

A parallel implementation of the dual-input Max-Tree algorithm for attribute filtering

Georgios K. Ouzounis and Michael H.F. Wilkinson Institute of Mathematics and Computing Science University of Groningen georgios@cs.rug.nl, m.h.f.wilkinson@rug.nl

ISMM 2007, 8-10 October, Rio de Janeiro

- Many image processing operators allow easy parallellization through either locality or separability
- Connected operators are neither separable nor local
- Recently, a parallellization strategy for Max-Tree-based attribute filtering was developed in Groningen
- It is based on a simple strategy:
 - Compute separate Max-Trees for N_p slices of an image or volume
 - Merge the trees into a single tree
 - Filter the resulting tree using multiple CPUs concurrently
- Speed-up of up to 14 on 16 MIPS CPUs was obtained.
- In this presentation an extension to the Dual-Input Max-Tree algorithm for secondgeneration connectivity is proposed

Attribute filters

\blacksquare Binary attribute filters are based on trivial filters Γ_T which are defined as

$$\Gamma_T(C) = \begin{cases} C & \text{if } T(C) \text{ is true} \\ \emptyset & \text{otherwise,} \end{cases}$$
(1)

in which T is a criterion which usually takes the form $T(C) = (Attr(C) \ge \lambda)$, and $C \in C$.

• The binary attribute opening Γ^T of set X with increasing criterion T is given by

$$\Gamma^{T}(X) = \bigcup_{x \in X} \Gamma_{T}(\Gamma_{x}(X))$$
(2)

Second-Generation Connectivity

- Second-generation connectivities use an operator ψ which modifies X and a base class C.
- The resulting connectivity class is denoted \mathcal{C}^{ψ} and corresponds to a second-generation connected opening Γ_x^{ψ} .
- ${}_{\!\!\!}$ The connected opening Γ^ψ_x for a second-generation connectivity based on ψ of image X is

$$\Gamma_x^{\psi}(X) = \begin{cases} \Gamma_x(\psi(X)) \cap X & \text{if } x \in X \cap \psi(X) \\ \{x\} & \text{if } x \in X \setminus \psi(X) \\ \emptyset & \text{otherwise,} \end{cases}$$
(3)

in which Γ_x is the connected opening based on \mathcal{C} .

- If ψ is extensive \mathcal{C}^{ψ} is *clustering* based.
- If ψ is anti-extensive \mathcal{C}^{ψ} is *partitioning* based.

Clustering vs. Partitioning

Note that p = (65, 85) and q = (200, 225).

Second-Generation Connected Filtering in 3-D

original

26-connectivity

closing based connectivity

difference

Including union-find in the Max-Tree

- Example of input signal, peak components, Max-Tree and its encoding in a par array.
- \perp denotes the overall root node, and boldface numbers denote the level roots, i.e., they point to positions in the input with grey level other than their own.

Merging in Dual-Input Max-Trees

- We store f and m consecutively in a single array of length 2 * volsize and maintain an array levroot of length G for each thread.
- Whenever m(x) = f(x) the algorithm does not change fundamentally
- Whenever m(x) ≠ f(x) we check whether there is a level root at level h = m(x), and at f(x)
- $\textbf{ If not, } \texttt{levroot}[m(x)] \leftarrow x + volsize \text{ and/or } \texttt{levroot}[f(x)] \leftarrow x \\$
- We then set par[x] to levroot[f(x)] and par[x + volsize] to levroot[m(x)]
- If when flooding we find a pixel at level h with f(y) = m(x), and levroot[h] = x + volsize we set levroot[h] and par[x + volsize] to y
- If m(x) < f(x) we immediately finalize the node at level f(x) and set levroot[f(x)] to \bot .

Data Structures

Standard Parallel

Dual-Input Parallel

Binary Tree used for Merging Domains

Concurrent construction and filtering thread *p*.

```
process ccaf(p)
   build dual input Max-Tree Tree(p) for segment belonging to p
   var i := 1 , q := p ;
   while p + i < N_p \land q \mod 2 = 0 do
      wait to glue with right-hand neighbor;
      for all edges (x, y) between Tree(p) and Tree(p+i) do
         if f(x) \neq m(x) then x := x + volsize;
         if f(y) \neq m(y) then y := y + volsize;
         connect(x, y);
      end :
      i := 2 * i ; q := q/2 ;
   end :
   if p = 0 then
      release the waiting threads
   else
      signal left-hand neighbor;
      wait for thread 0
   end :
   filter(p, lambda);
end ccaf.
```


Merging Two Max-Trees

- Speed-up for volume openings (solid) and non-compactness thinnings (dashed) as a function of number of threads.
- Timings were performed on a 2-socket, dual-core opteron-based workstation (4 core total).

Speed-up for $N_{threads} > N_p$

Left: Speed-up on single-core CPU (P4-520, 3.0 GHz)

Right: Predicted perfomance from cache thrashing (using valgrind)

- Assuming a volume of $X \times Y \times Z = N$, in the building phase the time complexity is $O(GN/N_p)$
- This complexity arises from the O(GN) complexity of Salembier et al's Max-Tree algorithm
- If the number of grey levels is large, it may be better to replace this by Najman and Couprie's method.
- The merging phase has complexity $O(GXY \log N \log N_p)$ if the volume is split up into slices orthogonal to the Z direction.
- The $\log N$ is due to the fact that we only use path compression, not union-by-rank.
- Memory requirements are O(N+G).

- As with the regular Max-Tree algorithm, the Dual-Input Max-Tree algorithm is parallellizable through the use of union-find.
- Speed-up is (slightly better than) linear over four cores.
- Tests using more threads than cores suggest that improved speed-up beyond 4 CPUs is expected.
- This extended speed-up for $N_{\text{threads}} > N_p$ is due to reduced cache thrashing.
- For very high numbers of grey levels in particular, we should replace the building phase by a version of Najman and Courpie's algorithm (IEEE Trans. Image Proc. 2006).

