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Abstract We present a new tree-based framework for producing self-dual
morphological operators. For any given tree representation of im-
ages, one can associate a complete inf-semilattice (CISL) in the
corresponding tree-representation domain, where the operators can
then be derived. We also present a particular case of this gen-
eral framework, involving a new tree representation, the Extrema-
Watershed Tree (EWT). The operators obtained by using the EWT
in the above framework behave like classical morphological opera-
tors, but in addition are self-dual. Some application examples are
provided: pre-processing for OCR and dust & scratch removal al-
gorithms, and image denoising.

Keywords: complete inf-semilattices, self-dual operators, tree representation of
images.

1. Introduction

One of the main approaches for producing self-dual' morphological oper-
ators is by means of a tree representation. For instance, Salembier and
Garrido proposed a Binary Partition Tree for hierarchical segmentation in
[12,15]. A tree of shapes was proposed by Monasse and Guichard [10, 11]
(see also [1,2]). These tree representations are usually used for performing
connected filtering operations on an image; however, they do not yield non-
connected operators, such as erosions, dilations or openings by a structuring
element.

In [7] (see also [8]) a new complete inf-semilattice (CISL), called the
shape-tree semilattice, was introduced. This semilattice provides non-con-
nected morphological operations, based on the above-mentioned “tree of
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1 An operator v is self-dual when ¥ (—f) = —(f) for all input f.
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shapes”. As a consequence, self-dual erosions and openings were obtained.
Similar operators had been developed earlier on the so-called Reference
Semilattices (introduced in [6], and further studied by Heijmans and Keshet
in [4]); however, they require a reference image, which somewhat limits
the usage of these operators. The self-dual operators in the shape-tree
semilattice provide erosions and openings without the need for a reference
image.

In this paper, we present a general framework for tree-based morpho-
logical image processing, which generalizes the shape-tree operators. This
framework yields a set of new morphological operators (erosion, dilation,
opening, etc.), for each given tree representation of images. The heart of
the proposed approach is a novel complete inf-semilattice of tree represen-
tations of images. Because many of the properties of the tree are inherited
by the corresponding operators, the choice of the tree representation is of
high importance. We focus mostly on self-dual trees, which represent dark
and bright elements equally.

A particular case of the proposed framework is also presented, based on
a novel tree representation, the Extrema-Watershed Tree (EWT). Following
the general framework, we derive self-dual morphological operators from the
EWT. Examples of applications discussed here are pre-processing for OCR
(Optical Character Recognition) algorithms, de-noising of images, and pre-
processing for dust and scratch removal.

2. Theoretical background

2.1 Complete inf-semilattices

A complete inf-semilattice (CISL) is a partially-ordered set S, where the
infimum operation (A) is always well-defined (but the supremum V is not
necessarily so). The theory of mathematical morphology on complete semi-
lattices was introduced in [5], and is an almost-straightforward extension
of the traditional morphology on complete lattices. It mathematically sup-
ports intuitive observations, such as the fact that erosions are naturally
extended from complete lattices to CISLs, whereas dilations are not univer-
sally well-defined on CISLs.

On the other hand, some results may not be necessarily intuitive. The
main ones are as follows: (a) it is always possible to associate an opening
v to a given erosion £ by means of v(z) = A{y| £(y) = (z)}, (b) even
though the adjoint dilation ¢ is not universally well-defined, it is always
well defined for elements on the image of S by ¢, and (c¢) v = de.

2.2 Rooted trees and their corresponding CISL

This section reviews basic graph theory notions (given in [3, chapter 1]),
including the natural partial ordering on rooted trees, which provide them
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with a CISL structure.

A graph is a pair of sets G = (V, E) satisfying E C [V]2. A path is
a non-empty graph P = (V, E) of the form: V = {z¢,z1,...,21}, E =
{xox1, 2122, ..., T—121}, Where the z; are all distinct. A cycle is a path
where k > 2 and (zg, ) € E. A graph not containing any cycles, is called
a forest. A connected forest is called a tree (thus, a forest is a graph whose
components are trees).

Sometimes it is convenient to consider one vertex of a tree as special;
such a vertex is then called the root of this tree. A tree with a fixed root
is a rooted tree. Choosing a root r in a tree t imposes the following partial
ordering on V(t): z =; y <= x € rty, where rty is the unique path in
t that connects y to the root. Note that (V,=<;) is a CISL, where r is the
least element, and the maximal elements are the leafs of t. The infimum
between vertices is the nearest common ancestor vertex.

We say that a tree t; is smaller than another tree to if t; C to.

3. Tree semilattices

This section presents the proposed general framework for tree-based mor-
phological image processing (introduced in [16]). This framework enables
the definition of new morphological operators that are based on tree rep-
resentations. The proposed image processing scheme is shown is Figure 1.

General framework for tree-based morphology

:nput T Tree-domain ? 1 Filltered
L ’Z' — morphological |— ’Z' mage
operators

Figure 1. Tree-based morphology.

3.1 CISL of tree representations

The heart of the proposed approach is a novel complete inf-semilattice of
tree representations of images. Let L be an arbitrary set of “labels”, and let
t = (V, E) be a rooted tree, with root r, such that V' C L. Therefore ¢ is a
tree of labels. Moreover, let M : E — V be an image of vertices, mapping
each point in E to a vertex of t. As usual, E may be an Euclidean space or
a discrete rectangular grid within the image area.

Definition 1. (Tree representation) The structure T = (¢, M) shall be
called a tree representation. The set of all tree representations associated
with the label set L and with the root r shall be denoted by 7,-. O
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Consider the following relation between tree representations: For all
T1 = (tl,Ml) and TQ = (tQ,MQ) iIl /TTL,

tl Q tg and

hisTh < { My (z) <y, My(z),Vz € E, (1)

where C is the usual graph inclusion, and =, is the partial ordering of
vertices within the tree ¢2 (see Subsection 2.2).

Proposition 1. The above tree relation < is a partial ordering on T,F, and
(T.F,<) is a CISL. The least element is Ty 2 (({r}, {}), Mo(z) = 1)).

The proof is given in [16]. The general format of the corresponding
infimum and supremum operators are also derived in [16]. Here, however,
we focus on the particular case where all tree presentations involved in an
infimum or supremum operation have a common tree associated with them:

Proposition 2. Let {T; = (t, M;)} be a collection of tree representations
with a common tree t. In this case,

/\Ti = (t, Ae {M;}), (2)

and

\/Ti = (t7 Y {Ml}) ) (3)

where Ay and Y are the point-wise infimum and supremum associated to
vertex order <, respectively. Notice that Y¢{M;} may not always exist.

The situation where the set of tree representations share the same tree
is what one encounters when defining flat erosions and dilations on the
complete inf-semilattice of tree representations. The flat erosion can be
defined as the operator ¢ given by:

en(T) S N\ T = \ (1 My), (1)

beB beB

where B is a structuring element. It is easy to verify that the above operator
is indeed an erosion on 7,%.
Using Proposition 2, one obtains that

en(T) = (t, e {M_yfb € BY). (5)

As reminded in Section 2.1, on a complete inf-semilattice, one can asso-
ciate to any given erosion £ an opening 7 (and, in fact, any morphological
operator that is derived from compositions of erosions and openings, such as
the internal gradient, dark top-hat transform, and skeletons). Furthermore,
the adjoint dilation ¢ exists, and, even though it is not well defined for all
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complete inf-semilattice elements, it is always well-defined for elements that
are mapped by the erosion, and v = de.

In the case of the above tree-representation flat erosion, the adjoint
dilation is given by:

6B(T) = (t, Yt {Mp|b € B}). (6)

_ We also define the tree-representation reconstruction of 7' from a marker
T = (t, M) < T as the infinite iteration of the conditional dilation

Sp(TIT) 2 (t, Y, {M, x, b € B}). (7)

Notice that g (T|T) is always well defined, since it consists of a supre-
mum of bounded elements.

3.2 Image processing on tree semilattices

Now that morphology on the tree representation domain has been estab-
lished, we can turn to our ultimate goal, which is to process a given grayscale
image f. Let us assume that f is an integer-valued function on E, i.e.,
f € Fun(E, Z). Moreover, let 7 by an operator that transforms f into a pair
(T,¢) , where T = (t, M) € T,L is a tree representation, and £ : L — Z is a
function that maps labels into graylevels. The tree transformation 7 should
be invertible, and the inversion be given by: 771(¢, M(z)) = £ (M (z)). We
propose the following approach for processing f, using the CISL of tree
representations:

1. compute 7(f) = (T, );

2. perform one or more morphological operations on 7' to obtain a pro-
cessed tree representation T' = (¢, M);

3. transform (7', ¢) back into a new image f € Fun(E,Z), using:

f@) =771, M (@) = £ (N (@) - ®)

If the morphological operation in Step 2 above is the erosion €, then
all three steps can be collapsed into the following equation:

f(@) = (0 {M_y(z)[b € B}). (9)

Proposition 3. For any vertex v in 'V, let R(v) = {z € E|M(z) =¢ v} and

R(v) 2 {x € E|M(x) = v}, where M is again the mapping function after
the erosion eg. Then, for all v:

R(v) = R(v) & B, (10)

where () © B is the traditional binary erosion by the s.e. B.
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Proposition 3 (which is proven in [16]) suggests an alternative algorithm
for computing the erosion. For any v, (a) compute R(v), (b) compute

R(v) = R(v)© B, and (c) assign £(v) to all points within R(v) \Upzor R().

3.3 Particular cases and examples

In order for the tree transform to be invertible, 7 should be such that it
assigns a common label to each flat zone of f. This is because 7' maps
each label to a single graylevel. This suggests that special attention should
be paid to the flat zones of f.

One way of addressing the flat zones of a given image is by considering
its Regional Adjacency Graph (RAG). The RAG is a graph, where V is the
set of all flat zones of the image, and F contains all pairs of flat zones that
are adjacent to each other.

A spanning tree is a subgraph of a RAG that should, obviously, be a
tree, and have the same vertex set V' as the RAG. A spanning tree creates
a hierarchy in the RAG, defining father/son relationships between adjacent
flat zones.

The proposed morphological scheme is of particular interest when t is
a spanning tree of the RAG. In this case, the associated morphological
operators do not create new grey/color values.

One particular group of trees are the Max- and Min-Trees [13]. When a
tree vertex is always brighter (resp., darker) then its sons, as in the Max-Tree
(resp., Min-Tree), the infimum operation always changes the gray level to the
local minimum (resp., maximum), which is precisely what the traditional
grayscale erosion (resp., dilation) does. In other words, for these trees,
the proposed tree approach becomes the traditional grayscale mathematical
morphology (resp., its dual version).

More interesting particular cases are the Boundary Topographic Varia-
tion (BTV) Tree (see [16]), which is built from the RAG using a minimal
topographic distance criterion. Another one is the shape-tree defined in
[9] and the resulting semilattice defined in [7,8]. Both provide self-dual
morphological operators, based on some inclusion criterion.

3.4 Image semilattice

What we would really like is the CISL of tree representation (using a tree 7)
to induce a CISL in the image domain. That is, we would like, for instance,
the composite operation of 7717 to be an erosion in the image domain.
However, that is not guaranteed. In fact, the partial ordering in the tree-
representation domain does induce a partial ordering for images, for any 7;
however, the infimum operation is not guaranteed to be well defined. This
issue is still under study.
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4. Extrema-watershed tree

Based on the general framework of Section 3, all that is needed in order to
obtain a new set of morphological operators is a given tree representation. In
this section, we explore a particular case of the proposed framework, using
a novel self-dual tree representation, which we call the Extrema- Watershed
Tree (EWT). The EWT is a particular case of “Binary Partitioning Tree”
[12]; in particular, the proposed representation is built using a particular
case of the iterative merging process presented by Salembier, Garrido and
Garcia in [14], as follows:

Input all the extrema of a given image (i.e., all regions associated to a
local minimum or maximum) into a list, sorted by increasing area®. Also,
initiate the EW'T by setting each flat zone as a leaf vertex. The main loop
for the computation of the EWT is as follows: Take the first extremum from
the ordered list (the one with smallest area), and merge it with the adjacent
neighbor that is the closest one in terms of graylevels. Then, set the merged
region as the parent vertex of the above two regions (the extremum and
its neighbor) in the EWT. Select the graylevel of the non-extremum region
to be the graylevel of the new merged region. Finally, check whether the
newly merged region and all its neighbors are extrema, and insert those
that are into the sorted list (in their corresponding place, according to the
listing order). This loop runs until the list has just one element, which then
becomes the EWT root.

Figure 2 illustrates the computation of the EWT. Consider the image
in Figure 2(a), which contains two extrema with the same area: v; and vs.
The first step of the procedure, shown in Figure 2(b), consists of merging
v1 with vy, since the difference in graylevel between v; and wvs is smaller
than the one between vs and vy. This merger produces a new flat zone —
vs, with the same graylevel as vo — which is a new extremum in the image.
In the next step, shown in Figure 2(c), the extremum v3 is merged with vy
to create vg. The procedure continues until all extrema (old and new) are
merged. Figure 2(d) shows the final EWT.

As described in Section 3, once a tree transform is defined, morphological
operations (such as erosion and opening) in the tree-domain can be derived.
The new operators typically inherit some of the properties of the tree, such
as self-duality, for instance. Figure 3 shows the result of the EWT erosion
and EWT opening. Notice that very small features are removed, whereas
the larger ones shrunk, in a self-dual manner. The average gray level of the
picture does not change; in particular, the picture does not become darker,
which is what usually happens after a standard erosion or opening.

2If two extrema have the same area, input first the one who has the smallest grayscale
distance to its closest neighbor.
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Figure 2. Example of the EWT computation. (a) Input image, (b) first merging
step, (c) second merging step, (d) the final EWT.

5. Application examples

The EWT has many potential applications; in this section we list just a few.

One application that requires image simplification is pre-processing for
OCR (Optical Character Recognition). We have chosen a specific OCR al-
gorithm, used for recognition of license plate numbers, that was developed
in [17]. This algorithm uses a mask for each digit and looks for the best
correlation among these masks with an image. The algorithm also outputs
a confidence grade, which can be used for comparing algorithms. Any noise
that exists in the image degrades the correlation value and interferes with
the recognition. Consider the example license plate shown in Figure 4(a),
which has been artificially corrupted with blobs of different sizes. With-
out pre-processing the algorithm fails to read the correct number. Several
different algorithms (including linear filtering and traditional grayscale mor-
phology) has been applied to this image. In order to compensate for the
lack of duality in classical morphology, we have also compared the EWT
with the “quasi-self-dual” Opening-Closing by reconstruction operator. The
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(b)

Figure 3. (a) Original image, (b) EWT erosion by square SE 5 x 5, (¢) EWT
opening by square SE 5 x 5.

(c) (d)

Figure 4. (a) Input image, artificially corrupted, (b) filtered with a median filter,
(c) filtered with regular self dual opening by reconstruction, and (d) filtered by
the EWT-based opening by reconstruction, using circle SE of radius 4.

only algorithms that cause the algorithm to correctly read the number were
the median filter, quasi-self-dual filter and the EWT opening by reconstruc-
tion (see Figure 4(b), 4(c) and 4(d), respectively). The confidence grades
associated with the EW'T pre-processed image were higher than those for
the median filter and the quasi-self-dual filter. Further details on this ex-
periment can be found in [16].

Another example uses opening by reconstruction as an initial step for
an application that removes dust and scratches from images. The elements
filtered by the opening by reconstruction are completely extracted, including
their edges. This enables one to extract candidates for dust and scratch
removal, without corrupting their shapes. The proposed operation is a
EWT top-hat filter. Figure 5 shows an example. Later steps (not considered
here) can then make further analysis of the image in order to decide which
candidates should be removed. We have compared the proposed approach
to linear and median filters. Subjective and objective criteria were used.
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(b)

Figure 5. Top hat, using cross SE 3 x 3, as a pre-processing stage for dust and
scratch removal. (a) Original image (b) Top hat by reconstruction based on EWT.

The subjective criterion is the overall corruption of the candidate shapes.
The objective criterion is the measured energy of the filtered images. The
EWT performed better in both criteria. On one hand, for the relevant
structuring elements, the energy of the EWT filtered image was lower than
for the linear and median filters. On the other hand, the linear and median
filters do not completely extract the artifacts, as can be seen in Figure 6 for
the “cross” structuring element.

6. Conclusion

We have presented a general framework for producing new morphological
operators that are compatible to given tree representations. Furthermore,
a useful particular case is provided, based on a new tree representation, the
Extrema Watershed Tree. The resulting morphological erosion and opening
operators were applied to a number of application examples, giving better
results in comparison to other filtering techniques, including classical mor-
phological filtering. In general, EWT-based filtering performs well in tasks
suitable for classical morphological filtering, especially when self-duality is
required.
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LT X

(a)

(c) (d)

Figure 6. Zoom in. Top hat, using cross SE 3 x 3, as a pre-processing stage for
dust and scratch removal. (a) Original image (b) Top hat by reconstruction based
on EWT (c) Top hat using median (d) Top hat using an averaging filter.
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