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ABSTRACT 
 
     Irregularly shaped spatial disease clusters occur commonly in epidemiological studies, but their 
geographic delineation is poorly defined. Most current spatial scan software usually displays only 
one of the many possible cluster solutions with different shapes, from the most compact round 
cluster to the most irregularly shaped one, corresponding to varying degrees of penalization 
parameters imposed to the freedom of shape. Even when a fairly complete set of solutions is 
available, the choice of the most appropriate parameter setting is left to the practitioner, whose 
decision is often subjective. We propose quantitative criteria for choosing the best cluster solution, 
through multi-objective optimization, by finding the Pareto-set in the solution space. Two 
competing objectives are involved in the search: regularity of shape, and scan statistic value. Instead 
of running sequentially a cluster finding algorithm with varying degrees of penalization, the 
complete set of solutions is found in parallel, employing a genetic algorithm. The cluster 
significance concept is extended for this set in a natural and unbiased way, being employed as a 
decision criterion for choosing the optimal solution. The Gumbel distribution is used to approximate 
the empiric scan statistic distribution, speeding up the significance estimation. The method is fast, 
with good power of detection. An application to breast cancer clusters is discussed. 
     Keywords: Spatial scan statistic, disease clusters, geometric compactness penalty correction, 
Pareto-sets, multi-objective optimization, Gumbel distribution, genetic algorithm.    
 

1. INTRODUCTION 
 

     Epidemiology and disease surveillance make intensive use of techniques for the detection and 
inference of spatial clusters. The geographic delineation of clusters is an important tool in 
etiological studies (Lawson, 1999) and in the early warning of intentional and non-intentional 
infectious diseases outbreaks (Duczmal and Buckeridge 2005, 2006a; Kulldorff et al. 2005, 
2006a,b). The spatial scan statistic (Kulldorff 1997), employed by the softwares SatScan (Kulldorff, 
1999) and ClusterSeer (TerraSeer, 2004) is currently used by many health departments to detect 
circularly shaped disease clusters (Kulldorff and Nagarwalla 1995). In many scenarios, however, 
we are interested in the detection spatial clusters that are not restricted to circular shape. Diseases 
may be concentrated along rivers, ocean and lake shores, transport ways, or plumes of air pollution. 
The SatScan approach was extended to detect elliptic shaped clusters (Kulldorff et al.2006a), 
increasing the geometric versatility of the original SatScan. Recently, other methods were proposed 
to detect connected clusters of irregular shape (Duczmal et al., 2004, 2006b, Iyengar, 2004, Tango 
and Takahashi, 2005, Assuncao et al., 2006, Neill et al., 2005, Patil and Tallie, 2004). Contley et al. 
(2005) proposed a point dataset genetic algorithm to explore a configuration space of multiple 
agglomerations of ellipses. Sahajpal et al., 2004 also used a genetic algorithm to find clusters 
shaped as intersections of circles of different sizes and centers. Duczmal et al.(2006c) presented a 
genetic algorithm for finding arbitrarily shaped clusters in a map divided into a finite number of 
regions, maximizing the scan statistic with a penalty function correction for the highly irregular 
shapes.  

                                                 
1 Statistics Department, Universidade Federal de Minas Gerais, Brazil.  
2 Electrical Engineering Department, Universidade Federal de Minas Gerais, Brazil. 
3 Mathematics Department, Universidade Federal de Minas Gerais, Brazil. 
*corresponding author: duczmal@est.ufmg.br 

157



     The geographic delineation of irregularly shaped clusters presents some difficulties. The 
unlimited geometric freedom of cluster shapes diminishes the power of detection (Duczmal et al., 
2006b). This happens because the collection of all connected zones, irrespectively of shape, is very 
large. The maximum value of the objective function is likely to be associated with “tree-shaped” 
clusters, which merely link the highest likelihood ratio cells of the map, without contributing to the 
discovery of geographically meaningful solutions that delineate correctly the “true” cluster. In other 
words, there is much “noise”, against which the legitimate solutions cannot be distinguished.  That 
problem occurs in every irregularly shaped cluster detector. It may be mitigated in part by limiting 
the maximum number of regions that should constitute the cluster. A more elegant solution consists 
in applying a penalty function, through the concept of geometric “non-compactness” (Duczmal et 
al.2006b), diminishing the value of the scan statistic according to the irregularity of cluster shape, 
generalizing an idea that was used for the special case of ellipses (Kulldorff et al., 2006a). 
     By varying the amount of penalization to the freedom of shape, several cluster solutions may be 
found, ranging from the circular to the very irregularly shaped cluster. Most current spatial scan 
algorithms do not allow appropriate control of the freedom of shape, and generally only one 
solution is displayed. Even when a fairly complete set of solutions is available, by running the 
algorithm through several parameter settings, as in Duczmal et al.(2006b,c), the choice of the most 
appropriate parameter setting is left to the practitioner, whose decision is often subjective.  
In this paper, we develop and implement a novel multi-objective algorithm for cluster detection and 
inference, based on a genetic algorithm. Two competing objectives are involved in the search for 
clusters: regularity of shape and scan statistic value. We propose quantitative criteria for choosing 
the best cluster solution, through multi-objective optimization, by finding the Pareto-set in the 
solution space, followed by the application of a decision criterion that is based on the maximization 
of solution significance over that set. In this way, the arbitrary and subjective choice of a “best 
solution” that might be performed in the former methodologies is replaced by a systematic and 
theoretically-founded methodology for finding such solution. The concept of optimal solution 
becomes well-defined in the context of irregularly-shaped cluster detection. As a by-product of the 
proposed approach, a whole set of alternative solutions (the Pareto-set) becomes available for the 
user, for the purpose of comparison and of analyzing the problem intrinsic structure. These ideas are 
quite new in the context of cluster detection, keeping some similarity with the recent idea of 
viewing other machine learning problems in a multi-objective framework, as proposed in the 
references (Teixeira et al., 2000, Nepomuceno et al., 2003). 
     The proposed multi-objective genetic algorithm, instead of running sequentially a cluster finding 
algorithm with varying degrees of penalization, finds the complete set of solutions in parallel. This 
intrinsic parallel multi-solution search is the main reason that makes the multi-objective genetic 
algorithms particularly efficient for solving multi-objective problems (Fonseca and Fleming, 1995). 
In addition, the genetic algorithm search procedure allows escaping from locally optimal solutions, 
making the multi-objective genetic algorithm a natural choice of optimization machinery for the 
problem of cluster detection (Duczmal et al., 2006b). Using Pareto-sets, the concept of cluster 
significance is extended in a natural and unbiased way, by means of the Gumbel approximation. 
The multi-objective algorithm presents a new insight into the geographic meaning of the cluster 
solution set, providing a quantitative approach to the problem of selecting the most appropriate 
solution. The method was implemented in C language. Please contact the corresponding author for a 
freeware copy of the program.  
     We also extend the remarkable recent result of Abrams et al. (2005) for the parametric 
approximation of the likelihood ratio scan statistic distribution for circular clusters, using the 
Gumbel distribution. In this work, we verify through numerical experiments that this approximation 
also seems to be valid for the genetic based irregularly shaped clusters scan statistic. That technique 
does not only speed up the p-value estimation, but allows the significance estimation of clusters to 
achieve better accuracy.  
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     The paper is divided as follows. In section 2, we review Kulldorff’s spatial scan statistic, the 
non-compactness penalty function, and the mono-objective genetic algorithm. We introduce the 
Gumbel approximation for the penalized genetic algorithm scan statistic in section 3. The multi-
objective genetic algorithm is presented in section 4. Power evaluations are described in section 5. 
We present an application for breast cancer clusters in North Eastern US in section 6. We conclude 
with the final remarks in section 7.  
 
2. THE PENALIZED SPATIAL SCAN GENETIC ALGORITHM   
 
     In this section we review the spatial scan statistic (Kulldorff, 1997), its geometric penalized 
extension (Duczmal et al., 2006b), and its implementation through a genetic algorithm (Duczmal et 
al., 2006c).  
 
2.1. THE SPATIAL SCAN STATISTIC 
 
     The input data is a map divided into  regions, with total population and  total cases. A 
zone  is defined as any set of connected regions. We assume that the number of cases in each 
region follows a Poisson distribution, proportional to its population, under the null hypothesis that 
there are no clusters in the map. If  is the expected number of cases inside  under the null 
hypothesis,  is the number of observed cases inside , 

M N C

Z

Z

Zµ

Zc Z ZZcZI µ=)(
Z

 is the relative incidence 
inside ,  is the relative incidence outside , the Kulldorff´s spatial 
scan statistic is defined as 

Z )Z/()() Z CcC µ−−=(ZO

ZZ cCc ZOZIZLR −= )()()(  if ,  1)( >ZI
and 1 otherwise.  When derived as a likelihood ratio test, it is based on a set of alternative 
hypotheses. See Kulldorff(1997) for details. The zone  that maximizes  is defined as the 
most likely cluster. The logarithm of the likelihood ratio (LLR) is commonly used. The test statistic 
can detect not only circular clusters, but we should expect lesser power for the irregular ones. The 
statistical significance of the most likely cluster of observed cases is computed through a Monte 
Carlo simulation (Dwass, 1957). Under null hypothesis, simulated cases are distributed over the 
map and the scan statistic is computed for the most likely cluster. This procedure is repeated 
thousands of times, and the obtained values are compared with that of the most likely cluster of 
observed cases, producing an estimate of its p-value.  
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2.2. THE COMPACTNESS PENALTY CORRECTION 
 
     In order to penalize the highly irregularly shaped zones in the map, given a planar geometric 
object , define  as the area of  and  as the perimeter of the convex hull of . 
Intuitively, the convex hull of a planar object is the cell inside a rubber band stretched around it. 
The compactness of  is  
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equivalent to  divided by the area of the circle with perimeter . Compactness does not 
depend on the size of the object, only on its shape (Duczmal et al., 2006b). The maximum 
compactness value, one, is attained by the circle. The expression is employed instead of 
the likelihood ratio . A parameter  is used here as a penalty factor, varying the strength 
of the compactness measure, through the formula , replacing . The generalized 

expression  is thus employed as the corrected likelihood test function instead of . 
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The penalization is weaker when a , and stronger when a . It was observed, through 
numerical experiments, that irregularly shaped cluster detection algorithms benefit from the 
application of the non-compactness penalty correction (Duczmal et al., 2006b). The penalty 
correction acts as a filter to restrain the presence of those extremely high LLR valued large tree-
shaped clusters, allowing the presence of the somewhat lower LLR valued clusters solutions with 
real geographic meaning that we are looking for. These last clusters are in general less irregularly 
shaped than the tree-shaped ones, and should otherwise be obfuscated by them.     

1<

(θ −− x

1>

 
2.3. THE MONO-OBJECTIVE GENETIC ALGORITHM  
 
     Genetic algorithms (GA’s) are optimization algorithms that employ a set of candidate solutions 
(called the population) that are spread over a region of the space of optimization variable vectors, 
for performing the search for function optima. The GA’s evolve these candidate solutions (each 
such candidate solution is called an individual) using rules that mimic the process of biological 
evolution, in its process of species evolution through natural selection. A crossover operator 
randomly mixes the features of randomly chosen parent individuals, leading to offspring 
individuals, and a mutation operator introduces random perturbations in the features of an 
individual, increasing the variance of the population. The selection operator decides which 
individuals should continue in the population or should be discarded in the next generation, based 
on the objective function evaluation of all the individuals of the current generation and using a 
stochastic procedure. This process is repeated for a number of generations, and we expect to find 
individuals with increasing higher values for the objective function in the later generations. This 
kind of algorithm is becoming increasingly important, in the context of the optimization of 
objective functions that present multiple local optima and irregular landscapes. 
     A genetic algorithm was developed for spatial cluster detection and inference using the scan 
statistic. Given a map with  regions, the mono-objective optimization algorithm starts with an 
initial population consisting of M  individuals, or zones.  Every region in the map belongs to at 
least one of the zones of the initial population, which are formed by an aggregation process. The 
core of the algorithm is the routine that builds the offspring resulting from the crossover of two non-
disjoint given parents A and B. Each parent and each offspring is thus a set of connected regions in 
the map, or zone. The offspring is constructed based on a random numbering of two trees associated 
to the parents A and B, see details in Duczmal et al. (2006c). Several children are produced, which 
are intermediate zones between the two extremes zones A and B. The computation of the objective 
function (the compactness corrected spatial scan statistic of section 2.2) is very inexpensive, and 
each individual child is already known to be connected, as a property of the special crossover 
operator that was developed. The algorithm has fast convergence, and has good power of detection.  
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3. THE GUMBEL DISTRIBUTION APPROXIMATION 
 
     Through extensive numerical tests, Abrams et al. (2005) showed that under the null hypothesis, 
the empirical distribution of values of the Kulldorff´s scan statistic for circular clusters is 
approximated by the well-known Gumbel distribution  

}/)]/)exp[(exp{)( 1 θµθµ−−= − xxf , 
with parameters (mode) and θ (scale). µ
     In this section we extend these findings for the empirical distribution of the penalized genetic 
algorithm scan statistic under null hypothesis. Numerical tests suggest that it is also reasonably well 
approximated by the Gumbel distribution. We do not attempt here to give a rigorous proof of this 
result. The rationale follows the same argument used for the circular scan: the penalized genetic 
algorithm scan statistic is also an extreme value distribution. We are interested in computing only 
small p-values. We will adjust the tail of the Gumbel function, giving less importance to the smaller 
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values of LLR of the empirical distribution, instead of simply computing the usual parameters µ  
and θ  using the whole set of  values of the empirical distribution.  Sorting those  values by 
decreasing order of LLR, we now look for the optimal parameters  and θ  which minimize 
the functional  
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 and  belongs to the list of empirical values , located at the positions 

, respectively. The integer i  is chosen to be the largest number such that . 
Each term in the summation above measures the absolute difference between the empirical values 

 at the selected positions of the list and the values estimated by the Gumbel distribution at the 
corresponding quantiles . The values  are more concentrated toward the larger values 
of the empirical distribution. Thus, the fitting of the tail is privileged, as compared to the standard 
fitting procedure that considers all the empirical values as equally important. The optimal 
parameters  and θ  are found by a standard bissection procedure in two variables, employing 

the usual parameters  and θ  as initial entries. In section 4.3 we present numerical simulations 
results showing the adequacy of the parametric Gumbel approximation.  
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4. MULTI-OBJECTIVE OPTIMIZATION 
 
     Genetic algorithms have been found to be particularly well suited for dealing with multi-
objective optimization problems, since they evolve a whole set of tentative solutions towards the 
Pareto-set. This allows finding an entire estimate of this set in a single run of the algorithm 
(Fonseca and Fleming, 1995). Examples of multi-objective genetic algorithms developed for 
different application contexts are reported in (Ramos et al., 2003, Takahashi et al., 2004, Carrano et 
al., 2006). The references (Takahashi et al., 2003, Carrano et al., 2006) present illustrations of how 
a Pareto-set can be employed for the a posteriori analysis of the problem in such a way that no 
mono-objective algorithm could perform. 
     We now describe the novel multi-objective optimization approach to the problem of finding 
spatial clusters. The genetic algorithm described in section 2.3 will be modified to deal 
simultaneously with the two quantities: the compactness  (section 2.2), and Kulldorff´s 
original spatial scan  (section 2.1). The compactness  will not be used anymore as a 
penalty correction, but instead as a new variable. That approach simplifies the problem and allows a 
stronger grasp of the question of finding the “best” cluster solution.  
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4.1. PARETO-SETS 
 
     The pairs ( , indicating the compactness and scan statistic computed for each individual i, 
are plotted in the Cartesian plane. The selection operator is now defined in terms of two objectives, 
maximizing the compactness and the scan statistic. This operator relies on the concept of 
dominance: a point is said to be dominated if it is worse than another point in at least one objective, 
while not being better than that point in any other objective (Chankong and Haimes, 1983). The 
Pareto-set is the set that does not contain any dominated solution, thus consisting of points that are 
not simultaneously worse than any other point in both objectives.  
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4.2. THE MULTI-OBJECTIVE OPTIMIZATION GENETIC ALGORITHM 
 
     The initial population construction and the crossing-over and mutation operators are identical to 
those employed in the genetic algorithm of section 2.3. The difference relies in the selection 
operator for the multi-objective optimization genetic algorithm, as follows.  
     At the beginning of each generation, we compute the current generation list, which consists of 
the set of parent individuals augmented several times with the addition of newly produced offspring 
through the crossing-over operator. The next generation list, initially empty, stores the individuals 
that will survive for the next generation. We compute the Pareto-set of the current generation list, 
which is transferred to the initially empty next generation list; the same Pareto-set is also removed 
from the current generation list. A new Pareto-set of the remaining individuals is computed, and the 
procedure is repeated until the new generation list has grown to contain at least M individuals. The 
eventually excessive individuals added in the last step are removed randomly to form a new next 
generation list with exactly M individuals. The current generation list is finally substituted by the 
next generation list. This procedure is similar to the “Non-Dominated Sorting” selection operator, 
which is employed in some of the most efficient multi-objective genetic algorithms that are 
available up to now (Deb et al., 2002). The crossing-over operator builds again new offspring, and 
the procedure of this paragraph is repeated for a number of successive generations.  
     We present an example using the Northeast US map benchmark (Duczmal et al. 2006b). This 
map has 245 counties, population of 29,535,210 women, and real data of 58,943 breast cancer 
deaths, during the period of 1988-1992 (Kulldorff et al.1997). The analyses are adjusted for age 
applying indirect standardization with 18 distinct five years age groups: 0-4, 5-9,K , 80-84, and 
85+.  The annual mortality rate was 39.91 per 100,000 women. Figure 1 displays a sequence of LLR 
versus compactness graphs obtained through the multi-objective genetic algorithm for the initial 
population, and for generations 2, 4, 11, 14 and 20.  We observe a collective displacement of points 
towards generally higher values of K and L. Observe that the convergence is very fast for points 
with high compactness. In that example, an isolated point with high LLR appears in generation 14, 
being followed by newly generated offspring with even higher LLR values in generation 20. There 
is a pronounced change in the first generations, followed by more subtle population changes in the 
later generations. The population may contain multiple copies of some individuals, especially in the 
later generations. The Pareto-set of the latest generation is considered the solution given by the 
genetic algorithm. In that example, no further changes occur within the Pareto-set during the 
subsequent generations. The later generations point sets become closer to their respective Pareto-
sets, and that proximity could be used as a criterion for convergence.  
 
4.3. COMPUTING THE CLUSTERS SIGNIFICANCE  
 
     In this section we show how to compute the statistical significance of the points in the Pareto-set 
solution for the map of observed cases, which is compared to the hundreds of Pareto-set solutions 
computed for each one of the simulated cases maps under the null hypothesis.  
     A Monte Carlo simulation is conducted: the algorithm of section 4.2 is executed hundreds of 
times for maps containing random cases spread according to a Poisson distribution under null 
hypothesis, where the average of cases allocated to each region is proportional to its population. 
The process of finding the Pareto-set is repeated for each different allocation of random cases. 
Those Pareto-sets are joined, obtaining a collection of thousands of points distributed in the 
LLR×compactness space, namely the strip (  (see Figure 2). Let  be the “true” 
bivariate distribution of an arbitrarily large collection of cluster points in . Our goal 
now is to obtain a good approximation for . Similarly to section 3, extensive numerical tests 
suggest that the marginal distribution of  on the variable l  is approximated by a Gumbel 
distribution, as follows. The strip  is partitioned into a number of parallel strips 
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, . The average and variance of the LLR values of the points contained in 
each strip are used to compute the parameters of the best fitting Gumbel distribution for that 
particular strip. Let G  be the Gumbel distribution for the strip ( . The values 

 are thus chosen close enough such that the marginal distribution of  does not change 

much in the interval  and also there are sufficient points inside the strip to evaluate 

appropriately the parameters of G . Let  be a point belonging to the observed cases 

Pareto-set. The Gumbel distribution  for the strip  containing the point  is 

then used to compute the estimated p-value for  as  . 
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     The example of Figure 2 displays the Gumbel approximations for the four strips selected, with 
the corresponding histograms of LLR empirical values, using data from the Northeast US map 
benchmark, now with 20,000 sets of 600 cases randomly distributed under the null hypothesis. The 
20,000 Pareto-sets found by the multi-objective algorithm constitute a total of about 305,000 points. 
The many thousands of points with K=1 (corresponding to clusters containing only one region) 
were removed from this figure, for clarity.  
     We obtain a more accurate significance computation, using the p-values estimates for all the 
strips to build the interpolated p-value surface. The individual p-values for each one of the points in 
the observed cases Pareto-set are thus computed by means of the p-values isoclines. Figure 3 
displays several isoclines, with the p-values indicated, along with the computed points used in their 
interpolation. The same data of Figure 2 was used here. P-values isoclines as low as 10  may be 
traced in this example, although the accuracy is diminished. Arbitrary precision arithmetic may be 
necessary to compute those parameters for those extremely small p-values.    

27−

     One could be concerned about the occurrence of multiple testing, since we are dealing 
simultaneously with various shapes in the Pareto-sets of the map of observed cases. This in fact 
does not happen since the null hypothesis maps also produce Pareto-sets associated with the 
simulated cluster solutions of various shapes, using exactly the same algorithm used for finding the 
Pareto-sets corresponding to the clusters of observed cases.  
     We conduct a simple experiment to check the adequacy of the Gumbel distribution 
approximation. Table 1 displays comparative results of the 20,000 Pareto-sets (about 305,000 
points) simulation under null hypothesis for the Northeast US map for some strips at different 
quantiles (0.1, 0.05, 0.01, 0.001 and 0.0001). The method of section 3 was used to adjust the tail of 
the Gumbel distributions. The expected number of values within each quantile semi-infinite 
interval, according to the Gumbel tail-adjusted distribution, is compared to the number of values 
that have occurred in the simulation, in parenthesis. The last columns show the parameters for the 
original Gumbel distributions ( ) and for the tail-adjusted ones ( ). The good 
agreement between the estimated and observed number of values for each quantile suggests the 
plausibility of employing the Gumbel distributions approximations. 
 
4.4 A SIMULATED CLUSTER EXAMPLE  
 
     We pick up a set of random allocations of 600 cases in the artificial cluster A alternative 
hypothesis model from the Northeast US benchmark (see Duczmal et al., 2006b). It is an elongated 
cluster located along the Connecticut River, just to the right of the center in the Northeast US inset 
map of Figure 4. This shaded map displays the incidence rates for this particular random allocation 
of cases. Figure 4 shows the Pareto-set solution found by the multi-objective genetic algorithm, 
consisting of 7 cluster points within the p-values isoclines graph, along with the corresponding 
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clusters I-VII, displayed as 7 detailed inset maps. Table 2 shows LLR value, compactness, cluster 
size (number of component regions), population, number of cases, incidence rate and computed p-
value for each cluster. Cluster I is relatively round. Adding and subtracting one region, we obtain 
cluster II, decreasing the compactness and increasing the LLR value. When we pass to cluster III, 
again exchanging one region, there is a significant increase in the LLR value, and the compactness 
is only slightly reduced. The increase in the p-value is clearly seen, as the cluster point moves closer 
to the 0.001-value isocline. The next exchange of regions, producing cluster IV, decreases the 
compactness without improving appreciably the LLR value. As expected, the cluster point moves 
away from the 0.001-value isocline, reducing its p-value. Clusters V and VI have increased LLR 
values and decreased compactness, and the p-values increase. The last region exchange, producing 
cluster VII, is not a good deal because the LLR value increase is not compensated by the much 
lower compactness, thus reducing the p-value. The best solution, measured by the p-value criterion 
is thus cluster III, followed closely by cluster VI.      
        
5. POWER EVALUATION 
 
     Given an alternative hypothesis model, hundreds of runs of the multi-objective algorithm 
produce the correspondent Pareto-sets, which are joined and compared to the 0.05 p-value isocline, 
obtained under null hypothesis, as described in section 4.3. The proportion of points to the right of 
the isocline is an estimate of the average power of the algorithm for that particular alternative 
hypothesis model.  A more detailed power analysis considers the proportion of points to the right of 
the 0.05 isocline for each horizontal strip. Table 3 shows the power comparison between the multi-
objective genetic algorithm (MGA) and the mono-objective compactness corrected genetic 
algorithm (GA), using the same datasets benchmark of section 3, with 6 artificial irregularly shaped 
clusters A-F (Duczmal et al. 2006b,c).  The size and compactness are displayed for each cluster. For 
the MGA, we show the average power (considering all the solution points) and consider the power 
separately for each strip. The maximum power is defined as the maximum power value among all 
the strips, indicated by bold face values in Table 1. The non-compactness penalty correction 
parameter a was set to 1 (full correction) in the GA. For each cluster, the Monte Carlo was based on 
10,000 Pareto-sets, or about 150,000 cluster points (MGA) and 10,000 most likely clusters (GA), 
plus the two corresponding null hypotheses simulations.  
     Although the MGA average power is generally lower than the GA power, the MGA maximum 
power was about the same as the GA power. Interestingly, the compactness of the simulated cluster 
always belongs to the compactness interval corresponding to the strip where maximum power was 
attained. In other words, the GA seems to have maximum efficiency through the compactness 
correction. This suggests that the compactness penalty function “normalizes” the GA search, 
balancing the relative importance of the clusters of different shapes.  
 
6. AN APPLICATION TO BREAST CANCER CLUSTERS 
 
     Figure 5 displays the isoclines for several p-values, built with the methods of section 3 and 4.3, 
based on 20,000 Pareto-sets null hypothesis Monte Carlo simulations, along with the Pareto-set of 
observed cases for the breast cancer deaths real data for Northeast US map. Arbitrary precision 
arithmetic was necessary for the computation of the very low p-values. The corresponding clusters 
are described in Table 4, displaying LLR value, compactness, size, population, number of cases, 
incidence rate and approximated computed p-value.  Figure 5 shows the selected clusters a, c , f, g, 
o and r within the Pareto-set. Observe that the upper left points correspond to low scan valued 
round shaped clusters, and the lower right points correspond to the high LLR, more irregularly 
shaped clusters. In this example, the most irregularly shaped clusters are the most significant, with 
estimated p-values smaller than 10 . Although the individual p-value accuracy is lower for those 
clusters, their relative positions in the isoclines graph are accurate enough for deciding which ones 
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are the most significant. The cluster a is a secondary cluster, consisting of only one region (see 
Kulldorff et al., 2003). 
 
7. DISCUSSION 
 
     We described a quantitative criterion for the problem of the geographic delineation of irregularly 
shaped spatial clusters of disease. Given a set of optimal solutions found by a cluster finder 
algorithm, the problem was reduced to choosing the most significant solution among them. We 
developed a genetic algorithm that finds the Pareto-set solution, based on the maximization of two 
objectives, the scan statistic and the regularity of cluster shape (compactness). This multi-objective 
algorithm presents a set of cluster solutions, which should be ranked according to their individual 
statistical significance. We extended the usual concept of significance for the multi-objective 
problem by means of a p-value surface in the two variables scan statistic and compactness. The p-
value isoclines are computed with the help of the Gumbel approximation, allowing higher accuracy 
and computational speed for the significance estimation. The possibility of identifying the “best 
solution” through a quantitative criterion gives a new insight in the process of finding irregularly 
shaped clusters. The former attempts of dealing with the problem of simultaneously taking into 
account the maximization of LLR value and the choice of a suitable cluster geometry, in mono-
objective optimization settings, necessarily lead to some arbitrary choice of the trade-off between 
these objectives that could not be satisfactorily accommodated in theory. The introduction of the 
concept of Pareto-set in this problem, followed by the choice of the most significant solution, is 
shown to allow a rigorous statement about what is such “best solution”, without the need of any 
arbitrary parameter. 
     The numerical evaluations show that the multi-objective algorithm average power is slightly 
inferior to the power of the mono-objective genetic algorithm. But when we measure the power of 
the multi-objective algorithm separately for each strip and choose the maximum value (maximum 
power) we observe that this value is about the same as the power of the mono-objective genetic 
algorithm. The maximum power definition is useful here because it measures the power of the 
algorithm to detect a cluster when the search is restricted to clusters with compactness within a 
certain interval; as we have seen, this interval always contains the value of the compactness of the 
cluster that we are trying to detect.  
     The algorithm is as fast as the genetic mono-objective. One interesting question for a future 
work concerns the disposition of the Pareto-set against the p-value isoclines: in the simulated cluster 
example of this paper, the maximum significance was in the middle of the Pareto-set list, but in the 
real data example the maximum significance cluster was attained at the extreme of the list. As 
shown in the breast cancer real data example, there is a potential for finding secondary clusters 
within the Pareto-set, and that possibility needs further investigation. A surprising feature of that 
example refers to the extremely small p-values for those real-data clusters. That provides a dramatic 
illustration of the high sensitivity of the scan statistic. Other algorithms could also possibly be 
adapted for the multi-objective search, instead of using a genetic algorithm.  
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Figure 3 
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Figure 4 
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Figure 5 
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Table 1 

 

quantiles parameters 
strip N 0.1000 0.05 0.01 0.001 0.0001 0µ  0θ  optµ  optθ  

.95, 1.0 8003 800.3 
(838) 

400.2 
(441) 

80.0 
(77) 

8.0 
(6) 

0.800 
(1) 1.73 1.34 2.02 1.24 

.90, .95 10911 1091 
(1140) 

545.6 
(576) 

109.1 
(121) 

10.9 
(13) 

1.091 
(0) 2.22 1.42 2.66 1.23 

.85, .90 13805 1380 
(1454) 

690.2 
(744) 

138.1 
(134) 

13.8 
(16) 

1.380 
(1) 2.78 1.49 3.15 1.30 

.80, .85 16874 1687 
(2050) 

843.7 
(981) 

168.7 
(153) 

16.9 
(14) 

1.687 
(3) 3.49 1.52 3.36 1.45 

.75, .80 19954 1995 
(2135) 

997.7 
(1038) 

199.5 
(201) 

20.0 
(19) 

1.995 
(2) 4.30 1.48 4.55 1.32 

.70, .75 25122 2512 
(2685) 

1256 
(1388) 

251.2 
(238) 

25.1 
(26) 

2.512 
(5) 5.00 1.51 5.24 1.35 

.65, .70 28826 2883 
(3172) 

1441 
(1648) 

288.3 
(327) 

28.8 
(26) 

2.883 
(4) 5.70 1.51 5.95 1.34 

.60, .65 32137 3214 
(3378) 

1607 
(1724) 

321.4 
(314) 

32.1 
(34) 

3.214 
(1) 6.36 1.54 6.59 1.41 

.55, .60 34043 3404 
(3607) 

1702 
(1778) 

340.4 
(348) 

34.0 
(39) 

3.404 
(0) 6.94 1.57 7.21 1.43 

.50, .55 33892 3389 
(3613) 

1695 
(1839) 

338.9 
(346) 

33.9 
(38) 

3.389 
(0) 7.46 1.63 7.71 1.48 

.45, .50 30870 3087 
(3307) 

1544 
(1758) 

308.7 
(392) 

30.9 
(35) 

3.087 
(3) 7.93 1.67 8.43 1.42 

.40, .45 23827 2383 
(2358) 

1191 
(1221) 

238.3 
(279) 

23.8 
(24) 

2.383 
(1) 8.29 1.74 8.79 1.53 

.35, .40 15430 1543 
(1678) 

771.5 
(864) 

154.3 
(169) 

15.4 
(17) 

1.543 
(1) 8.49 1.75 8.83 1.54 

.30, .35 7854 785.4 
(820) 

392.7 
(425) 

78.5 
(90) 

7.9 
(6) 

0.790 
(2) 8.70 1.76 9.45 1.41 

.25, .30 2615 261.5 
(280) 

130.8 
(132) 

26.2 
(39) 

2.6 
(0) 

0.262 
(0) 8.74 1.78 9.02 1.62 

.20, .25 558 55.8 
(53) 

27.9 
(22) 

5.6 
(9) 

0.6 
(0) 

0.056 
(0) 8.66 2.00 8.66 1.99 

.15, .20 94 9.4 
(9) 

4.7 
(5) 

0.9 
(1) 

0.1 
(0) 

0.009 
(0) 8.73 1.57 8.65 1.41 

Table 2 
 

cluster size LLR K(z) population cases rate ×100,000 p-value 
I 10 15.21 0.686 1,062,145 51 4.8016 0.0034 
II 10 15.85 0.650 1,103,353 53 4.8035 0.0029 
III 10 17.60 0.607 1,201,644 58 4.8267 0.0013 
IV 10 17.72 0.551 1,197,728 58 4.8425 0.0019 
V 10 18.38 0.504   990,792 52 5.2483 0.0017 
VI 10 18.79 0.498 1,193,323 59 4.9442 0.0014 
VII 10 19.15 0.418   967,908 52 5.3724 0.0019 
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Table 3 
 

 A B C D E F 
K(z) .38 .42 .30 .52 .44 .20 
size 13 16 7 15 21 23 

GA power .85 .83 .79 .88 .80 .46 
MGA power 

(average) .70 .62 .65 .75 .68 .29 

strip       
.95, 1.0 
.90, .95 
.85, .90 
.80, .85 
.75, .80 
.70, .75 
.65, .70 
.60, .65 
.55, .60 
.50, .55 
.45, .50 
.40, .45 
.35, .40 
.30, .35 
.25, .30 
.20, .25 

.04 

.16 

.26 

.42 

.57 

.63 

.71 

.76 

.78 

.82 

.83 

.85 

.83 

.79 

.77 

.74 

.02 

.02 

.09 

.22 

.36 

.52 

.62 

.70 

.74 

.77 

.78 

.79 

.77 

.73 

.68 

.51 

.10 

.18 

.25 

.37 

.47 

.54 

.61 

.62 

.68 

.73 

.78 

.80 

.82 

.81 

.79 

.76 

.04 

.16 

.35 

.49 

.63 

.70 

.79 

.84 

.87 

.89 

.89 

.88 

.85 

.82 

.71 

.70 

.04 

.13 

.28 

.37 

.49 

.58 

.68 

.75 

.80 

.82 

.82 

.82 

.80 

.77 

.73 

.69 

.04 

.03 

.03 

.05 

.08 

.11 

.15 

.19 

.25 

.31 

.38 

.42 

.45 

.46 

.45 

.45 
 

Table 4. 
 

cluster size LLR K(z) pop Cases annual rate  
×100,000 10log (p-value) 

a   1 40.6 1.00 710196 1765 49.70 -12 
b   5 48.1 0.88 1732559 4031 46.53 -14 
c   6 52.3 0.72 2085959 4814 46.16 -17 
d   8 56.2 0.69 2715157 6177 45.50 -18 
e   6 58.4 0.69 2019613 4709 46.63 -18 
f   6 73.3 0.68 2173282 5125 47.16 -22 
g 15 74.7 0.56 4017127 9052 45.07 -21 
h 14 75.9 0.55 3580296 8140 45.47 -21 
i   9 80.3 0.54 3176964 7314 46.04 -22 
j 15 81.4 0.54 5121469 11411 44.56 -22 
k 15 86.3 0.53 3993404 9081 45.48 -24 
l 14 89.8 0.52 3824703 8747 45.74 -24 
m 15 97.5 0.49 4418903 10050 45.49 -26 
n 15 98.3 0.48 4251402 9702 45.64 -26 
o 15 114.8 0.48 4255849 9812 46.11 -29 
p 15 120.5 0.45 4224819 9779 46.29 -30 
q 15 124.2 0.39 4655988 10714 46.02 -30 
r 15 127.7 0.36 4511453 10428 46.23 -30 
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