
Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 425–436.

http://urlib.net/dpi.inpe.br/ismm@80/2007/04.13.17.56

A partitioned algorithm for the image

foresting transform

Felipe P.G. Bergo and Alexandre X. Falcão

Laboratório de Informática Visual (LIV), Instituto de Computação (IC), Universidade
Estadual de Campinas (Unicamp), SP, Brazil
bergo@liv.ic.unicamp.br, afalcao@ic.unicamp.br

Abstract The Image Foresting Transform (IFT) is a powerful graph-based
framework for the design and implementation of image processing
operators. In this work we present the Partitioned IFT (PIFT),
an algorithm that computes any IFT operator as a series of inde-
pendent IFT-like computations. The PIFT makes parallelization
of existing IFT operators easy, and allows the computation of IFTs
in systems with scarce memory. We evaluate the PIFT for two im-
age processing applications: watershed segmentation and Euclidean
distance transforms.

Keywords: graph algorithms, parallel algorithms, image foresting transform,
distance transforms.

1. Introduction

The Image Foresting Transform (IFT) [9] is a graph-based framework for the
design and implementation of image processing operators. It reduces image
processing operations, such as watersheds [3,15], morphological reconstruc-
tions [8], skeletonization [7] and distance transforms [5], to the computation
of a minimum-cost path forest over an implicit graph representation of the
image. The IFT runs in linear time, but it does not take advantage of
parallel and distributed computer systems. Its data structures also require
considerable memory space [10], and this can be a limitation to the process-
ing of large 3D images.

In this work we present the Partitioned IFT, an algorithm that computes
any IFT as a set of independent IFTs over partitions of the input image.
Both time and memory required to compute the IFT of each partition are
proportional to the size of that partition. The minimum-cost path forests of
the partitions are merged by fast differential IFTs [6]. This scheme provides
the means to take advantage of parallel and distributed computer systems
(by assigning each partition’s IFT to a different central processing unit
(CPU)) and to allow the computation of IFTs with a reduced memory
footprint (by computing partition forests sequentially).

425

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 425–436.

http://urlib.net/dpi.inpe.br/ismm@80/2007/04.13.17.56

2. Related works

2.1 Related algorithms

Moga et al. [12] presented two parallel watershed algorithms that treat the
image as a graph and perform independent flooding simulations in image
partitions. Parallel flooding simulations are repeated while plateaus over-
flow to adjacent partitions. The same group [13] presented a similar par-
allel algorithm for the computation of the watershed-from-markers trans-
form. Both works achieve scalable speedups in parallel architectures, but
the speedup factor does not scale linearly with the number of processors.
Moga et al. [12] achieve speedup factors1 around 2 for 4-CPU systems, and
3.5 for 8-CPU systems. Bruno and Costa [4] present a distributed algorithm
for the computation of Euclidean distance transforms (EDT) based on mor-
phological dilations. Their algorithm achieves a speedup factor of 3.5 on a
4-CPU system.

2.2 The image foresting transform

The IFT algorithm is essentially Dijkstra’s algorithm [1], modified for multi-
ple sources and general path cost functions [9]. The image is interpreted as a
directed graph whose nodes are the pixels. The edges are defined implicitly
by an adjacency relation A. Tree roots are drawn from a set S of seed nodes
and path costs are given by a path cost function f . We use P ∗(s) to denote
the current path reaching pixel s, 〈s〉 to denote a trivial path containing a
single node, and 〈s, t〉 to denote the edge from pixel s to pixel t. P ∗(s) ·〈s, t〉
is the path that results from the concatenation of P ∗(s) and an edge 〈s, t〉.

The choice of A, S and f define an IFT operator. The IFT algorithm
can compute by ordered propagation any forest property that uses the seed
set as reference. Usually, the IFT computes 4 maps: the cost map C stores
the cost of the optimal path that reaches each pixel, the predecessor map P
stores the predecessor of each pixel in the forest, the root map R stores the
root of each pixel’s optimal path, and the label map L stores object labels
for each pixel. Algorithm 1 below computes the IFT.
Algorithm 1. IFT.

Input: Image I, Path-cost function f , Adjacency relation A, Seed set S
and Seed label map L0.

Output: Cost map C, Predecessor map P , Root map R and Label map L.
Auxiliary: Priority queue Q.

1. Set Q← ∅.

1The speedup factor of a parallel algorithm on an n-CPU parallel system is calculated
as t1

tN
, where t1 is the time required to perform the computation on a single-CPU system,

and tN is the time required to perform the computation on an n-way system.

426

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 425–436.

http://urlib.net/dpi.inpe.br/ismm@80/2007/04.13.17.56

2. For each pixel s ∈ I \ S, do
3. Set C(s)←∞, P (s)← nil , R(s)← s and L(s)← nil .
4. For each pixel s ∈ S, do
5. Set C(s)← f(〈s〉) and L(s)← L0(s).
6. Insert s in Q.
7. While Q 6= ∅, do
8. Remove a pixel s from Q such that C(s) is minimum.
9. For each t such that (s, t) ∈ A, do
10. Compute cost← f(P ∗(s) · 〈s, t〉).
11. If cost < C(t) then
12. If t ∈ Q then remove t from Q.
13. Set P (t)← s, C(t)← cost, L(t)← L(s), R(t)← R(s).
14. Insert t in Q.

Lines 1–3 set the forest to an initial state where every node’s optimum
path is a trivial path with infinite cost. Lines 4–6 insert the seed pixels
in the priority queue with a trivial path cost computed by f , and initialize
seed labels for ordered propagation. The loop of Lines 7–14 uses the priority
queue to propagate the optimum paths and conquer the entire image. As
long as f is finite and smooth [9], an optimum path with finite cost will be
assigned to all pixels connected to S. Once a pixel is removed from the queue
(Line 8), it is never inserted again. Therefore, the main loop is repeated |I|
times. For integer path costs with limited increments, Q can be efficiently
implemented such that insertions and removals take O(1) time [1]. With
small adjacency relations (|A| � |I|) and O(1) queue operations, the IFT
algorithm runs in O(|I|) time [9].

Two common path cost functions for IFT operators are fmax and feuc,
shown in Equations 1–2 below. Both fmax and feuc are smooth, as required
to ensure the correctness of the IFT [9].

fmax(〈s1, . . . , sn〉) =
{

maxn
i=1 (I (si)) if n > 1,

h(s1) otherwise. (1)

feuc(〈s1, . . . , sn〉) = Euclidean distance between s1 and sn (2)

where I(s) is some value associated to pixel s (such as intensity or gra-
dient intensity) and h is a handicap function for trivial paths. A watershed-
from-markers transform can be implemented as an IFT where f is fmax

(Equation 1), h = 0 (for marker imposition), A is an adjacency with ra-
dius between 1 and

√
2 and S contains the watershed markers [6, 9]. A

classical watershed can be implemented using f = fmax, h(s) = I(s) + 1
and S = I [11]. Function feuc (Equation 2) allows the computation of dis-
tance transforms [5], discrete Voronoi diagrams, skeletonizations and shape
saliences [2, 7, 9, 14].

427

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 425–436.

http://urlib.net/dpi.inpe.br/ismm@80/2007/04.13.17.56

2.3 The differential image foresting transform

The differential IFT [6] (DIFT) was motivated by interactive 3D image seg-
mentation applications where the user interactively selects the seed pixels.
It is quite common for the user to add new seeds and remove previous ones
based on the visualization of the segmentation result. The first IFT is com-
puted by Algorithm 1 as usual, from a seed set S0. The maps C, P , R and
L must be initialized to a forest of trivial paths with infinite costs before the
first DIFT is computed. Given a set S ′ of seeds to be added and a set S ′′

of tree roots to be removed, the DIFT computes the optimum path forest
for the effective seed seet S1 = (S0 \ S ′′) ∪ S ′. The DIFT processes only
pixels affected by the seed set editing, and runs in sublinear time. Instead
of providing S ′′ directly, the DIFT takes a set M of removal markers, and
S ′′ is computed as the set of roots of the pixels in M. Algorithm 2 below is
the main DIFT algorithm. The DIFT-TreeRemoval subroutine referenced
in Line 2 visits all pixels that belong to removed trees, sets their optimum
paths to trivial paths with infinite costs (forcing their recalculation by Al-
gorithm 2), and builds the set F of frontier pixels.

Algorithm 2. DIFT.

Input: Image I, Cost map C, Predecessor map P , Root map R, Label
map L, Path-cost function f , Adjacency relation A, Set S ′ of
new seed pixels, Set M of marking pixels, Seed label map L0.

Output: C, P , R and L.
Auxiliary: Priority queue Q, Frontier set F .

1. Set Q← ∅.
2. (C, P,F)←DIFT-TreeRemoval(C, P, R, L,A,M).
3. F ← F \ S ′.
4. While S ′ 6= ∅, do
5. Remove any t from S ′.
6. If f(〈t〉) < C(t) then
7. Set C(t)← f(〈t〉), R(t)← t, L(t)← L0(t), P (t)← nil .
8. Set F ← F ∪ {t}.
9. While F 6= ∅, do
10. Remove any t from F and insert t in Q.
11. While Q 6= ∅, do
12. Remove a pixel s from Q, such that C(s) is minimum.
13. For each t such that (s, t) ∈ A, do
14. Compute cost← f(P ∗(s) · 〈s, t〉).
15. If cost < C(t) or P (t) = s then
16. If t ∈ Q then remove t from Q.
17. Set P (t)← s, C(t)← cost, R(t)← R(s), L(t)← L(s).
18. Insert t in Q.

Lines 2–3 compute a set F of frontier pixels that belong to non-removed
trees but share edges with pixels in removed trees. Lines 4–10 insert the

428

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 425–436.

http://urlib.net/dpi.inpe.br/ismm@80/2007/04.13.17.56

new seeds and the frontier pixels in the queue. Lines 11–18 are very much
like the main loop of the IFT Algorithm (Algorithm 1), except for the
condition P (t) = s in Line 14, which forces the update of all pixels that had
their optimum paths modified. The result of the DIFT is an optimum path
forest for the “effective seed set” S1 = (S0 \ S ′′) ∪ S ′.

3. The partitioned image foresting transform

In the Partitioned IFT (PIFT), we split the input image and seed set in NP

partitions. The number of partitions can be chosen to match the number
of available processing nodes, or so that the computer system has enough
memory to run the IFT algorithm on each image partition. Partitions do not
need to be equally sized. We compute independent IFTs on each partition.
At this point, we have an optimum forest that ignores the inter-partition
edges of the graph. Figure 1(a) shows an example of this partial result for
the EDT using a set of random pixels as seeds and 3 partitions. To allow
propagation through the inter-partition graph edges, we consider the paths
obtained by the concatenation of each edge 〈s, t〉 to P ∗(s) (Figure 1(c)).
When f(P ∗(s) · 〈s, t〉) is less than the current cost of t, or the edge was
part of the destination pixel’s previous optimal path, the endpoint is added
as seed in a differential IFT so that it can be propagated. If more than
one inter-partition edge share a same endpoint t, the one that provides the
lower path cost P ∗(t) is propagated. A new iteration of differential IFTs is
computed for each partition. The PIFT halts when no inter-partition edge
satisfies the criteria for addition. Figure 1(b) shows the complete EDT,
obtained after 2 iterations over the 3 partitions.

(a) (b) (c)

Figure 1. Labels of an EDT with the Partitioned IFT: (a) Partial result after the
first iteration and (b) final result after the second iteration. (c) PIFT notation:
〈s, t〉 is an inter-partition edge, P ∗(s) is the optimum path assigned to s, and R(s)
the root of P ∗(s).

The differential IFTs used in the Partitioned IFT always have an empty
set of removal markers. The Partition-IFT algorithm below (Algorithm 3)
computes the IFT within a partition. It is essentially the differential IFT al-
gorithm without tree removal, and with special treatment of inter-partition
edges.

429

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 425–436.

http://urlib.net/dpi.inpe.br/ismm@80/2007/04.13.17.56

Algorithm 3. Partition-IFT.

Input: Image partition I′, Cost map C, Predecessor map P , Root map R,
Label map L, Path-cost function f , Adjacency relation A, Set S of
seed pixels, Seed label map L0, Set EI of incoming inter-partition
edges.

Output: Maps C, P , R, L and Set EO of outgoing inter-partition edges.
Auxiliary: Priority queue Q.

1. Set Q← ∅, EO ← ∅.
2. If S 6= ∅ then
3. For each pixel s ∈ I′, do
4. Set C(s)←∞, P (s)← nil , R(s)← s and L(s)← nil .
5. For each pixel s ∈ S, do
6. Set C(s)← f(〈s〉) and L(s)← L0(s).
7. Insert s in Q.
8. For each edge 〈s, t〉 ∈ EI , do
9. Compute cost← f(P ∗(s) · 〈s, t〉).
10. If cost < C(t) or P (t) = s then
11. Set C(t)← cost, P (t)← s, R(t)← R(s) and L(t)← L(s).
12. Insert t in Q.
13. While Q 6= ∅, do
14. Remove a pixel s from Q, such that C(s) is minimum.
15. For each t such that (s, t) ∈ A, do
16. If t ∈ I′ then
17. Compute cost← f(P ∗(s) · 〈s, t〉).
18. If cost < C(t) or P (t) = s then
19. If t ∈ Q then remove t from Q.
20. Set P (t)← s, C(t)← cost, R(t)← R(s), L(t)← L(s).
21. Insert t in Q.
22. Else Insert 〈s, t〉 in EO.

The DIFT is unable to tell whether the algorithm is on the first iteration,
therefore the initial state of the forest must be set before the first iteration.
In the PIFT, the seed set S will only be non-empty in the first iteration.
We use this property to initialize the partition’s forest to trivial paths with
infinite costs in Lines 2–4. Lines 5–7 queue and initialize the seed pixels in
the same way the IFT does. Lines 8–12 process the incoming inter-partition
edges EI . Edges that offer lower costs to their endpoints or belonged to the
previous forest are queued for propagation. If multiple edges in EI reach
the same endpoint, the edge that provides the lower cost for the endpoint
takes precedence. The main loop in Lines 13–22 is very similar to the
main loop of the DIFT, with the addition of the partition test t ∈ I′ in
Line 16. Edges within the current partition are processed normally. Inter-
partition edges are added to the outgoing edge set EO (Line 22). Note that
the cost computation in Line 9 may require additional information about
P ∗(s), which can contain pixels of several partitions. All path information
required to compute f(P ∗(s) · 〈s, t〉) must be passed along with the set EI .

430

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 425–436.

http://urlib.net/dpi.inpe.br/ismm@80/2007/04.13.17.56

For fmax, only C(s) is required. For feuc, only R(s) is required. Since L(s)
may be propagated in Line 11, it must also be part of the input. Passing
each element of EI as {s, t, C(s), R(s), L(s)} is enough to compute the PIFT
with either fmax or feuc. The PIFT algorithm (Algorithm 4) that computes
the IFT of an image I from its partitions is shown below.

Algorithm 4. Partitioned IFT.

Input: Image I, Path-cost function f , Adjacency relation A, Set S of
seed pixels, Seed label map L0, Number of partitions NP .

Output: Cost map C, Predecessor map P , Root map R, Label map L.
Auxiliary: Edge sets E, E ′, E ′′ and E ′′′, Seed set S ′.

1. Set E ← ∅.
2. Split I in NP partitions I[1] . . . I[NP].
3. For i = 1 to NP , do
4. Set S ′ = {s | s ∈ S ∧ s ∈ I[i]}.
5. Set (C[i], P [i], R[i], L[i], E ′)←

Partition-IFT(I[i], C[i], P [i], R[i], L[i], f,A,S ′, L0, ∅).
6. Set E ← E ∪ E ′.
7. Repeat
8. Set E ′′′ ← ∅.
9. For i = 1 to NP , do
10. Set E ′′ = {〈s, t〉 | 〈s, t〉 ∈ E ∧ t ∈ I[i]}.
11. Set (C[i], P [i], R[i], L[i], E ′)←

Partition-IFT(I[i], C[i], P [i], R[i], L[i], f,A, ∅,nil , E ′′).
12. Set E ′′′ ← E ′′′ ∪ E ′.
13. Set E ← E ′′′.
14. Until E = ∅.
15. Set C ← ∪NP

i=1C[i], P ← ∪NP
i=1P [i], R← ∪NP

i=1R[i] and L← ∪NP
i=1L[i].

Lines 1–2 initialize the inter-partition edge set E and split the input
image in NP partitions. The loop in Lines 3–6 run the first IFT iteration
on each partition. All inter-partition edges are accumulated in the set E .
The loop in Lines 7–14 run the remaining IFT iterations on the partitions,
until no propagation occurs and the set E of inter-partition edges is empty
(Line 14).

For parallel architectures, both loops (Lines 3–6 and 7–14) can be done
in parallel. For distributed systems, the executions of Partition-IFT (Al-
gorithm 3) can be performed as remote procedure calls. Note that the
partitioned maps (C[i], P [i], R[i] and L[i]) are only needed at the end of
the algorithm, to compose the final IFT maps. In a distributed implemen-
tation, these maps can be kept on the remote processing nodes and do not
need to be transferred at each call to Partition-IFT, as they are not modified
by the caller.

Performance Considerations. The overall number of pixels processed
by the PIFT is larger than |I|. After the loop of Lines 3–6 of Algorithm 4,

431

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 425–436.

http://urlib.net/dpi.inpe.br/ismm@80/2007/04.13.17.56

the PIFT has already processed |I| nodes. However, the number of pixels
processed by the loop of Lines 7–14 decreases at each iteration, and the
algorithm converges rapidly to the optimum path forest. The number of
PIFT iterations — i.e., one iteration of the loop of Lines 3–6 plus the number
of iterations of the loop of Lines 7–14 — is bounded by the maximum number
of inter-partition edges contained by an optimum path, plus one. Each
inter-partition edge postpones the resolution of the optimum path to the
next PIFT iteration. Figure 2 illustrates some examples. In an Euclidean
distance transform (Figure 2(a)), all paths flow away from the roots, and a
path may cross at most NP − 1 partition boundaries, requiring at most NP

PIFT iterations. For path cost functions like fmax, there is no restriction
to the shape of optimum paths, and cases like the one in Figure 2(b) can
occur. However, as the number of iterations increases, the number of pixels
processed by each iteration tends to decrease, and the PIFT converges more
rapidly to the optimum forest.

(a) (b)

Figure 2. Partition crossings and PIFT iterations: In the PIFT-EDT, paths cross
at most NP − 1 partition boundaries. In (a), P ∗(p) crosses 2 boundaries to reach
p from a. The numbers are the iteration in which the path segment is propagated.
(b) For general path-cost functions, a path may cross partition boundaries several
times.

4. Experimental results

We implemented the PIFT as a client-server system, with a simple TCP
stream-based protocol for communication between the master client that
executes Algorithm 4 and the distributed servers that execute Algorithm 3.
In our implementation, the image is always split in equal-sized partitions,
using the x coordinate to separate partitions (such as in Figure 1(a)). We
chose 3 applications to evaluate the PIFT:

1. WS-BRAIN: Watershed-based segmentation of a 3D MR image of the
brain, using f = fmax and A =6-neighborhood adjacency. Seeds were
selected interactively in the background and in the brain. The gradient
intensity was computed by a Gaussian enhacement filter followed by
morphological gradient computation [6]. The size of the image is 356×
356× 241, with a voxel size of 0.70mm3 (Figure 3(a–c)).

432

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 425–436.

http://urlib.net/dpi.inpe.br/ismm@80/2007/04.13.17.56

2. EDT-RND: Euclidean distance transform of 1000 random points within
a 2563 volume, using f = feuc and A =26-neighborhood (Figure 3(d)).

3. EDT-BRAIN: Euclidean distance transform using the border of the
brain object (segmented in the first application) as seed set (|S| =
355, 556). f = feuc, A =26-neighborhood and volume size is 356 ×
356× 241 (Figure 3(e)).

(a) (b) (c) (d) (e)

Figure 3. Images from the evaluation applications: (a) Slice from the WS-BRAIN
input image. (b) gradient intensity of (a). (c) 3D renderization of the WS-BRAIN
result. (d) Visualization of the discrete Voronoi diagram, result of the EDT-RND.
(e) Slice from the distance map computed in EDT-BRAIN.

First, we measured the processing overhead of the PIFT as the number of
partitions (NP) increases. We computed the 3 applications with the PIFT,
using from 1 to 10 partitions. Table 1 and Figure 4 present the number of
nodes processed in each case and the upper bound for the speedup factor.
These results indicate that a 10-way parallel system may be able to offer a
speedup factor of 6.60 to the EDT computation, and a factor of 2.34 to the
Watershed transform on these instances of problems.

The EDT computations required at most 4 iterations before halting.
PIFTs based on fmax are less efficient, since they allow free-form paths that
can traverse several partitions. This can be noticed by the irregularity and
increased slope of the plot in Figure 4(b), as compared to Figure 4(a). The
WS-BRAIN PIFTs required at most 23 iterations to converge. The number
of processed nodes grows linearly with the number of partitions. In real
data with non-uniform distributions (WS-BRAIN and EDT-BRAIN), bad
choices of partition boundaries may increase the number of processed nodes,
such as in the NP = 4 and NP = 8 cases of EDT-BRAIN and NP = 5 of
WS-BRAIN.

In a second set of experiments we used the PIFT to compute EDT-
RND, EDT-BRAIN and WS-BRAIN in two parallel systems: a PC with
2 CPUs (Athlon MP 1800+@1150 MHz) and 2 GB of RAM, and a Com-
paq AlphaServer GS140 6/525 with 10 CPUs (Alpha EV6@525 MHz) and
8 GB of RAM. Table 2 presents the results. On the EDT applications, we
achieved speedup factors very close to the measured upper bounds (Table 1)
for NP = 2 and NP = 4. On other hand, there was little or no speedup for

433

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 425–436.

http://urlib.net/dpi.inpe.br/ismm@80/2007/04.13.17.56

Table 1. Number of processed nodes and upper bound for the speedup factor in
each application, using up to 10 partitions.

NP

WS-BRAIN EDT-RND EDT-BRAIN

Nodes Speedup Nodes Speedup Nodes Speedup

1 30.5×106 1.00 16.8×106 1.00 30.5×106 1.00

2 48.6×106 1.25 17.3×106 1.94 31.5×106 1.93

3 59.0×106 1.55 17.7×106 2.84 34.2×106 2.67

4 62.7×106 1.94 18.2×106 3.69 39.6×106 3.08

5 76.7×106 1.98 18.6×106 4.51 37.8×106 4.03

6 75.1×106 2.43 19.2×106 5.25 38.7×106 4.72

7 92.2×106 2.31 19.7×106 5.96 42.8×106 4.98

8 98.1×106 2.48 20.1×106 6.68 46.8×106 5.21

9 106.5×106 2.57 20.5×106 7.37 42.2×106 6.50

10 130.2×106 2.34 21.0×106 8.00 46.2×106 6.60

(a) (b)

Figure 4. Number of processed nodes vs. number of partitions for (a) EDT-RND,
EDT-BRAIN and (b) WS-BRAIN.

the watershed application. Our prototype implementation uses a naive com-
munication protocol with no data compression. Besides that, the edge set
transfers of Lines 5 and 11 of Algorithm 4 were implemented in a sequential
way, and instances with a large number of partitions and/or a large number
of PIFT iterations (such as WS-BRAIN with NP = 10) performed poorly
because the CPUs remained idle while waiting for the client to complete the
sequential edge set transfers.

434

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 425–436.

http://urlib.net/dpi.inpe.br/ismm@80/2007/04.13.17.56

Table 2. PIFT performance on two parallel computer systems. Times are given
in seconds.

System NP

WS-BRAIN EDT-RND EDT-BRAIN

Time Speedup Time Speedup Time Speedup

Dual Athlon
1 258.1 1.00 195.9 1.00 459.5 1.00

2 242.9 1.06 106.2 1.84 246.3 1.87

10-CPU GS140

1 280.6 1.00 228.8 1.00 611.4 1.00

2 284.3 0.99 126.6 1.81 324.2 1.89

4 226.2 1.24 73.0 3.13 274.3 2.23

8 249.3 1.13 49.3 4.64 214.1 2.86

10 336.4 0.83 47.9 4.78 197.7 3.09

5. Conclusion and future works

We introduced the Partitioned Image Foresting Transform, an algorithm
that computes minimum-cost path forests as a set of independent DIFTs [6,
9] in partitions of the input image. The PIFT is useful for taking advan-
tage of parallel computer systems and for computing IFTs in computer
systems with limited memory, such as handhelds and embedded systems.
The PIFT is applicable to any IFT-based operator, and therefore can be
readily employed to parallelize morphological reconstructions [8], watershed
transforms [2,3,6,15], distance transforms [5,9] and skeletonizations [7,14],
among other operators. It is a trend in microprocessor technology to com-
pensate CPU speed limitations by producing multi-core CPUs. The PIFT
is an important contribution that allows existing image processing applica-
tions to use modern hardware efficiently with minimum effort.

We implemented a prototype PIFT system with a simple client-server
architecture built on top of TCP streams. Even with no data compression
and with some inneficient network operations, we achieved speedup factors
very close to the expected upper bounds for EDT operations. PIFT-based
watershed segmentation performed poorly due to the inneficiency of edge
set transfers in our prototype. With a better protocol, the PIFT should be
able to reach speedup factors closer to the upper bounds in Table 1.

Future works include: development of better protocols for implemen-
tation of the PIFT in parallel systems, evaluation of the speedup bounds
for specific operators – such as the watershed transform – and investigation
of enhancements to the PIFT such as partitioning schemes and iteration
scheduling among nodes.

435

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 425–436.

http://urlib.net/dpi.inpe.br/ismm@80/2007/04.13.17.56

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms
and Applications, Prentice-Hall, 1993.

[2] F. P. G. Bergo and A. X. Falcão, Fast and automatic curvilinear reformatting of MR
images of the brain for diagnosis of dysplastic lesions, Proc. of 3rd Intl. Symp. on
Biomedical Imaging (April 2006), 486–489.

[3] S. Beucher and F. Meyer, The morphological approach to segmentation: The water-
shed transformation, Marcel Dekker, 1993.

[4] O. M. Bruno and L. F. Costa, A parallel implementation of exact Euclidean dis-
tance transform based on exact dilations, Microprocessors and Microsystems 28 (April
2004), no. 3, 107–113.

[5] P. E. Danielsson, Euclidean Distance Mapping, Computer Graphics and Image Pro-
cessing 14 (1980), 227–248.

[6] A. X. Falcão and F. P. G. Bergo, Interactive Volume Segmentation with Differential
Image Foresting Transforms, IEEE Trans. on Medical Imaging 23 (2004), no. 9,
1100–1108.

[7] A. X. Falcão, L. F. Costa, and B. S. da Cunha, Multiscale skeletons by image foresting
transform and its applications to neuromorphometry, Pattern Recognition 35 (April
2002), no. 7, 1571–1582.

[8] A. X. Falcão, B. S. da Cunha, and R. A. Lotufo, Design of connected operators using
the image foresting transform, Proc. of SPIE on Medical Imaging 4322 (February
2001), 468–479.

[9] A. X. Falcão, J. Stolfi, and R. A. Lotufo, The Image Foresting Transform: Theory,
Algorithms, and Applications, IEEE Trans. on Pattern Analysis and Machine Intelli-
gence 26 (2004), no. 1, 19–29.

[10] P. Felkel, M. Bruckschwaiger, and R. Wegenkittl, Implementation and Complex-
ity of the Watershed-from-Markers Algorithm Computed as a Minimal Cost Forest,
Computer Graphics Forum (Eurographics) 20 (2001), no. 3, C26–C35.

[11] R. A. Lotufo and A. X. Falcão, The ordered queue and the optimality of the water-
shed approaches, Mathematical Morphology and its Applications to Image and Signal
Processing 18 (June 2000), 341–350.

[12] A. N. Moga, B. Cramariuc, and M. Gabbouj, Parallel watershed transformation
algorithms for image segmentation, Parallel Computing 24 (December 1998), no. 14,
1981–2001.

[13] A. N. Moga and M. Gabbouj, Parallel Marker-Based Image Segmentation with Wa-
tershed Transformation, Journal of Parallel and Distributed Computing 51 (May
1998), no. 1, 27–45.

[14] R. S. Torres, A. X. Falcão, and L. F. Costa, A graph-based approach for multiscale
shape analysis, Pattern Recognition 37 (June 2004), no. 6, 1163–1174.

[15] L. Vincent and P. Soille, Watersheds in Digital Spaces: An Efficient Algorithm Based
on Immersion Simulations, IEEE Trans. on Pattern Analysis and Machine Intelli-
gence 13 (June 1991), no. 6.

436

	A partitioned algorithm for the image foresting transform
	Introduction
	Related works
	Related algorithms
	The image foresting transform
	The differential image foresting transform

	The partitioned image foresting transform
	Experimental results
	Conclusion and future works

