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Abstract. Sharing information through the web is a practice that many organi-
zations and users do daily. This generates a need of methodologies and tools
for semantic integrating the obtained information. With the GIS community
the scenario is not different, but the needs are a little different because of the
particularities of the geographic data. In this paper we present G-Match, an
algorithm and implementation for integration of geographic ontologies. Our
proposal combines some mathematical foundations and existing technologies in
order to achieve expressive results.

Resumo. O compartilhamento de informações através da web é uma prática
utilizada diariamente por pessoas e organizações. Esta prática gera uma ne-
cessidade por metodologias e ferramentas que façam a integração semântica
das informações obtidas. Na comunidade de SIG o cenário não é diferente,
com o agravante das particularidades inerentes aos dados geográficos. Neste
artigo nós apresentamos o G-Match, um algoritmo e implementação para a
integração de ontologias geográficas. Nossa proposta combina alguns aspectos
matemáticos com tecnologias existentes com o objetivo de alcançar resultados
expressivos.

1. Introduction
The high cost of the data acquisition for populating Geographic Information Systems
(GIS) was, in the past, one of the main obstacles for its popularization. The Internet
created a huge network where users, institutions and organizations can easily share in-
formation. However, if on one hand, this interchange offers lots of benefits, on the other
hand it generates the need to address the heterogeneities among the information obtained
from distinct sources. It worth nothing obtaining a third part information if its meaning is
not known or cannot be inferred automatically.
One way of making the information’s meaning more explicit is the use of Ontologies
[Spaccapietra et al. 2004], also in the geographic field. Some efforts on creating geo-
graphic ontologies are found in [Apinar et al. 2005, Chaves et al. 2005] as well as the
ISO 19109 standard.
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As the ontologies may be created by different communities and thus heterogeneities
problems may arise when integrating the information from two or more ontologies. A
number of works and tools address the problem of integration (also known as align-
ment) for conventional, non geogarphic ontologies [Castano et al. 2006, Doan et al. 2004,
Giunchiglia et al. 2005, Noy 2004]. However, as they are not designed or developed for
dealing with the particularities of the GIS data, specifically with the spatial relationships
[Kuhn 2002, Schwering and Raubal 2005], many times they do not achieve as good re-
sults as the one obtained with conventional information.
In this paper we present the G-Match, an algorithm and an implementation of a geographic
ontology matcher. Taking as input two different geographic ontologies, it measures the
similarities of their concepts by considering their names, attributes, taxonomies and con-
ventional as well as topological relationships. Except for the name comparison, G-Match
considers both the commonalities and the differences for measuring the similarity be-
tween two concepts.
The remaining of the paper is organized as follows. Some related work regarding geo-
graphic information integration are briefly presented in Section 2. A motivating example
presented in Section 3. Section 4 comprises the G-MATCH algorithm explanation in de-
tails while the results of the execution of our implementation are addressed in Section 5.
Finally, conclusions and future directions are discussed in Section 6.

2. Related Work

2.1. Ontology mediated integration

Rodriguez, Egenhofer and Rugg [Rodrı́guez et al. 1999] proposed an approach for as-
sessing similarities among geospatial feature class definitions. The similarity evaluation
is basically done over the semantic interrelation among classes. In that sense, they con-
sider not only the IS-A (taxonomic) relations and the part-Of relations but also distinguish
features (parts, functions and attributes) [Rodrı́guez and Egenhofer 2003]. In addition to
semantic relations and distinguish features two more linguistic concepts are taken into
consideration for the definition of entity classes: words and meanings, synonymy and
polysemy (homonymy). Later work on using ontologies and based on the properties and
operations of the set theory they determined semantic similarity among entity classes from
different ontologies [Rodrı́guez and Egenhofer 2003], but not considering the geospatial
classes.
Fonseca et al. [Fonseca et al. 2002] proposed an ontology-driven GIS architecture to
enable geographic information integration. In that proposal, the ontology acts as a
model-independent system integrator [Fonseca et al. 2002]. The work of Fonseca et al.
[Fonseca et al. 2003]focuses on the application level, in which they can work on the trans-
lation of a conceptual schema to application ontology. A framework for mapping between
ontologies and conceptual schemas defines the mappings between a term in a spatial on-
tology and an entity in a conceptual schema for geographic information is defined, after
the formalization of both conceptual schema and ontology’s elements.
Hakimpour and Timpf [Hakimpour and Timpf 2001] proposed the use of ontology in the
resolution of semantic heterogeneities especially those found in Geographic Information
Systems. The goal was to establish equivalences between conceptual schemas or local
ontologies. Basically the process is done in two phases [Hakimpour and Geppert 2002]:
First, a reasoning system is used to merge formal ontologies. The result of merging is
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used by a schema integrator to build a global schema from local schemas. In the last
phase, they find the possible meaningful mappings in the generated global schema and by
that establish the mapping of data between the databases. Then the data (instances) from
the local schemas are mapped. This process is composed by three parts: entity mapping,
attribute mapping, data transformation [Hakimpour and Timpf 2001].
Sotnykova et al. [Sotnykova et al. 2005] state that the integration of spatial-temporal in-
formation (both schema and then data) is a three-step process comprising pre-integration
(resolution of syntactic conflicts), Inter-Schema Correspondence Assertions (ICAs) (res-
olution of semantic conflicts) and integrated schema generation (resolution of structural
conflicts). For semantic conflicts they propose an integration language, which allows for-
mulating correspondences between different database schemas. Part of the work concerns
on how to integrate the schemas. Not regarding to rules, formalization or measures of sim-
ilarities, but in terms of how much information the integrated schema must have.
Stoimenov and Djordjevic-Kajan [Stoimenov and Djordjevic-Kajan 2005] propose the
GeoNis framework to reach the semantic GIS data interoperability. It is based on me-
diators, wrappers and ontologies. The use of ontologies was proposed as a knowledge
base to solve semantic conflicts as homonyms, synonyms and taxonomic heterogeneities.
Matching the geographical objects based on the matching of their child objects is the pro-
posal of Cruz et al. [Cruz et al. 2004]. They have designed and implemented a tool for
aligning ontologies, proposing a semi-automatic method for propagating such mappings
along the ontologies, especially those ones for land use. In their approach, there must
be a global ontology that is the reference for the alignment (not combining or merging)
of the local ontologies. Alignment is the identification of semantically related entities
in different ontologies. The alignment process is semi-automate, which means that the
values associated with the vertices may be assigned in two ways: as functions of the chil-
dren vertices or of the user input. The user initially identifies the hierarchy levels in the
two ontologies that are aligned. Then the alignment component propagates to the parent
nodes.

2.2. Semantic annotation based integration
The Knowledge and Information Management (KIM) platform provides an infrastructure
and services for automatic semantic annotation, indexing and retrieval of unstructured
and semi-structure content. The ontologies and knowledge bases are kept in reposi-
tories based on cutting edge Semantic Web technology and standards including RDF
repositories, ontology middleware and reasoning [Manov et al. ]. The main idea behind
KIM is the semantic annotation, which means that the system looks at the description of
an entity searching for key words and then associates it with a concept in the ontology
(central knowledge base). The spatial features of a concept are described in a KIMO’s
sub ontology. The goal was to include the most important and frequently used types of
Locations (which are specializations of Entity), including relations between them (such
as hasCapital, subRegionOf), relations between Locations and other Entities and various
attributes.

2.3. Spatial relationship based integration
Focusing on the semantic relationships other than the taxonomic ones is the proposal of
[Jiang and Conrath 1997]. Especially, the so called functional relations of concepts are of
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interest, and are available in the glosses (descriptions) of the concepts. Doing that, it is
possible to find that two concepts are semantically related even though are hierarchically
not. The measurement of the concepts similarity, following the authors’ approach, is to
use conceptual regions, which means representing the concepts as n dimensional regions
in a vector space i.e. the region is continuous completely closed and the hull of the region
is convex. The measurement of semantic similarity between conceptual regions is based
on applying previously defined distance measures [Schwering and Raubal 2005].
Detecting similarities between geospatial data considering different geometries was pro-
posed by Belussi et al. [Belussi et al. 2005]. In that work the authors make a deep com-
parison on topological relationships pointing equivalences depending on the geometry of
the involved objects.

3. Motivating Example

Let’s consider the scenario bellow, where the ontology from Figure 1 has to be integrated
with ontology from Figure 2. This example is quite simple, but complete in terms of
the geographic usually found in geographic ontologies and the ones we address in this
paper. Furthermore, a problem more specific to geographic ontologies and which is

Figure 1. The ontology O

not supported by conventional matchers occurs when the concepts are designed using
different ontologies. In these cases the different topological relationships may have the
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Figure 2. The ontology O
′

same semantics, as stated in [Belussi et al. 2005] and illustred in Figure 3. Basically, the
differences can be enumerated as follows:

4. G-Match

The G-Match algorithm is iterative, which means that each concept ci from an ontology O
is compared against all concepts cjfrom ontology O

′ . Furthermore, the matching process
is n:n, which means that more than one concept cj from the ontology O

′ may be the match
for a given concept ci from ontology O. In this case, all the possible matches are presented
to the user.

As Figure 4 shows, G-Match takes as input two ontologies O and O
′ and produces

as output a list of similarity measures between the concepts from the two ontologies.
The WordNet [Miller 1995] thesaurus is used by the name matcher and by the attributes
matcher modules to find synonyms and related terms.
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Figure 3. Equivalent topologies

Figure 4. G-match architecture

4.1. Definitions

A geographic ontology may contain both geographic as non-geographic (conventional)
concepts. Furthermore, it describes the properties of a concepts and the relationships it
has with the other concepts.

Definition 1. A concept c is a tuple of the form c = (T,S), where:

• T is the set of terms (synonyms) which nominates the concept c. A term t ∈ T is
defined as a unary relation of the form t(c);

• S = (h,P) is the structure of the concept c, where h is the hierarchy in which the
concept c is located, defined as a unary relation h(c), and P = (A,R) is the set of
properties of the concept c.

A is the set of attributes associated with c. An attribute a ∈ A is a binary
relation of type a(c,dtp), where dtp is a data type (such as string, integer, etc.)

R is the set of relations of c with other concepts. A relation r ∈ R is a binary
relation r(c,c

′
). Furthermore, a relation r = {g,tr,cr}, where g is a relationship

between the concept c and a concept c
′
which denotes a geometry, tr is a topologi-

cal relationship, i.e., a special type of spatial relationship between two geospatial
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concepts c and c
′

and cr is a conventional relationship between two concepts c
and c

′
.

Definition 2. A geospatial concept sc is defined as sc = {c ∈ C | ∃ r(c,c
′
), r=g}

which means that a concept c is considered geospatial if and only if it has at least on
relationship r of type g.

Definition 3. At last, a relationship of type tr is defined as tr = {r(c,c
′
) ∈ R | (∀

c,c
′
, (c=sc ∧ c

′
=sc)}

which means it can occur only between two geospatial concepts.

4.2. The Algorithm

The G-Match has three main phases of similarity measure in its execution, as the shown
by the diagram of Figure 5. In the first one, the concepts names (SimName(ci),cj) and
attributes (SimAt(ci),cj) are compared. Then, using the results from the name similarity
measure, the taxonomies (SimTx(ci),cj), relationships (SimRel(ci),cj) and topology rela-
tionships (SimTop(ci),cj) are evaluated. Finally, the last phase is the overall similarity
measure. The algorithm’s steps are detailed in the sequence.

Figure 5. G-match execution flow

1. Load concept ci from ontology O. A concept ci is loaded.
2. Load concept cj from ontology O

′ . A concept cj from the other is loaded to be
compared against the concept ci.

3. Measure the similarity between the names of ci and cj . Using the WordNet
thesaurus as an auxiliary knowledge base, the name similarity SimName(ci,ci) is
given by searching the correspondence of the two terms t(ci) and t(cj). In case the
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WordNet returns 0 (not synonyms nor related) we calculate the string similarity of
the terms using an adaptation of the metric proposed in [Stoilos et al. 2005].

4. Measure the similarity between the attributes of ci and cj . Once again we use
the WordNet to assess the similarity between the terms used for each one of the
attributes a(ci,dtp) ∈ A(ci) against each one of the attributes a(cj ,dtp) ∈ A(cj). In
this case, however, we only consider to be a match if the terms are synonyms (or
the same). The final similarity measure regarding the attributes is given by:

SimAt(ci, cj) =

∑
((a(ci) ∩ a(cj)) ∗ Wa)

A(ci) ∪ A(cj)
(1)

where Wa is the weight of the attribute a in the ontology. This weight is defined
by the number of concepts c that are associated with this attribute. The more
concepts, the more generic the attribute is and thus the lower is its weight.
The steps 3 and 4 can be executed in parallel.

5. Measure the hierarchy similarity between ci and cj . Based on the results ob-
tained in the step 3, the similarity in terms of the concepts taxonomy is measured.
This is done by checking the number of common sub-concepts the concepts ci

and cj have and the level in hierarchy they are. The final value for the taxonomy
similarity measure is given by:

SimTx(ci, cj) =

∑
((h(ci) ∩ h(cj)) ∗ Wlevel)

h(ci) ∪ h(cj)
(2)

where Wlevel is 1.0 if the subclasses are in the same level and 0.7 if they are in
different levels in the ontologies.

6. Measure the relationship similarity between ci and cj . Again, using the results
from step 3, the similarity of the conventional relationships is measured. This is
done by simply counting the common relationships the two concepts ci and cjhave
in common and the different ones, as follows:

SimRel(ci, cj) =
ass(ci, r) ∩ (cj, r)

(ass(ci, r) ∪ (cj, r))
(3)

7. Measure the topological relationship similarity between ci and cj . Again, us-
ing the results from step 3, the similarity of the topological relationships is mea-
sured. We considered here the ones described in [Egenhofer and Franzosa 1991]
(disjoint, touch, inside, cover, coveredBy, overlap, equal, cross and contain). The
similarity value is given by:

SimTop(ci, cj) =
ass(ci, t) ∩ (cj, t)

(ass(ci, t) ∪ (cj, t))
(4)

For the topological relationships, it is important to clarify that we do not consider
only the name of the relationship, but also the geometries of the concepts. As
stated and deeply detailed in [Belussi et al. 2005] depending on the geometries of
the concepts, the different topological relationship have the same meaning, that is,
are equivalent. The G-Match is capable of detecting these equivalences during the
similarity measurement, and this is the main feature that makes it more suitable
for geographic ontologies than the conventional matcher.
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8. Measure the overall similarity between ci and cj . In this step the similarity
obtained in the previous steps are combined in a weighed sum, as follows:

Sim(ci, cj) = WN ∗ SimName(ci, cj) + WA ∗ SimAt(ci, cj)+
WH ∗ SimTx(ci, cj) + WR ∗ SimRel(ci, cj) + WT ∗ SimTop(ci, cj).

(5)

9. Non relevant matches discharge. The pairs ci,cj with similarity values too low
must be discharged, in order to produce less results and make it easy to choose the
correct matches. Thus, a threshold parameter must be set in the beginning of the
G-Match execution and if the similarity value for the pair ci,cj does not reach the
threshold, it is discharged.

10. cj iteration. If there are more concepts from ontology O
′ to be processed, return

to step 2.
11. ci iteration. If there are more concepts from ontology O to be processed, return

to step 1.

5. Results
We executed the G-Match using as inputs the ontologies presented in the section 2. Basi-
cally, the differences can be enumerated as follows:

• The whole hierarchy of TransportFacility is present only in the ontology O
′;

• The concept Attraction from ontology O has as equivalent the concept Sightseen
in ontology O

′;
• The most similar concept to Hotel from ontology O in ontology O

′ is RegularHo-
tel;

• Accommodation in ontology O is associated with Administration, while in ontol-
ogy O

′ the association is with Owner;
• In many concepts some attributes are present only in ontology O

′;

We implemented the G-Match in two ways: as a stand-alone, complete matcher (called
G-Match complete) and as a extension for an existing matcher, as the ones cited previ-
ously, called G-Match. In the later case, only the relationships (conventional and topo-
logical) similarities were measured by our tool. The tests were run establishing as the
minimum threshold for analysis 0.4.Table 1 shows the results in terms of recall and pre-
cision. EM denotes the expected matches, AM the automatic matches (i.e., similarity
measured higher than 0.7) and CAM the correct automatic matches. As can be seen us-
ing a matcher specially tailored for the spatial relationships increases both the recall and
precision. Furthermore, in the cases where the G-Match failed in choosing the correct
match there were more than one pair (ci, cj) with similarity value higher than 0.7. The
expected correct match was one of the returned pairs, but not the one with higher sim-
ilarity. When the G-Match did not find any pair (ci, cj) with similarity higher than the
acceptance threshold, the correct pair was within the ones with similarity higher than the
analysis threshold.

6. Conclusion and Future Works
The challenge faced here was to develop a methodology that achieves good practical re-
sults when integrating two geographic ontologies by measuring their content similarities
and differences. The similarity measure is balanced, that is, considers the features of
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Table 1. Precision and Recall results

Matcher EM AM CAM Precision Recall

Prompt 15 14 13 93% 87%
H-Match 15 12 10 83% 67%
G-Match 15 13 11 85% 73%
G-Match Complete 15 15 14 93% 93%

a concept separately and then gives some weights for each feature - name, attributes,
taxonomy, conventional and topological relationships - to compute the overall similarity
between two concepts. As the information may be defined in different levels of detail,
there is not a perfect combination of the weight factors (WN, WA, WH, WR and WT).
This combination depends on the characteristics of the input ontologies. The results ob-
tained show that the G-Match is in the correct direction towards the development of a
semantic matcher specially tailored for geographic ontologies.
As future work, we plan to study the impact of the other spatial relationships, such as
distance relations, on the similarity measure between two ontologies. Furthermore, up to
know the G-Match considers always all the features, independently of the concept being
processed. Thus, if the ontology does not have, for example, topological relationships, the
similarity measure decreases. Because of that, we intend to make the G-Match capable
of self-adaptation depending on the input ontology, which means self-configuration of the
weights WN, WA, WH, WR and WT.
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