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Abstract Geodesics and minimal surfaces are widely used for medical im-
age segmentation. At least two different approaches are used to
compute such segmentations. First, geodesic active contours use
differential geometry to compute optimal contours minimizing a
given Riemannian metric. Second, Boykov and Kolmogorov have
proposed a method based on integral geometry to compute similar
contours using a graph representation of the image and combinato-
rial optimization. In this paper we present a technique to compute
approximate geodesics and minimal surfaces using a low-level seg-
mentation and graph-cuts optimization. Our approach speeds-up
the computation of minimal surfaces when a low-level segmentation
is available.
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1. Introduction

Computation of minimal surfaces and geodesics is a common problem in
image processing [1, 2, 4, 6]. Like many other techniques, the segmentation
by optimal surfaces is a classical minimization problem. At least two dif-
ferent approaches of the problem have been successfully applied to image
segmentation: geodesic active contours [6] and graph-cuts segmentation [4].
The methods will be briefly introduced in Section 2 and Section 3.

In this paper we propose a method to compute approximate geodesics
and minimal surfaces by using the watershed low-level segmentation (wa-
tershed from all the local minima of the image’s gradient). Our approach
is motivated by the simplification it offers in the formalization of the prob-
lem. We propose to compute a curve (or a surface) that minimizes a given
geometric functional in the space of curves (or surfaces) composed by a
sub-set of watershed contours. The segmentation is driven by the search
of a minimal cut in a region adjacency graph. Experimental results show
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that the approximation error is negligible on natural images. Results will
be presented on 3D medical images.

2. State of the art

2.1 Geodesic active contours

The first application of differential geometry in image segmentation has
been introduced by Kass et al. in [9]. The method, called “snakes”, as well
as many variants of active contours models, has been widely used for im-
age segmentation. “Snakes” use a parametric representation of a curve. An
important development has been introduced via a new representation of
active contours [11, 13]. Parametric active contours have been replaced by
an implicit representation of curves and surfaces via level-sets. This rep-
resentation allows topological changes of curves and a better handling of
numerical schemes to achieve the energy minimization. A further develop-
ment of active contours has been introduced by Caselles et al. in [6] with
“Geodesic active contours”. This method simplifies the energy function to
be minimized. The problem is formalized as the minimization of the energy:

E(C) =
∫ |C|ε

0

g(||∇I(C(s))||)ds, (1)

where |C|ε is the Euclidean length of a contour C, and s is the arc length
on the contour. g is a positive and strictly decreasing function and ∇ is the
gradient operator computed on the image I.

This method is equivalent to the minimization of the length of the curve
C according to a Riemannian metric. The Riemannian metric depends
here on the local gradient of the image I. For general curves, length in a
Riemannian space can be written as:

|C|R =
∫ |C|ε

0

√
τT
s D(C(s))τsds, (2)

where τs is a unit tangent vector to the contour C and D is a positive
definite matrix, called the metric tensor, specifying the local Riemannian
metric. In “Geodesic active contours” the local Riemannian metric is given
by the following metric tensor:

D =
(

g(∇Ix) 0
0 g(∇Iy)

)
,

where (∇Ix,∇Iy) are the components of the gradient of I.
“Geodesic active contours” minimize the Equation 1 via a gradient de-

scent scheme and a level-sets representation of the curve. Unfortunately, the
method is sensitive to initialization and the global minimum of Equation 1
is not always found. However the method can also be extended to three
dimensions [7].
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2.2 Cauchy-Crofton formulaes

Boykov and Kolmogorov [4] have considered the computation of minimal
surfaces and geodesics based on the Cauchy-Crofton formulaes of integral
geometry. Cauchy established a formula which relates the length of a curve
C to a measure of a set of lines intersecting it. Let L(ρ, θ) be a straight
line characterized in polar coordinates by the two parameters (ρ, θ). The
Cauchy-Crofton formula establishes that the Euclidean length of a curve C
is given by:

|C|ε =
1
2

∫ π

0

∫ ∞

−∞
N(ρ, θ)dρdθ, (3)

where N(ρ, θ) is the number of intersections of L(ρ, θ) with C, and C is a
regular curve. This formula can be extended to a Riemannian space, then
the length of a curve C according to the metric tensor D is given by:

|C|R =
1
2

∫ π

0

∫ ∞

−∞

detD

2(uT
LDuL)3/2

N(ρ, θ)dρdθ, (4)

where uL is the unit vector in the direction of line L. This formula is verified
by any continuously differentiable and regular curve in R2 [12].

Let Ng be a neighborhood system on a discrete grid. Ng can be described
by a finite set of undirected vectors ek, Ng = {ek : 1 < k < ng}. Each vector
ek generates a family of lines as shown in Figure 1. Each line in a family
is separated by a distance ∆ρk from the closest line of the family. Now let
θk be a discrete angular parameter. For a fixed θk, we obtain a family of
parallel lines separated by a distance ∆ρk as shown Figure 1.

Figure 1. 8-Neighborhood system. Cauchy-Crofton formula established a link
between a finite set of lines and the Euclidean length of a curve C.

The discretization of Equation 3 gives the following approximation of
the Euclidean length of the curve C:

|C|ε ≈
1
2

ng∑
k=1

(
∑

i

nc(i, k)∆ρk)∆θk =
ng∑

k=1

nc(k)
δ2∆θk

2|ek|
, (5)
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where i indexes the kth family of lines. nc(i, k) counts the number of in-
tersections of line i of the kth family of lines with the curve C. nc(k) =∑

i nc(i, k) is the total number of intersections of the kth family of lines
with C.

3. Graph-cuts

3.1 Basics

Graph-cuts are based on the well-known combinatorial problem of finding
a minimal cost cut in a weighted graph. Suppose that each arc (i, j) of a
graph G has assigned to it a non negative number c(i, j) called the capacity
or the weight of the arc. This capacity is seen as the maximum amount
of some commodity that can “flow” through the arc. Let us consider the
problem of finding a maximal flow from a node s, called the source, to a
node t, called the sink. Finding the maximal possible flow between s and t
is related to finding a minimal cut in the graph. A (s-t) cut is identified by
a pair (S,T) of complementary subsets of nodes, with s ∈ S and t ∈ T . The
cost of the cut is defined by:

c(S, T ) =
∑
i∈S

∑
j∈T

c(i, j). (6)

The minimal cut can be efficiently computed in polynomial time using
classical combinatorial algorithm such as the Ford-Fulkerson algorithm or
more efficient algorithms as the one proposed by Boykov et al. in [5]. Graph
cuts are well suited for image segmentation since a node can represent a
pixel and edges represent neighborhood relations between pixels. Graph-
cuts have already been used in many imaging applications [3, 4, 10].

3.2 Computing geodesics and minimal surfaces via graph-
cuts

Boykov and Kolmogorov have considered the computation of minimal sur-
faces and geodesics with interactive placement of markers. The user has to
specify “background” and “object” seeds and their method finds automati-
cally the optimal curve (or surface) separating the two sets of seeds. The
image is represented by a graph. Two additional nodes s and t are respec-
tively connected to “object” seeds and “background” seeds. “s-links” and
“t-links”, arcs connected to s or t, have infinite capacity to ensure that the
sets S and T respectively contain a “background” seed and a “foreground”
seed.

The aim of the method is to relate the cost of a graph-cut to the length of
a underlying curve as shown in Figure 1. Let us consider an image embedded
on a discrete grid and let Ng be a neighborhood system on the image. As

352



Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 349–360.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.19.13.04

described in the previous section, the neighborhood system defines a family
of lines. The cost of a (s-t) cut in the constructed graph is then equal to:

c(S, T ) =
∑
i∈S

∑
j∈T

c(i, j) =
ng∑

k=1

nc(k)wk, (7)

where nc(k) is the number of arcs of family k that connect S to T , and wk

is the weight of the arcs of family k.

The Cauchy-Crofton formula given by Equation 5 can be directly used
to set arcs weights such that the cost of a graph-cut approximates the Eu-
clidean length of the contour separating the two sets S and T :

c(S, T ) =
ng∑

k=1

nc(k)wk with wk =
δ2∆θk

2|ek|
. (8)

The previous relation can also be extended to deal with Riemannian
metric by using the following weights:

wk(p) =
δ2.|ek|2.∆θk.det(D(p))

2(eT
k D(p)ek)3/2

, (9)

where wk(p) is the weight of the arcs leaving the node p, and D(p) is the
local Riemannian metric at point p. The previous expressions can also be
extended to 3D spaces [4].

These formulaes show explicitly that the cost of a graph-cut is related
to the geometric length of the contour separating the sets S and T defined
by the cut. Unfortunately existing methods are computationally costly and
cannot always be used interactively on large datasets such as 3D medical
images. Inspired by the approaches presented in Section 2 and Section 3,
we propose a method to compute fast approximate geodesics and minimal
surfaces from an initial low level segmentation of the image.

4. Approximate geodesics and minimal surfaces using
watershed segmentation

4.1 Problem statement

The combination of graph-cuts with a watershed low-level segmentation
(watershed from all the local minima of the image’s gradient) provides us
an explicit way to compute geodesics and minimal surfaces. Our basic as-
sumption is that the geodesic to be computed is embedded in the watershed
low-level segmentation. This proposition is motivated by two observations.
Firstly, the watershed transform (computed from the local minima of im-
age’s gradient), without pre-processing or marker selection, produces an
over-segmentation of real images. Secondly, the watershed lines contain all
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major boundaries of real images. Thus, we propose to solve the following
combinatorial problem: finding a curve composed of a finite union of wa-
tershed lines such that the curve minimizes a given geometric functional.
We will solve this problem by using graph-cuts optimization on a region
adjacency graph, as suggested by Li et al. [10].

4.2 Combining graph-cuts and watershed segmentation

Following [6], we will consider a geodesic curve C than can be computed via
the minimization of the energy given by Equation 1. Let us consider the
graph G = [X, U,W ] of the watershed regions where X = {xk} is the set of
nodes (i.e the regions of the watershed transform), U is the set of arcs (i.e
the neighborhood relations between regions) and W is the weights of the
arcs as illustrated in Figure 2.

(a) (b) (c)

Figure 2. (a) Region adjacency graph of a low-level watershed segmentation. (b)
The sets of pixels considered to compute boundary properties between adjacent
regions, with a V4 adjacency relation. (c) An implicit curve defined by the regions
x1 and x2.

We present a way of defining arcs weight such that a cut partitions
the image by an approximate minimal curve (curve of minimal length in a
Riemannian space). Let us define F(xi,xj) as the border between two regions
xi and xj of the low-level watershed segmentation:

F(xi,xj) = {(pm, pn) | pm ∈ xi, pn ∈ xj , (pm, pn) ∈ N}. (10)

One should note that the set F(xi,xj) depends on the adjacency relation
N . This set of nodes implicitly describes a set of curves between the regions
xi and xj as illustrated in Figure 2(c). Let us define C(xi,xj) as the set of
curves that can go through the nodes of F(xi,xj). Thus we can explicitly
compute the energy E(C(xi,xj)) for all pairs of regions using the Cauchy-
Crofton formulaes detailed in Section 2. Note also that if regions xi and xj

are not adjacent, F(xi,xj) and C(xi,xj) are empty sets.

Let us define a strictly positive function g of (F(xi,xj)) as:

354



Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 349–360.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.19.13.04

g(F(xi,xj)) =
∑

(pm,pn)∈F(xi,xj)

1
1 + ||I(pm)− I(pn)||2

, (11)

g(∅) = 0. (12)

The function g works as an edge indicator of the image I and takes a
small value if the gradient of I is high between the regions xi and xj . One
should note that the function g approximates the Riemannian length of the
implicit curves C(xi,xj) in case of the 4-neighborhood system. According to
the Cauchy-Crofton Formulaes, the number of adjacent pixels ((pm, pn) ∈
F(xi,xj)) indicates the number of intersection of an implicit curve between
the regions xi and xj with the horizontal and vertical lines describing the
4-neighborhood system:

|C(xi,xj)|R = E(C(xi,xj)) ≈ g(F(xi,xj)). (13)

Alternatively, the Cauchy-Crofton formulaes can also be used to com-
pute the approximate Riemannian length of the curves C(xi,xj) between two
adjacent regions in case of a larger neighborhood system. However in this
section we will only consider the 4-neighborhood system for simplicity.

The cost of a (s-t) cut in the region adjacency graph weighted by the
function g is equal to:

c(S, T ) =
∑
xi∈S

∑
xj∈T

w(xi, xj), (14)

c(S, T ) =
∑
xi∈S

∑
xj∈T

(g(F(xi,xj))). (15)

As a consequence a (s-t) cut in the region adjacency graph is equal to the
Riemannian length of an curve between the sets S and T . Considering the
weighting function given by Equation 11, the minimal cut of the weighted
adjacency graph of watershed regions is equal to:

min(S,T )c(S, T ) = min(C∈(
S

C(xi,xj)))E(C), (16)

where (
⋃

C(xi,xj)) is the union of all the implicit curves defined by the
watershed regions.

Our minimization problem is reduced to the search of a curve among
all curves implicitly described by the watershed regions instead of searching
among all curves in the domain of the image I. This approximation reduces
drastically the search space.
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4.3 Computing minimal surfaces

The method can easily be extended to three dimensions by considering in-
tegrals on surfaces instead of curves. The aim of the segmentation task is
now to find a surface S that minimizes the following energy:

E(S) =
∫ ∫

S

g(||∇I(x, y)||)dxdy, (17)

where S is a surface and g a positive and strictly decreasing function.
Thus we can use the same capacities defined in Equation 11, and apply

it on the region adjacency graph in 3D:

w(xi, xj) = g(F(xi,xj)). (18)

In 3D, F(xi,xj) defines implicitly a set of surfaces S(xi,xj) between the
regions xi and xj . Thus the minimal cut of the region adjacency graph in
3D is equal to:

min(S,T )c(S, T ) = min(S∈(
S

S(xi,xj)))E(S). (19)

4.4 Adding geometric constraints

Using a region adjacency graph instead of the pixel adjacency graph can be
advantageous in some situations. A wide class of geometric functionals can
be computed on each regions of the watershed transform. As a consequence,
a large class of geometric functionals can be added to the energy defined
by Equation 1. For instance, it remains unclear how to introduce curvature
constraints in the graph-cuts method used at the pixel level, but it is clear
that a curvature term can easily be added in our methodology. For instance
curvature of the border between two adjacent regions can be computed and
used to add a shape constraint to the energy to be minimized.

5. Results

This section presents some results obtained by our method on 3D med-
ical images. Figure 3 illustrates our segmentation method (Figure 3(b))
and compares it with the classical marker-controlled watershed segmenta-
tion (Figure 3(d)) and the minimal surface computed with the technique
proposed by Boykov et al. in [4] (Figure 3(c)). Our method outperforms
the marker-controlled segmentation and produces approximately the same
segmentation as the graph-cuts method proposed by Boykov et al. in [4].

The next example illustrates the method on a 3D CT image. Figure 4
illustrates the segmentation of a liver. The liver presents low-contrasted
boundaries and the segmentation of such organs remains a difficult task.
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(a)

(b)

(c)

(d)

Figure 3. (a) Heart MRI superposed with user-provided markers. (b) Approx-
imate minimal surface by our method. (c) Graph cuts minimal surface. (d)
Marker-controlled watershed segmentation.
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For this application minimal surface remains a leading method. The graph-
cuts used on the watershed adjacency graph (Figure 4(b)) improves the re-
sults given by the classical marker-controlled watershed segmentation (Fig-
ure 4(d)) and speeds up the graph-cuts method proposed by Boykov et al.
[4].

Extensive tests have been undertaken with 3D medical images provided
by the Institut Gustave Roussy1 (mainly CT images of the thorax) and
the Centre for Advanced Visualization and Interaction2 (MRI images of the
heart). According to specialists, the results are very promising, even for
the interactive segmentation of anatomical structures which are difficult to
contour, such as the liver.

Table 1 illustrates the computation time needed by the three methods we
considered: the marker-controlled watershed, our method, and the minimal
surfaces by graph-cuts proposed in [4]. The results shows that our method
reduces drastically the computation time needed by graph based techniques.
Moreover our method do not seem to affect the results quality.

Table 1. Comparisons of computation time. (Laptop Pentium Core Duo 2.16 Ghz,
1Go memory)

Image Watershed Our method Graph cuts

Heart MRI 1,5 sec. 4,2 sec. 15,2 sec.

Liver CT 9,7 sec. 41,6 sec. 1400,2 sec.

5.1 Conclusion

Considering that the watershed transform contains all major boundaries
in real images, our approximate segmentation is in practise quite efficient.
However the graph-cuts approach works slower than the classical marker-
controlled watershed but offers more stable results. In the other hand our
method is not as precise as the graph-cuts method proposed by Boykov et
al. [4], but it offers a good trade off between speed and precision.

A Graph-cuts approach cannot always be used on large images when
the graph considered is the pixel adjacency graph because of the memory
requirements and the computational complexity of the method. The devel-
oped method can efficiently be used on large images considering the region
adjacency graph instead of the pixels graph. Our method do not seem to
introduce large biases in the resulting segmentation of natural images. Lim-
itations of our methods are quite clear since it can only be used when an

1The Institut Gustave-Roussy is a non-profit private institution, exclusively devoted
to oncology, located near Paris, France

2University of Aarhus, Denmark
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(a)

(b)

(c)

(d)

Figure 4. 3D CT image . (a) User-provided markers. (b) Approximate minimal
surface by our method. (c) Graph-cuts minimal surface. (d) Marker-controlled
watershed segmentation.
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over-segmentation can be obtained. Graph-cuts can also be used on other
adjacency graphs. For instance λ-flat zones [8] adjacency graph should be
a good solution to increase the precision of our method since it can offer a
pixel-precision in some situations.

Our methodology can take into account a wide class of geometric func-
tionals since we can compute all kind of measures on the boundaries of the
watershed regions. For instance this method can take into account curva-
ture of the boundaries, which remains impracticable for classical graph-cuts
methods used at the pixel level.
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