five soybean varieties
were planted at the Tanguro farm in the 2004 to 2005 growing season, covering approximately
8500 ha: Perdiz, Monsoy 8411, Monsoy 9010, Kaiabi, and Tabarana. Perdiz was predominant
in the study area and Monsoy 8411 presented the shortest life cycle (116 days). In general, the
varieties were planted on different dates along October to November and harvested in the period
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Fig. 1 Location of the Tanguro farm in central Brazil. The reference map provided by the farm
of the soybean varieties planted in the 2004 to 2005 growing season is indicated and other
land cover types are masked in white. The false color composite includes the Hyperion bands
positioned at 884 nm, 1659 nm and 2203 nm in RGB.

of March to April (Table 1). Better grain yields were obtained for Monsoy 9010 and Monsoy
8411. The average yield of all varieties was 2942 kg/ha. All soybean varieties showed complete
canopy closure but different reproductive stages, that ranged from R5 (beginning seed) to R6
(full seed) and R7 (beginning maturity), at the acquisition time of the Hyperion image (February
8, 2005). The row spacing was constant (45 cm).

2.2 Pre-Processing of Hyperion Data

Hyperion acquires images in 196 radiometrically calibrated narrow and continuous bands
(10 nm of width) in the 400 to 2400 nm spectral region. The swath width is 7.7 km and the spatial
resolution is 30 m. The 16-days temporal resolution can be reduced by side looking or sensor
pointing.12,34 However, the resultant off-nadir viewing usually enhances directional effects due

Table 1 Agronomic data for the five soybean varieties planted at the Tanguro farm in the 2004
to 2005 growing season.

Varieties
Planting date

MM/DD,YY
Harvesting date

MM/DD,YY

Local
cycle

(Days)
DAPa

(Days)
Yield

(kg/ha) Rb

Perdiz Oct. 30 to Nov. 8, 2004 March 7 to April 9, 2005 138 96 2926.70 5
Monsoy 8411 Oct. 29 to Nov. 1, 2004 Feb. 20 to 28, 2005 116 100 3190.23 6 to 7
Monsoy 9010 Nov. 12 to 17, 2004 March 24 to April 1, 2005 131 85 3160.81 5
Kaiabi Nov. 8 to 11, 2004 March 31 to April 10, 2005 147 91 2706.06 5
Tabarana Nov. 10 to 13, 2004 March 31 to April 10, 2005 145 89 2919.26 5

aDays after planting (DAP), considering the mean planting date and the Hyperion image acquisition on
February 8, 2005.
bReproductive stage ranging from R5 (beginning seed) to R6 (full seed) and R7 (beginning maturity), defined
according to Ref. 33.

Journal of Applied Remote Sensing 053533-3 Vol. 5, 2011

Downloaded from SPIE Digital Library on 21 Jun 2012 to 150.163.34.17. Terms of Use:  http://spiedl.org/terms



Breunig et al.: Classification of soybean varieties using different techniques: case study with Hyperion...

to crop anisotropy in spectral response to changes in view-illumination geometry.7,35,36 The
impact of directional effects on the reflectance of different soybean varieties was discussed in
Ref. 7 when using Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra data ac-
quired at close dates (fixed phenological stages) and in opposite view angles (+44 deg and
−42 deg). For a given soybean variety, reflectance differences up to 20% in the 250-m
MODIS near-infrared band were observed between the forward scattering and backscattering
directions.

In this study, Hyperion acquired the image on February 8, 2005, with 21 deg view angle in
the forward scattering direction, in which shade effects predominated for the sensor. Image pre-
processing involved the application of an algorithm for striping removal37 and another one for
wavelength recalibration by spectral matching of both the MODTRAN-modeled and observed
radiance spectra.38 This spectral matching procedure is also useful to reduce the smile effect,
which may produce variations between 2.6 and 3.6 nm in the visible and near-infrared (VNIR)
and less than 1 nm in the SWIR.39 Such variations have a small impact on crop classification
considering the 10-nm bandwidth of Hyperion. Keystone effects were not corrected. The fast
line-of-sight atmospheric analysis of spectral hypercubes was used to convert radiance data
into atmospherically corrected surface reflectance.40,41 A tropical-rural atmospheric model was
adopted with water absorption estimates from the 1130 nm spectral feature. We used the 2-band
(K-T) method42 to estimate the amount of aerosols and the scene average visibility (63 km).
Unfortunately, there were no weather stations in the region that could be used for atmospheric
parameters extraction. To smooth data for artifacts resultant from the atmospheric correction
and poor SNR of Hyperion, an inverse minimum noise fraction transformation was applied over
different spectral regions.43

After preprocessing the data, the following 150 Hyperion bands were used in data analysis:
bands 6 to 50 (477 to 915 nm), 51 to 91 (932 to 1336 nm), 105 to 136 (1477 to 1790 nm),
and 160 to 192 (2032 to 2355 nm). Noisy Hyperion bands were excluded, as well as those
positioned around 1400 and 1900 nm, which are wavelengths of strong water vapor absorption.
The final step was the geometric correction using a polynomial function and the nearest neighbor
resampling method.

2.3 Data Analysis

A reference map of the 2004 to 2005 growing season was provided by the Tanguro farm
showing the precise location per plot of the five planted soybean varieties (Fig. 1). We tested their
discrimination using four different classification techniques (ML, SAM, SID, and SVM) applied
to Hyperion data. Before classifying the Hyperion data, we used the Waikato Environment
for Knowledge Analysis (WEKA) data mining algorithm for feature selection.44,45 WEKA
is a collection of machine learning algorithms for data mining tasks, which contains several
modules. Feature selection is one of the modules, which consisted of selecting the best subset of
Hyperion bands from the set of 150 preprocessed bands. It was based on the greedy hill climbing
stepwise search method with rank generation.27,45 The method was applied to the training set
of 1500 pixels (300 pixels per soybean variety). The correlation-based feature selection subset
evaluator,46 which considers the individual predictive ability of each band and the redundancy
between the bands, was adopted in data analysis.27,46,47 The ranked bands from feature selection
were also used to evaluate the Hughes effect on each classification technique. The Hughes
effect has been observed in many remote sensing studies for a range of classifiers. For example,
parametric techniques such as ML may not be able to classify a dataset accurately if the ratio of
the sample size to number of features is small.28

To allow comparison of classification accuracy between these techniques from a common
baseline, we fixed the number of training (300 randomly selected per variety) and validation
(total of 46,875 of the reference map) pixels. The same procedure was adopted for the number
of input bands for classification, which was defined from feature selection. The classification
was performed exclusively over the soybean farm and other land cover types were masked.
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Table 2 Nominal band positioning of selected multispectral sensors. Spectral resolution simula-
tions from Hyperion data used the actual spectral band shapes (filter functions) of the sensors.
Variations in SNR between them were not evaluated.

Sensor

Blue
band
(nm)

Green
band
(nm)

Red
band
(nm)

Red edge
band
(nm)

NIR-1
band
(nm)

NIR-2
band
(nm)

SWIR-1
band
(nm)

SWIR-2
band
(nm)

AVHRR – – 580 to
680

– 725 to
1000

– 1580 to
1640

–

ETM+ 450 to
515

525 to
605

630 to
690

– 775 to
900

– 1550 to
1750

2090 to
2350

MODIS 438 to
448

526 to
536

620 to
670

743 to
753

841 to
876

1230 to
1250

1628 to
1652

2105 to
2155

459 to
479

545 to
565

662 to
672

862 to
877

931 to
941

483 to
493

546 to
556

673 to
683

890 to
920

915 to
965

ASTER – 520 to
600

630 to
690

– 760 to
860

– 1600 to
1700

2145 to
2185

2185 to
2225

2235 to
2285

2295 to
2365

HRG – 500 to
590

610 to
680

– 780 to
890

– 1580 to
1750

–

IKONOS 445 to
516

506 to
595

632 to
698

– 757 to
853

– – –

RapidEye 440 to
510

520 to
590

630 to
685

690 to
730

760 to
850

– – –

Using the reference map (Fig. 1) and masking the training pixels, confusion matrices, which are
used to assess classification accuracy and misclassification between classes, were generated to
obtain the producer’s and user’s accuracies, the overall classification accuracy, and the Kappa
values. Discussion on the discrimination of the soybean varieties considered also the differences
in reproductive stages between the varieties.

To analyze the spectral resolution influence for discriminating the studied five soybean
varieties, we simulated band positioning of seven multispectral sensors using their respec-
tive filter functions (Table 2): 1. advanced spaceborne thermal emission and reflection ra-
diometer (ASTER)/Terra; 2. advanced very high resolution radiometer (AVHRR)/NOAA-17;
3. IKONOS; 4. enhanced thematic mapper plus (ETM+)/Landsat-7; 5. MODIS/Terra; 6. rapid-
eye; and 7. high resolution geometric (HRG)/SPOT-5. ASTER band 9 (2360 to 2430 nm) and
MODIS bands 8 (405 to 420 nm) and 20 to 36 (3660 to 14,385 nm) were not simulated because
they were out of the spectral range of Hyperion operability. The sensors listed in Table 2 were
selected to represent distinct nominal band positioning and bandwidths. In Table 2, AVHRR,
RapidEye, and IKONOS represent data acquisition only in the visible and near-infrared, whereas
the remaining sensors represent an extended operability into the SWIR. The actual SNR of the
simulated sensors was not evaluated in this study. All the analyses were done keeping the Hy-
perion spatial resolution constant (30 m) and using the spectral bands representative of different
satellite sensors.

The classification technique of best performance with Hyperion was applied to images of
the spectral resolution simulated sensors and results were compared between them. Training
(300 per variety) and validation pixels (reference map) were kept constant between the simulated
sensors. After masking the training pixels, confusion matrices were generated for each sensor
classification.
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Fig. 2 Effects of the inclusion of the Hyperion ranked bands (feature selection) on the overall
classification accuracy of the 1500 training pixels by the four classification techniques. The first
20 bands (dashed area) used for subsequent Hyperion image classification are discussed in the
text.

3 Results and Discussion

3.1 Feature Selection

From the use of the WEKA data mining algorithm, we selected 20 Hyperion bands centered at
the following wavelengths as the best subset of bands to discriminate the five soybean varieties:
508; 538; 548; 559; 569; 589; 701; 711; 721; 732; 752; 874; 932; 1124; 1628; 1659; 1749;
2102; 2163; 2203 nm. Classification accuracy of the training pixels using ML, SAM, SID,
and SVM did not improve significantly with the inclusion of additional bands in the analysis
(Fig. 2). However, the Hughes effect, decreasing the classification accuracy, was evident on
the ML classification of the training pixels when more than 100 bands were included in data
analysis. Even for SVM, classification accuracy decreased as more bands were added from 82%
(20 bands) to 76% (150 bands). This result is in agreement with that found by Ref. 28, who
demonstrated that SVM is still sensitive to the Hughes phenomena, especially when a small
number of training samples is used.

The first ranked bands by WEKA included the green (508, 538, 548, 559, 569, and 589 nm),
red edge (701, 711, 721, 732 nm), and NIR (752, 874, 932, and 1124 nm) spectral regions, closely
followed by the SWIR-1 (1628, 1659, and 1749 nm). The last ranked bands were placed in the
SWIR-2 (2102; 2163; 2203 nm). Green and red edge bands are mainly sensitive to leaf pigments
such as chlorophyll, whereas NIR bands are more sensitive to biophysical attributes such as leaf
area index. However, NIR bands placed at 932 and 1124 nm comprise the limits of well-defined
canopy/leaf water spectral features centered at 980 and 1200 nm. Canopy moisture is the most
important spectral factor to reduce the reflectance in the SWIR-1 and SWIR-2 spectral regions,
but the selected 2102 nm Hyperion band absorbs radiation due to lignin-cellulose.

Relationships between the reflectance of the green (559 nm) and NIR (874 nm) Hyperion
bands showed a clear discrimination of Monsoy 8411, which presented higher reflectance values
in the green and lower in the NIR than the other soybean varieties [Fig. 3(a)]. As discussed
before, when compared to the other varieties, Monsoy 8411, which has the shortest life cycle
(116 days), was sensed by Hyperion in a more advanced reproductive stage (Table 1). Hyperion
bands positioned in the red edge spectral region (690 to 750 nm) could also differentiate Monsoy
8411, whereas the SWIR-1 range (1500 to 1750 nm) was especially useful to discriminate
Monsoy 9010 from the other varieties [Fig. 3(b)].
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Fig. 3 Relationships between the reflectance of the Hyperion bands positioned at: (a) 559 nm
and 874 nm; and (b) 721 nm and 1659 nm. A total of 300 pixels per variety were used.

3.2 Classification Techniques Applied to Hyperion Data

When compared to the reference map, the best classification results with the selected 20 Hyperion
bands were obtained using ML, whereas the worst results were obtained using SAM (Fig. 4).
Overall classification accuracy and Kappa values ranged from 89.80% and 0.85 for ML to
70.84% and 0.59 for SAM, respectively (Table 3). Inspection of the confusion matrices showed
that all of the studied techniques discriminated adequately the variety Monsoy 8411 which
presented producer’s accuracy values close or equal to 100%.

The good discrimination of Monsoy 8411 was associated to its more advanced reproductive
stage (R6 to R7) at the time of Hyperion image acquisition. In relation to the other varieties,
Monsoy 8411 presented larger reflectance in the visible and lower reflectance in the NIR and
SWIR (Fig. 5), as well as it also showed larger variability (standard deviation bars; results not
shown). As demonstrated by Ref. 7, soybean development stages impact classification results,

Fig. 4 Reference map of the soybean varieties provided by the farm and Hyperion image classifi-
cation by the four techniques. ML and SAM presented the highest and lowest overall classification
accuracy, respectively.
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Fig. 5 Hyperion reference spectra of the five studied soybean varieties.

because the varieties have different life cycles (growth rates) and they are planted at slightly
different periods from October to November in central Brazil.

Continuing in the analysis of Table 3, the most important difference in classification per-
formance between the techniques used was associated with the better ability of ML and SVM
to differentiate the Kaiabi variety. Producer’s accuracy for Kaiabi ranged from 92.42% (ML)
and 76.65% (SVM) to 55.02% (SID) and 47.81% (SAM). Kaiabi was generally misclassified
as Perdiz or Tabarana by SAM and SID (Fig. 4; Table 3), which are techniques that compare
each pixel spectrum with reference spectra of the varieties. Results were consistent with Fig. 5
that showed similarity in spectra shape between the Kaiabi and Perdiz-Tabarana varieties.

3.3 Spectral Resolution Influence on the Discrimination of Soybean Varieties

When the spectral resolution simulation of selected multispectral sensors was performed,
MODIS/Terra and ETM+/Landsat-7 presented the highest classification accuracy values
(86.72% and 85.94%, respectively), whereas the AVHRR/NOAA-17 showed the lowest value
(68.85% in Table 4). Classification derived from AVHRR/NOAA-17 was affected by its poor
spectral resolution and the absence of bands in the SWIR. Kappa values ranged from 0.57
(AVHRR) to 0.81 (MODIS). ML MODIS classification accuracy and Kappa values (Table 4)
were comparatively lower than Hyperion (Table 3). In this context, spectral resolution simu-
lation from Hyperion to multispectral sensors may impact positively on classification results
because of the noise attenuation due to spectral resampling from narrow to broad bands.

In agreement with previous results for Hyperion, inspection of the ML classified images
(Fig. 6) and of the resultant confusion matrices (Table 5) for MODIS and AVHRR showed

Table 4 Overall classification accuracy and Kappa coefficient values derived from ML classifi-
cation of the five soybean varieties after the spectral resolution simulation of seven multispectral
sensors.

Sensor Overall Kappa
accuracy (%) coefficient

AVHRR/NOAA-17 68.85 0.57
ETM+/Landsat-7 85.94 0.80
MODIS/Terra 86.72 0.81
ASTER/Terra 80.47 0.72
HRG/SPOT-5 76.46 0.67
IKONOS 82.87 0.76
RapidEye 82.97 0.76
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Fig. 6 Reference map of the soybean varieties and classification results for the simulated spectral
response of the AVHRR/NOAA-17 and MODIS/Terra bands.

that both simulated sensors adequately discriminated Monsoy 8411. This result indicates the
importance of the information on soybean planting date and phenological stage for the correct
interpretation of remote sensing, as already reported by Refs. 48 and 49. Kaiabi presented the
lowest producer’s accuracy values for both sensors (Table 5), which was consistent with its
reflectance spectrum of Fig. 5 that showed confusion with spectra of other varieties.

4 Conclusions

The Hughes effect on the ML classification was observed, especially when more than 100 bands
were included in the analysis, decreasing classification accuracy. Results from feature selection
indicated the importance of the Hyperion bands positioned in the green, red edge, NIR, and
SWIR-1 to discriminate the five studied soybean varieties.

From the four tested classification techniques, ML and SVM presented the best results with
overall classification and Kappa values of 89.80% and 0.85 and of 81.76% and 0.74, respectively.
The worst performance was obtained by SAM (70.84% and 0.59). The most easily discriminated
soybean variety was Monsoy 8411, because it was sensed by Hyperion at a later reproductive
stage, presenting comparatively higher reflectance in the visible and lower in the NIR-SWIR-
1 than the other varieties. Differences in classification performance between the techniques
were associated with the better ability of ML and SVM to differentiate the Kaiabi variety
when compared to the matching spectra techniques. Kaiabi presented reflectance spectra shape
similarity with Tabarana and Perdiz. Thus, techniques that compared the similarity between the
shape of the spectra (SAM and SID) were less effective to discriminate varieties than techniques
based on differences between soybean absolute reflectance values (ML and SVM).

Classification performance decreased from Hyperion to the simulated spectral resolution
data of the studied multispectral sensors. Among the simulated sensors from Hyperion, MODIS
and ETM+ presented the highest classification accuracy, whereas the AVHRR showed the
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lowest one due its poor spectral resolution and the absence of bands in the SWIR. Kappa values
ranged from 0.57 (AVHRR) to 0.81 (MODIS).

Results from Hyperion and the spectral resolution simulation of seven multispectral sensors
demonstrated the importance of taking into account the differences in phenological stages
between the soybean varieties in discrimination studies.
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