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Abstract. Recently, researchers in GIScience argued about the benefits on 
using functional programming for geospatial application development and 
prototyping of novel ideas. This paper presents an application that interfaces a 
functional language with a spatial database. It enables developing GIS 
applications development in a functional language, while handling data are in 
a spatial database. We used this application develop a Map Algebra, that 
shows the benefits on using this paradigm in GIScience. Our work shows there 
are many gains  in using a functional language, especially Haskell, to write 
concise and expressive GIS applications. The TerraHS application allows a 
good compromise between the expressive power of a functional language, and 
the data handling facilities of an imperative language. 

1 Introduction 
Recent, research in GIScience proposes to use functional programming for geospatial 
application development [Frank and Kuhn 1995; Frank 1997; Frank 1999; Medak 1999; 
Winter and Nittel 2003]. Their main argument is that many of theoretical problems in 
GIScience can be expressed as algebraic theories. For these problems, functional 
languages enable fast development of rigorous and testable solutions [Frank and Kuhn 
1995]. However, developing a GIS in a functional language is not feasible, since many 
parts needed for a GIS are already avaliable in imperative languages such as C++ and 
Java. This is especially true for spatial databases, where applications such as 
PostGIS/PostgreSQL offer a basic support for spatial data management. It is unrealistic 
to develop such support using functional programming. 

 It is easier to benefit from functional programming for GIS application 
development if we build an application on top of an existing spatial database 
programming environment. This work presents TerraHS, an application that enables 
developing geographical applications in a functional language, using the data handling 
provided by TerraLib. TerraLib is a C++ library that supports different spatial database 
management systems, and that includes many spatial algorithms. As a result, we get a 
combination of the good features of both programming paradigms.  

 This paper describes the TerraHS application. We briefly review the literature on 
functional programming and its use for GIS application development in Section 2. We 
describe how we built TerraHS in Section 3. In Section 4, we show the use of TerraHS 
for developing a Map Algebra.  
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2 Brief Review of the Literature 

2.1 Functional Programming 

Functional programming is a programming paradigm that considers that computing is 
evaluating off mathematical functions. Functional programming stresses functions, in 
contrast to imperative programming, which stresses changes in state and sequential 
commands [Hudak 1989].  Recent functional languages include Scheme, ML, Miranda 
and Haskell. TerraHS uses the Haskell programming language. The Haskell report 
describes the language as:  

“Haskell is a purely functional programming language incorporating many recent 
innovations in programming language design. Haskell provides higher-order 
functions, non-strict semantics, static polymorphic typing, user-defined algebraic 
datatypes, pattern-matching, list comprehensions, a module system, a monadic 
I/O system, and a rich set of primitive datatypes, including lists, arrays, arbitrary 
and fixed precision integers, and floating-point numbers” [Jones 2002].  

The next section provides a brief description of the Haskell syntax. This description will 
help the reader to understand the essential arguments of this paper. For detailed 
description of Haskell see  [Jones 2002], [Peyton Jones, Hughes et al. 1999] and 
[Thompson 1999]. 

2.2 A Brief Tour of the Haskell Syntax 

Functions are the core of Haskell. A simple example is a function that which adds its two 
arguments: 

 add :: Integer → Integer → Integer 
      add x y =  x + y 
 The first line defines the add function. It takes two Integer values as input 
and produces a third one. Functions in Haskell can also have generic (or polymorphic) 
types. For example, the following function calculates the length of a generic list, where 
[a] is a list of elements of a generic type a, [] is the empty list, and (x:xs) is the list 
composition operation: 
 length :: [a] → Integer 
 length [] = 0 
 length (x:xs) = 1 + length xs 
 This definition reads “length is a function that calculates an integer value from 
a list of a generic type a. Its definition is recursive. The length of an empty list is zero. 
The length of a nonempty list is one plus the length of the list without its first element”.  

 The user can define new types in Haskell using a data declaration, which defines 
a new type, or the type declaration, which redefines an existing type. For example, take 
the following definitions:  
 type Coord2D = (Double, Double) 
 data Point      = Point Coord2D 
 data Line2D     = Line2D [Coord2D] 
 In these definitions, a Coord2D type is a shorthand for a pair of Double values.  
A Point is a new type that contains one Coord2D. A Line2D is a new type that 

110



  

contains a list of Coord2D.  One important feature of Haskell lists is that they can be 
defined by a mathematical expression similar to a set notation. For example, take the 
expression:  
 [elem | elem <- (domain map) , (predicate elem obj)] 
  It reads “the list contains the elements of a map that satisfy a predicate that 
compares each element to a reference object”. This expression could be used to select all 
objects that satisfy a topological operator (“all roads that cross a city”). Haskell includes 
higher-order functions. These are functions that have other functions as arguments. For 
example, the map higher-order function applies a function to a list, as follows: 

           map   :: (a→b) → [a] → [b] 
      map f  []      =  [] 
      map f (x:xs)   =  f x : map f xs 
 This definition can reads as “take a function of type a→b and apply it recursively 
to a list of a, getting a list of b”. Haskell supports overloading using type classes. A 
definition of a type class uses the keyword class. For example, the type class Eq 
provides a generic definition of all types that have an equality operator:  
      class Eq a where  
   (==)  :: a → a → Bool 
 
      This declaration reads "a type a is an instance of the class Eq if it defines is an 
overloaded equality (==) function." We can then specify instances of type class Eq using 
the keyword instance. For example: 
  
       instance Eq Coord2D where  
    ((x1,x2) == (y1,y2))  =  (x1 == x2 && y1 == y2) 
 
 Haskell also supports a notion of class extension. For example, we may wish to 
define a class Ord which inherits all the operations in Eq, but in addition includes 
comparison, minimum and maximum functions: 
  
       class (Eq a) => Ord a  where 
    (<), (<=), (>=), (>)  :: a → a → Bool 
    max, min              :: a → a → a  

2.3 Functional Programming and GIS 

Many recent papers propose using functional languages for GIS application develepment 
[Frank and Kuhn 1995; Frank 1997; Frank 1999; Winter and Nittel 2003]. Frank and 
Kuhn [1995] show the use of functional programming languages as tools for 
specification and prototyping of Open GIS specifications. Winter and Nittel [2003] apply 
a formal tool to writing specifications for the Open GIS proposal for coverages. Medak 
[1999] develops an ontology for life and evolution of spatial objects in an urban cadastre. 
To these authors, functional programming languages satisfy the key requirements for 
specification languages, having expressive semantics and allowing rapid prototyping. 
Translating formal semantics is direct, and the resulting algebraic structure is extendible. 
However, these works do not deal with issues related to I/O and to database 
management. Thus, they do not provide solutions applicable to real-life problems. To 
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apply these ideas in practice, we need to integrate functional and imperative 
programming.  

2.4 Integration of Functional and Imperative Languages 

The integration functional and imperative languages is discussed in Chakravarty [2003], 
who presents the Haskell 98 Foreign Function Interface (FFI), which supports calling 
functions written in C from Haskell and vice versa. However, functions written in 
imperative languages can contain side effects. To allow functional languages to deal with 
side effects,  Wadler [1990] proposed monads for structuring programs written in 
functional language. The use of monads enables a functional language to simulate an 
imperative behavior with state control and side effects [Thompson 1999].  Jones [2005] 
presents many crucial issues about interaction of functional languages with the external 
world, such as I/O, concurrency, exceptions and interfaces to libraries written in other 
languages. In this work, the author describes a Haskell web server as a case study.  These 
works show of the integration between these two programming styles. However, none of 
these works deals with geoinformation systems. On the next section we present an 
application that integrates programs written in Haskell with spatial databases and allows 
fast and reliable GIS application development. 

3 TerraHS 
This section presents TerraHS, a software application which enables developing 
geographical applications using in functional programming using data stored in a spatial 
database. TerraHS links the Haskell language to in the TerraLib GIS library. TerraLib is a 
class library written in C++, whose  functions provide spatial database management and 
spatial algorithms. TerraLib is free software [Vinhas and Ferreira 2005]. TerraHS links to 
the TerraLib functions through the Foreign Function Interface [Chakravarty 2003] and a 
function set written in C language, which performs the TerraLib functions. The Figure 1 
shows its architecture.   

 
Figure 1 TerraHS Architecture 

 TerraHS includes three basic resources for geographical applications: spatial 
representations, spatial operations and database access. The next sections present them. 
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3.1 Spatial Representations 

3.1.1 Vector data structures 

Identifiable entities on the geographical space, or geo-objects, such as cities, highways or 
states are usually represented in vector data structures, as point, line and polygon. These 
data structures represent an object by one or more pairs of Cartesian coordinates. 
TerraLib represents coordinate pairs through the Coord2D data type. In TerraHS, this 
type is a tuple of real values. 
 type Coord2D = (Double, Double) 
 The type Coord2D is the basis for all the geometric types in TerraHS, namely: 
 data Point      = Point Coord2D 
 data Line2D     = Line2D [Coord2D] 
 type LinearRing = Line2D 
 data Polygon    = Polygon [LinearRing] 
 The Point data type represents a point in TerraHS, and is a single instance of a 
Coord2D. The Line2D data type represents a line, composed of one or more segments 
and it is a vector of Coord2Ds [Vinhas and Ferreira 2005]. The LinearRing data type 
represents a closed polygonal line. This type is a single instance of a Line2D, where the 
last coordinate is equal to the first [Vinhas and Ferreira 2005]. The Polygon data type 
represents a polygon in TerraLib, and it is a list of LinearRing. Other data types include: 
 data PointSet   = PointSet [Point] 
 data LineSet    = LineSet [Line2D] 
 data PolygonSet = PolygonSet [Polygon] 

3.1.2 Cell-Spaces 

TerraLib supports cell spaces. Cell spaces are a generalized raster structure where each 
cell stores a more than one attribute value or as a set of polygons that do not intercept 
one another. A cell space enables joint storage of the entire set of information needed to 
describe a complex spatial phenomenon. This brings benefits to visualization, algorithms 
and user interface [Vinhas and Ferreira 2005]. A cell contains a bounding box and a 
position given by a pair of integer numbers.  
 data Cell = Cell Box Integer Integer 
 data Box  = Box Double Double Double Double 
 The Box data type represents a bounding box and the Cell data type represents 
one cell in the cellular space. The CellSet data type represents a cell space.  
 data CellSet = CellSet [Cell] 

3.1.3 Spatial Operations 

TerraLib provides a set of spatial operations over geographic data. TerraHS provides 
function that use those algorithms. We used Haskell type classes [Shields and Jones 
2001; Chakravarty 2004] to define the spatial operations using polymorphism. These 
topologic operations can be applied for any combination of types, such as point, line and 
polygon. 

 
class TopologyOps a b where 
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 disjoint :: a → b → Bool 
 intersects :: a → b → Bool 
   touches  ::  a → b → Bool 
 … 

 The TopologyOps class defines a set of generic operations, which can be 
instantiated to several combinations of types:  

 instance TopologyOps Polygon Polygon 
 instance TopologyOps Point Polygon  
 instance TopologyOps Point Line2D  
 … 

3.2 Database Access 

One of the main features of TerraLib is its use of different object-relational database 
management systems (OR-DBMS) to store and retrieve the geometric and descriptive 
parts of spatial data [Vinhas and Ferreira 2005]. TerraLib follows a layered model of 
architecture, where it plays the role of the middleware between the database and the final 
application.    Integrating Haskell with TerraLib enables an application developed in 
Haskell to share the same data with applications written in C++ that use TerraLib, as 
shown in Figure 2. 

 
Figure 2 - Using the TerraLib to share a geographical database, adapted from 

Vinhas e Ferreira (2005). 

 A TerraLib database access does not depends on a specific DBMS and uses an 
abstract class called TeDatabase [Vinhas and Ferreira 2005]. In TerraHS, the database 
classes  are algebraic data types, where each constructor represents a subclass. 

data Database = MySQL String String String String 
 | PostgreSQL String String String String 

 A TerraLib layer aggregates spatial information located over a geographical 
region and that share the same attributes. A layer is identifier in a TerraLib database by its 
name [Vinhas and Ferreira 2005]. 
 type LayerName = String 

 In TerraLib, a geo-object is an individual entity that has geometric and descriptive 
parts, composed by:  

• Identifier: identifies a geo-object. 
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     data ObjectId = ObjectId String 

• Attributes: this is the descriptive part of a geo-object. An attribute has a 
name (AttrName) and a value (Value).  
type AttrName = String 
data Value = StValue String| DbValue Double 
               |InValue Int | Undefined 
data Atribute = Atr (AttrName, Value) 

• Geometries: this is the spatial part, which can have different 
representations. 
data Geometry = GPt Point | GLn Line2D | GPg Polygon    

                         |GCl Cell   | GPtS PointSet (…) 
 A geo-object in TerraHS is a triple: 
     data GeObject = GeoObject (ObjectId, [Atribute], Geometry) 

 The GeoDatabases type class provides generic functions for storage, retrieval of 
geo-objects from a spatial database.  
 class GeoDatabases a where 
 open :: a → IO (Ptr a) 
 close :: (Ptr a) → IO () 
 retrieve :: (Ptr a) → LayerName → IO [GeObject] 
 store ::(Ptr a) → LayerName → [GeObject] → IO Bool   
 errorMessage :: (Ptr a) → IO String 
 These operations will then be instantiated to a specific database, such as mySQL 
or PostgreSQ L.   Figure 3 shows an example of a TerraLib database access program. 

 
host = “sputnik” 
user = “Sergio” 
password = “terrahs” 
dbname = “Amazonia” 
main:: IO() 
main = do  
 -- accessing TerraLib database 
 db <- open (MySQL host user password dbname) 
 -- retrieving a geo-object set 

geos <- retrieve db “cells”  
 geos2 <- op geos – op is a manipulation operation 
 -- storing a geo-object set 

store db “newlayer” geos2 
close db 

Figure 3 - Acessing a TerraLib database using TerraHS 

4 A generalized map algebra  
One of the important uses of functional language for GIS is to enable fast and sound 
development of new applications. As an example, this section presents a map algebra in a 
functional language. In GIS, maps are a continuous variable or to a categorical 
classification of space (for example, soil maps). Map Algebra is a set of procedures for 
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handling maps. They allow the user to model different problems and to get new 
information from the existing data set.  The main contribution to map algebra comes 
from the work of Tomlin [1983]. Tomlin’s model uses a single data type (a map), and 
defines three types of functions. Local functions involve matching locations in different 
map layers, as in “classify as high risk all areas without vegetation with slope greater 
than 15%”. Focal functions involve proximal locations in the same layer, as in the 
expression “calculate the local mean of the map values”. Zonal functions summarize 
values at locations in a layer contained in zones defined in another layer. An example is 
“given a map of city and a digital terrain model, calculate the mean altitude for each 
city.”  

 For this experiment, we use the map algebra proposed in Câmara et al. [Câmara 
2005]. The authors describe the design of a map algebra that generalizes Tomlin’s map 
algebra by incorporating topological and directional spatial predicates. In the next 
section, we describe and implement this algebra.  

4.1 The map abstract data type 

Our map algebra has two main data types: object set and field. An object set is a set of 
objects represented by points, lines or regions associated with nonspatial attribute. Fields 
are functions that map a location in a spatial partition to a nonspatial attribute. The map 
data type combines both the object set data type and the field data type. A map is a 
function m:: E → A, where: 

• The domain is finite collection, either a set of cells or a set of objects. 

• The range is a set of attribute values. 

 For each geographic element e ∈ E, a map returns a value m (e) = a, where a ∈ 
A. A geographical element can represent a location, area, line or point. This definition 
matches the definition of a coverage in Open GIS [OGC 2000]. A coverage in a planar-
enforced spatial representation that covers a geographical area completely and divides it 
in spatial partitions that may be either regular or irregular. For retrieving data from a 
coverage, the Open GIS specification propose describes a discrete function 
(DiscreteC_Function), as shown in Figure 4 below. 
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Figure 4 The Open GIS discrete coverage function – source: [OGC 2000]. 

  The DiscreteCFunction data type describes a function whose spatial domain and 
whose range are finite. The domain consists of  a finite collection of geometries, where a 
DiscreteCFunction maps each geometry for a value [OGC 2000]. Based on the Open 
GIS specification, we defined the type class Maps. The type class Maps generalizes and 
extends the DiscreteCFunction class. Its functions are parameterized on the input type a 
and the output type b.  It provides the support for the operations proposed by the 
DiscreteCFunction: 

 class Maps map where 
  evaluate :: (Eq a, Eq b) => map a b → a → Maybe b 
  domain   :: map a b → [a]    
  num      :: map a b → Int 
  values   :: map a b → [b] 
  new_map  :: [a] → (a → b ) → (map a b) 
  fun      :: (map a b) → (a → b) 

 The functions is the Maps type class work as follows: (a) evaluate is a 
function that takes a map and an input value a and produces an output value (“give me 
the value of the map at location a”); (b) domain is a function that takes a map and 
returns the values of its domain; (c) num returns the number of elements of the map’s 
domain; (d) values returns the values of the map’s range. We propose two extra 
functions: new_map and fun, as described below.  

•   new_map, a function that returns a new map m, given a domain and a coverage 
function.  

• fun:  given a map, returns its  coverage function. 

 We defined the Map data type to use the functions of the generic type class 
Maps. The Map data type is also parameterized. 
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 data Map a b = Map ((a → b), [a]) 

 The data type Map has two parts: 

•    A coverage function that maps an object of generic type a to generic type b. 

•    A domain of objects of the polymorphic type a.  

 The instance of the type class Maps to the Map data type is shown below: 
 instance Maps Map where 

  new_map a f = (Map (f, a)) 
  evaluate f o 
                | (elem o (domain f)) = Just ((fun f) o)     

           | otherwise = Nothing  
  domain (Map (f, a)) = a 
  num f = length (domain f) 
  values f  = map (fun f) (domain f) 
  fun (Map (f,_)) = f 

 Figure 5 show an example of the Map data type.  
m1 :: (Map String Integer) 
m1 = new_map [”ab”,”abc”,”a”] length 
values m1 
= [2,3,1] 
evaluate m1 “ab” 
= Just 2 
evaluate m1 “ad” -- m1 not contain “ad”  
= Nothing 

Figure 5 Example of use of the Map data type. 

4.2 Operations 

Câmara et al [2005] define two classes of the map algebra operations: nonspatial and 
spatial. For nonspatial operations, the value of a location in the output map is obtained 
from the values of the same location in one or more input maps. They include logical 
expressions such as “classify as high risk all areas without vegetation with slope greater 
than 15%”, “Select areas higher than 500 meters”, “Find the average of deforestation 
in the last two years”, and  “Select areas higher than 500 meters with temperatures 
lower than 10 degrees”. Spatial functions are those where the value of a location in the 
output map is computed from the values of the neighborhood of the same location in the 
input map. They include expressions such as “calculate the local mean of the map 
values” and “given a map of cities and a digital terrain model, calculate the mean 
altitude for each city”.  In what follows, we show these operations in TerraHS, using 
polymorphic data types. 
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4.2.1 Nonspatial operations 

Nonspatial operations are higher-order functions that take one value for each input map 
and produce one value in the output map, using a first-order function as argument.  
These include single argument functions and multiple argument functions [Câmara, 
Palomo et al. 2005]. 

 class (Maps m) => NonSpatialOperations m where 
  map_single  :: (b → c) → (m a b) → (m a c) 

  map_multiple:: ([b] → c) → [(m a b)] → (m a b)→(m a c) 
 The map_single function has two arguments: a map m and a first-order function 
g. It returns a new map, whose domain contains the same elements of the input map 
domain. The coverage function of the output map is the composition of the coverage 
function of the input map m and the first-order function g. 

 map_single g m = new_map (domain m)  ( g . (fun m))  
defines a new map 
with the same domain  defines the mapping 

function of the new map 

 Figure 6 shows an example of a single argument function. 
values m1 
= [2, 4, 12] 
m2 = map_single square m1  
values m2 
= [4, 16, 144] 

Figure 6 Example of use of the single argument function 

 The map_multiple function has three arguments: a map list, a multivalued 
function and a reference map. Given a reference map, it applies a multivalued function in 
map list. 

 map_multiple fn mlist mref =  
  new_map (domain mref) (\x →  fn (map_r mlist x))   

defines a new map 
with the same domain  defines the mapping function of the 

new map using an auxiliary function  
 

 The map_multiple function returns a new map with a same domain of the 
reference map and a new coverage function. This function uses the auxiliary function 
map_r.  For each element x of the reference map, map_r applies the multiargument 
function in the input list of maps to get the output value. It also handles cases where 
there are multiargument function fails to returns an output value.  

 map_r :: (Maps m) => [(m a b )] → a → [b]  
 map_r [] _ = [] 
 map_r (m:ms) e = map_r’ (evaluate m x) 
  where 
  map_r’ (Just v)  = v : (map_r ms e) 
  map_r’ (Nothing) = (map_r ms e) 

  Figure 7 shows an example of map_multiple. In this example, the m3 map is the 
result of the sum of the maps m1 and m2. 

values m1 
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= [2, 4, 8] 
values m2    
= [4, 5, 10] 
m3 = map_multiple sum [m1, m2] m1 
values m3 
= [6, 9, 18]  

Figure 7 -  Example of use of map_multiple 

4.2.2 Spatial Operations 

Spatial operations are higher-order functions that use a spatial predicate. These functions 
combine a selection function and a multivalued function, with two input maps (the 
reference map and the value map) and an output map [Câmara, Palomo et al. 2005]. 
Spatial functions generalize Tomlin’s focal and zonal operations and have two parts: 
selection and composition. For each location in the output map, the selection function 
finds the matching region on the reference map. Then it applies the spatial predicate 
between the reference map and the value map and creates a set of values. The 
composition function uses the selected values to produce the result (Figure 8). Take the 
expression “given a map of cities and a digital terrain model, calculate the mean 
altitude for each city”.  In this expression, the value map is the digital terrain model and 
the reference map is the map of cities. The evaluation has two parts. First, it selects the 
terrain values inside each city. Then, it calculates the average of these values.  

 
Figure 8. Spatial operations (selection + composition). Adapted from Tomlin [1990]. 

The implicit assumption is that the geographical area of the output map is the same as 
reference map. The type signature of the spatial functions in TerraHS is:. 
class (Maps m) => SpatialOperations m where 

 map_select  :: (m a b) → (a → c→ Bool) → c → (m a b)  
map_compose :: ([b] → b) → (m a b) →  b 

 map_spatial :: ([b] → b) → (m a b) → (a → c → Bool)  
→ (m c b) → (m c b) 

 The spatial selection function selects all elements that satisfy a predicate on a 
reference object (“select all deforested areas inside the state of Amazonas”). It has three 
arguments: an input map, a predicate and a reference element.   
   map_select m pred obj = new_map sel_dom (fun m) 
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where 
 sel_dom = [elem | elem ← (domain m) , (pred elem obj)]  

 This function takes a reference element and an input map. It creates a map that 
contains all elements of the input map that satisfy the predicate over the reference 
element. Figure 9 shows an example, where the map consists of a set of points. Then, we 
select those points that intersect a given line. 

line= Line2d [Point(1,2),Point(2,2),Point (1,3),Point (0,4)] 
domain m1  
= [Point(4,5),Point (1,2),Point (2,3),Point (1,3)] 
m2 = map_select m1 intersects line 
domain m2   
= [Point (1,2), Point (1,3)] 

Figure 9 Example of map_select. 

 The composition function combines selected values using a multivalued function. 
In Figure 10, the map_compose function is applied to map m1 and to the multivalued 
function sum. 

 map_compose f m = (f (values m))  
values m1  
= [ 2, 6, 8] 
map_compose sum m1  
= 16  

Figure 10 Example of map_compose. 

 The map_spatial function combines spatial selection and spatial composition:   
 map_spatial fn m pred mref = new_map (domain mref)  

    (\x → map_compose (map_select m pred x) fn) 
 Map_spatial creates a map whose domain contains the elements of the reference 
map. To get its coverage function, we apply map_compose to the result of the 
map_selection. Figure 12 shows an example.  

domain m1  
= [Point(4,5),Point (1,2),Point (2,3),Point (1,3)] 
values m1 
= [2,4,5,10]  
domain m2  
= [(Line2d[Point(1,2),Point (2,2),Point (1,3),Point (0,4)])] 
m3 = map_spatial sum m1 intersects m2 
values m3 -- 4 + 10 
= [14] 

Figure 12 Example of map_spatial 

 The spatial operation selects all points of m1 that intersect m2 (which is a single 
line). Then, it sums its values. In this case, points (1,2) and (1,3) intersect the line. The 
sum of their values is 14.  

121



  

4.3 Application Examples 

In the previous section we described how to express the map algebra proposed in 
Câmara et al. [2005] in TerraHS. In this section we show the application of this algebra 
to actual geographical data.  

4.3.1 Storage and Retrieval 

Since a Map is generic data type, it can be applied to different concrete types. In this 
section we apply it to the Geometry and Value data types available in the TerraHS, which 
represent, respectively, a region and a descriptive value.  TerraHS enables storage and 
retrieval of a geo-object set. To perform a map algebra, we need to convert from a geo-
object set to a map and vice versa. 

 toMap :: [GeObject] →  AttrName → (Map Geometry Value) 
 toGeObject::(Map Geometry Value)→ AttrName → [GeObject] 

 Given a geo-object set and the name of one its attributes, the toMap function 
returns a map. Remember that a Map type has one value for each region. Thus, a layer 
with three attributes it produce three Maps.  The toGeObject function inverts the 
toMap function. Details of these two functions are outside the scope of this paper. Given 
these functions, we can store and retrieve a map, given a spatial database. 
 retrieveMap::  
           Database → LayerAttr → IO (Map Geometry Value) 
     retrieveMap db (layername, attrname) = do 
       db <- open db 
       geoset <- retrieve db layername 
       let  map = toMap geoset attrname 
       close db 
       return map 
 The LayerAttr type is a tuple that represents the layer name and attribute 
name. The retrieveMap function connects to the database, loads a geo-object set, 
converts these geo-objects into a map, and return this map as its output.  
 storeMap::  
        Database→ LayerAttr → (Map Geometry Value)→ IO Bool   
     storeMap db (layername, attrname) m = do 
    let geos = toGeObject map attrname 
    db <- open db 
    close db  
    let status = store db layername geos 
    return status 
 The storeMap function coverts a map to a geo-object set that will be saved in 
the database.   We can now write a program that reads and writes a map in a TerraLib 
database. 
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host = “sputnik” 
user = “Sergio” 
password = “terrahs” 
dbname = “Amazonia” 
main:: IO () 
main = do 
 db <- open (MySQL host user pass dbname) 

def_map <- retrieveMap db (“amazonia”,“deforest") 
-- apply a nonspatial operation 

 let defclass = map_single classify def_map 
 storeMap db (“amazonia”, “defclass”)  defclass 

Figure 13 Retrieving and storing a Map from TerraLib Database 

4.3.2 Examples of Map Algebra in TerraHS 

Since 1989, the Brazilian National Institute for Space Research has been monitoring the 
deforestation of the Brazilian Amazon, using remote sensing images. We use some of this 
data as a basis for our examples. We selected a data set from the central area of Pará, 
composed by a group of highways and two protection areas. This area is divided in cells 
of 25 x 25 km2, where each cell describes the percentage of deforestation and deforested 
area (Figure 14). 

 

Figure 14 – Deforestation, Protection Areas and Roads Maps (Pará State) 

 Our first example considers the expression: “Given a map of deforestation and 
classification function, return the classified map”. The classification function defines 
four classes: (1) dense forest; (2) mixed forest with agriculture; (3) agriculture with 
forest fragments; (4) agricultural area.   This function is: 

classify :: Value → Value 
classify (DbValue v)  
 | v < 0.2 = (StValue "1") 
 | ((v > 0.2) && (v < 0.5)) = (StValue "2") 
 | (v > 0.5) && (v < 0.8) = (StValue "3") 
 | v > 0.8 = (StValue "4") 

 We obtain the classified map using the map_single operation together with the 
classify function: 
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 def_class = map_single classify def_map 

 
Figure 15 – The classified map 

 As a second example, we take the expression: “Calculate the mean deforestation 
for each protection area”. The inputs are: the deforestation map (def_map), a spatial 
predicate (within), a multivalued function (mean) and the map of protected areas 
(prot_areas). The output is a deforestation map of the protected areas (def_prot) 
with the same objects as the reference map (prot_areas). We use the map_spatial 
higher-order operation to produce the output: 

def_prot = map_spatial mean def_map within prot_areas    

 
Figure 16 – Deforest mean by protection area 

 In our third example, we consider the expression: “Given a map containing roads 
and a deforestation map, calculate the mean of the deforestation along the roads”. We 
have as inputs: the deforestation map (def_map), a spatial predicate (intersect), a 
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multivalued function (mean) and a road map (roads). The product is a map with one 
value for each road. This value is the mean of the cells that intercept this road. 

road_def = map_spatial mean def_map intersect road_map 

 
Figure 17 – Deforestation mean along the roads 

5 Conclusions   
This paper presents the TerraHS application for integrating functional programming and 
spatial databases. We use TerraHS to develop and validate a map algebra in a functional 
language. The resulting map algebra is compact, generic and extensible. The example 
shows the benefits on using functional programming, since it enables a fast prototyping 
and testing cycle. Table 1 presents the total number of Haskell lines used to develop the 
map algebra.   

Table 1 – Map Algebra in Haskell  

Number of source lines   

 operations axioms total 

Data types 6 9 15 

Map Algebra 6 10 16 

Auxiliary 1 5 6 

Total 13 24 37 

 For comparison purposes, the SPRING GIS [Câmara, Souza et al. 1996] includes 
a map algebra in the C++ language that uses about 8,000 lines of code. The SPRING 
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map algebra provides a strict implementation of Tomlin’s algebra. Our map algebra 
allows a more generic set of functions than Tomlin’s at less than 1% of the code lines. 
This large difference comes from the use of the parameterized types, overloading and 
higher order functions, which are features of the Haskell language. Our work points out 
that integrating functional languages with spatial database is an efficient alternative in for 
developing and prototyping novel ideas in GIScience.  
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