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1. Introduction

Cerebral structure segmentation from 3D MRI data
is an important task for several medical applications.
Brain segmentation methods can focus on specific
structures such as the cortical surface [1], or intend
to detect the principal parts of the brain [2]. Inde-
pendently of their final purpose, they are primarily
based on the classification of the intracranial vol-
ume into classes corresponding to the main cere-
bral tissues: cerebrospinal fluid (CSF), grey mat-
ter (GM), and white matter (WM). These classes
present complex geometrical properties. However,
they can be discriminated thanks to their distinct
signal in modalities such as T1 or T2 MRI; moreover,
the cerebral tissues present invariant and specific
topological properties. Based on these assumptions,
some topology-driven brain tissue classification tech-
niques have been proposed [3, 4]. The method de-
scribed in this short paper belongs to the same fam-
ily of techniques, since its purpose is the classifica-
tion of the brain into four classes: sulcal CSF, GM,
WM, and ventricular CSF. As in [3], these classes
are modelled (with some simplifying hypotheses) as
hierarchically included spheres. Starting from a pre-
segmentation based on this model, the four classes
then evolve under photometric constraints. This pro-
cess can be formalised as a discrete multi-class de-
formable model. From this point of view, it presents
similarities with [5] (which however did not consider
any topological constraints). It differs from [3], since
the proposed method relies on a non-monotonic pro-
cess, and from [4], since the classes smoothly evolve
in a concurrent way.

2. Method

2.1 Input/output

The method takes as input a T1 MRI of the brain,
I : E → N (with E = [0, dx−1]×[0, dy−1]×[0, dz−1],
generally [0, 255]3), from which the intracranial vol-
ume E′ ⊂ E has been extracted, (Figure 1, 2nd pic-
ture), and two threshold values µ1 < µ2 ∈ N de-

limiting the T1 signal intensity between CSF/GM,
and GM/WM, respectively. The method output is
a partition C = {Cs, Cg, Cw, Cv} of E′, where Cs,
Cg, Cw, and Cv correspond to the sulcal CSF, GM,
WM, and ventricular CSF classes, respectively.

2.2 Initialisation

The method starts from a presegmentation Ci of E′

having the desired topology: Ci
v is simply connected

(1 connected component, 0 hole, 0 cavity), and suc-
cessively surrounded by Ci

w, Ci
g, and Ci

s which are
topological hollow spheres (1 connected component,
0 hole, 1 cavity), hierarchically organised, as illus-
trated in a 2D fashion in Figure 1 (1st picture). In
Z3, such a model implies to choose dual adjacencies
for the successive classes. The 6-adjacency has been
considered for Ci

g (and thus Ci
v), since GM is geo-

metrically organised as a “thick” ribbon, while the
26-adjacency has been considered for Ci

w, Ci
v, since

they both present thin details near the cortex. The
initial presegmentation Ci is composed of a simply
connected volume corresponding to Ci

v, surrounded
by three “thick” closed surfaces, modelling Ci

w, Ci
g

and Ci
s, their thickness corresponding to a coherent

anatomical approximation (Figure 1, 3rd picture).

2.3 Deformable process

From a topological point of view, Ci, although com-
posed of four distinct classes, can be considered as a
binary image constituted of an object X = Ci

s ∪ Ci
w

and of the background X = Ci
g ∪ Ci

v, in a (26, 6)-
adjacency framework. Based on this assumption, the
segmentation process consists in modifying the fron-
tier between X and X in a topology-preserving fash-
ion, under photometric constraints. This discrete de-
formable model process is algorithmically formalised
at the end of the section. It firstly modifies the clas-
sification of the points which are, from a photomet-
ric point of view, the “most misclassified”. In order
to preserve the topology of the initial model, only
simple points [6] can be switched from a class to
another. For simplicity’s sake, the algorithm is pre-
sented using set-based notations. However, it was
implemented using efficient data structures (ordered
FIFO lists), enabling to reach an optimal algorithmic
complexity O(|E′|), linear w.r.t. the size of the in-
tracranial volume, since each point can be switched
from one class to another only twice (the classifica-
tion only depending on two threshold values).
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Figure 1. From left to right: topological model (from white to dark grey: Ci
v, Ci

w, Ci
g, and Ci

s); T1 MRI (I|E′ : axial
slice); initialisation of the segmentation process of the MRI (Ci); result of the segmentation (C).

repeat
1 - Frontier point determination
FP{s,g} = (Ci

s ∩N∗
6 (Ci

g)) ∪ (Ci
g ∩N∗

26(Ci
s))

FP{g,w} = (Ci
g ∩N∗

26(Ci
w)) ∪ (Ci

w ∩N∗
6 (Ci

g))

FP{w,v} = (Ci
w ∩N∗

6 (Ci
v)) ∪ (Ci

v ∩N∗
26(Ci

w))

/* N∗
k (A) is the set of points of A k-adjacent to A */

2 - Simple point determination
SP26 = {x ∈ X | x is 26-simple for X}
SP6 = {x ∈ X | x is 6-simple for X}
3 - Candidate point determination
CP = (SP6 ∪ SP26) ∩ (FP{s,g} ∪ FP{g,w} ∪ FP{w,v})
/* Simple points at the frontier between two classes */

4 - Cost evaluation
for all x ∈ CP ∩FP{s,g} (resp. FP{g,w}, FP{w,v}) do

v(x) = I(x)− µ1 (resp. I(x)− µ2, I(x)− µ1)
if x ∈ Ci

g (resp. Ci
w, Ci

w) then
v(x) = −v(x)

end if
end for
5 - Point selection and re-classification
if max(v(CP )) > 0 /* with max(v(∅)) = −∞ */ then

Let y ∈ CP such that v(y) = max(v(CP ))
Let Ci

α ∈ {Ci
s, Ci

g , Ci
w, Ci

v} such that y ∈ Ci
α

Let Ci
β ∈ {Ci

s, Ci
g , Ci

w, Ci
v} such that y ∈ FP{α,β}

Ci
α = Ci

α \ {y}
Ci

β = Ci
β ∪ {y}

end if
until max(v(CP ) ≤ 0)
C = Ci

3. Experiments and results

Preliminary application of the method on the Brain-
Web dataset seems to provide reasonably correct
results. Quantitative validation works by compar-
ison to the BrainWeb ground-truth are currently in
progress. An example of segmented image is avail-
able in Figure 1 (4th picture). Depending on two
parameters (µ1 and µ2), and relying on a linear com-
plexity process, the proposed segmentation method
enables to obtain results in a fast and easy way (com-
putation time lower than 2 min. for a 2563 image).

Nevertheless, this method only constitutes prelim-
inary works, and is then not yet fully satisfying.

The deformation process is only guided by photo-
metric constraints, neglecting high-level anatomical
knowledge such as volumetric or thickness informa-
tion. Moreover, the initial topological model does
perfectly take into account structures such that the
brainstem and the cerebellum, providing good re-
sults on the superior part of the brain (cortex re-
gion), but less correct ones on its inferior part.

A more sophisticated version of the method, in-
volving a presegmentation topologically and anatom-
ically closer from the reality, and using both photo-
metric and geometric constraints to guide the de-
formable model process is under development and
will be further submitted for publication.
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