
Adaptable Documentation and Traceability of Software Requirements

E. C. Genvigir1 2 and N. L. VijayKumar1

1Laboratory for Computing and Applied Mathematics - LAC
Brazilian National Institute for Space Research - INPE

C. Postal 515 – 12245-970 – São José dos Campos - SP
BRAZIL

E-mail: elias, vijay@lac.inpe.br

2 Federal Technological University of Paraná – UTFPR
Campus Cornélio Procópio

Av. Alberto Carazzai, 1640, CEP 86300-000 – Cornélio Procópio – PR
BRAZIL

Keywords: requirements, data analysis, metamodel, traceability.

This work presents a summary on the research conducted towards the development of a model to document and
to visualize,dynamically, software requirements.

The research consisted of analyzing the necessary information focusing on documenting different types of
requirements in an efficient way, and how quality factors may be part of those requirements. The research has also
considered, the traceability (Aizenbud-Reshef et al, 2006) among the requirements and different types of artifacts
developed during a software project.

The current solutions for the Requirement Engineering do not possess support for the inclusion or exclusion, of
quality factors and elements to describe specific patterns of requirements as the use cases or forms of a certain
project. The lack of that support makes the storage model and description of the static requirements difficult; in
other words, those solutions hinder the definition of different types of requirements as well as the inclusion of
attributes for the quality control of those requirements.

The existence of different types of requirements, as well as specific needs about quality are due to the inherent
specifications to each project and the different characteristics of the processes used in the organizations during the
development of those projects.

The study showed that the use of a flexible approach that allows the definition of new patterns of requirements
with different characteristics, as well as the option to determine whether they should or not be demanded,
constitutes a viable option for a solution to the problem. "Flexible", within the context of this research, points
towards the capability of the model to understand to define, to register and to visualize dynamically new patterns
defined according to the needs of the project, unlike a static model in that it possesses a pre-defined, nonmodified
(ou melhor non-modifiable) storage mechanism.

As for the computational development of the model, it has been opted to use technologies that make use of
hyperdocuments possessing the flexibility as their main feature, such as the definition of specific vocabularies in
Extensible Markup Language - XML and the elements for dynamic visualization as Extensible Stylesheet
Language for Transformation - XSLT.

For the support of the quality elements, some established standards were analyzed based on norms, such as IEEE-
830 (IEEE,1998b) and IEEE-1233(IEEE,1998a). When considering IEEE-830, it was observed that the constant
requirements in a specification of requirements of high qualitysoftware must be clear, complete, without
ambiguity, implementable, consistent and testable. For those qualities to be achieved, the requirements should
possess some of the following characteristics: required entered and exit information, restrictions, associated
documents and others.

The analysis showed that not all the factors of quality of a requirement should necessarily be obligatory, because,
depending on the characteristics of the project, the factor could or not be important. It was also observed that the
creation of new norms or models associating new quality factors to the requirements could restrict a model in that

those factors could be defined in a static way. Finally, the first analysis also presented that the definition of a static
model of data for the requirements created a large complexity in when dealing with a single XMLvocabulary.

The traceability was also treated in a flexible way, which contributed to the creation of the traces between the
requirements and the different types of artifacts generated during the projectdevelopment. In this way, the
application of the Software Process Engineering Metamodel - SPEM (OMG,2002), specifically the nucleus
associated to the products of process work, allowed the creation of the necessary structure to register and later,
to associate the several types of artifacts to the requirements using different types of traces.

After evaluating SPEM, a data model was elaborated to solve the problem of t registration of the artifacts.

When analyzing the artifact class diagram , it was observed that SPEM presented a solution for the three
problems observed initially in the work: the quality factors do not need to be obligatory; enabling the inclusion of
new norms or demands associated to the requirements; and the XML vocabulary used is simplified.

The adopted solution simplified the data model in more generalized classes in which an element of SPEM, such
as WorkProduct, may be a class diagram, a use case, a code source or any type of work product that one may
want to create or to use. That solution type allows flexibility as to which elements are to be used in a given
project, which also facilitates the creation of a single XML vocabulary in which its items are the same, however,
with distinct instances .

After the analysis, the model shown in Figure 1 has been created.

Figure 1. Class diagram.

In the obtained solution, Figure 1, the Requirements are defined by a RequirementType which, in turn, possesses
AttributeRequirementType. The AttributeRequirementType possesses Instances that are the values instanced for a
certain requirement. As the instances are the values of the attributes of a given requirement, the instances need to
be associated to the requirement to which they belong. The existence of the association between the instance class
and the requirement class is due to that fact.

It can also be observed, in Figure 1, that a Requirement may be associated to one or more WorkProduct
(artifacts), whose association is the one that allows the traceability between requirements and artifacts.

The implementation of this model turned into a tool which allows registering different types of requirements,
artifacts and traces as well as allowing their visualization in a dynamic way. However, other elements related to
the requirements traceability process, as the automation of the process, the impact of changes and the evolution
of the software, are focused for the continuity of this research. So, the presented solution is a preliminary result
of a proposal that should understand the control on the registration, the documentation and the traceability of
software requirements.

REFERENCES

Institute of Electrical and Electronics Engineers - IEEE Std - 1233 IEEE - Guide for developing system
requirements specifications, New York, 1998a.

Institute of Electrical and Electronics Engineers - IEEE Std 830-1998 IEEE Recommended practice for software
requirements specifications. New York, 1998b.

Object Management Group, Software process engineering metamodel specification (SPEM), Formal Submission,
OMG document number formal/02-11-14, November 2002.

Aizenbud-Reshef, N. and Nolan, B.T. and Rubin, J. and Shaham-Gafni, J. (2006), Model traceability, IBM
Systems Journal, 45 (3), 515-526.

