
A parallel implementation of the dual-input
Max-Tree algorithm for attribute filtering

Georgios K. Ouzounis and Michael H.F. Wilkinson
Institute of Mathematics and Computing Science
University of Groningen
georgios@cs.rug.nl, m.h.f.wilkinson@rug.nl

ISMM 2007, 8-10 October, Rio de Janeiro

georgios@cs.rug.nl
m.h.f.wilkinson@rug.nl

Introduction

Many image processing operators allow easy parallellization through either locality
or separability

Connected operators are neither separable nor local

Recently, a parallellization strategy for Max-Tree-based attribute filtering was
developed in Groningen

It is based on a simple strategy:

Compute separate Max-Trees for Np slices of an image or volume

Merge the trees into a single tree

Filter the resulting tree using multiple CPUs concurrently

Speed-up of up to 14 on 16 MIPS CPUs was obtained.

In this presentation an extension to the Dual-Input Max-Tree algorithm for second-
generation connectivity is proposed

ISMM 2007, 8-10 October, Rio de Janeiro 1 of 17

Attribute filters

Binary attribute filters are based on trivial filters ΓT which are defined as

ΓT (C) =

{
C if T (C) is true

∅ otherwise,
(1)

in which T is a criterion which usually takes the form T (C) = (Attr(C) ≥ λ), and
C ∈ C.

The binary attribute opening ΓT of set X with increasing criterion T is given by

ΓT (X) =
⋃
x∈X

ΓT (Γx(X)) (2)

ISMM 2007, 8-10 October, Rio de Janeiro 2 of 17

Second-Generation Connectivity

Second-generation connectivities use an operator ψ which modifies X and a base
class C.

The resulting connectivity class is denoted Cψ and corresponds to a second-
generation connected opening Γψx .

The connected opening Γψx for a second-generation connectivity based on ψ of
image X is

Γψx (X) =

Γx(ψ(X)) ∩X if x ∈ X ∩ ψ(X)
{x} if x ∈ X \ ψ(X)
∅ otherwise,

(3)

in which Γx is the connected opening based on C.

If ψ is extensive Cψ is clustering based.

If ψ is anti-extensive Cψ is partitioning based.

ISMM 2007, 8-10 October, Rio de Janeiro 3 of 17

Clustering vs. Partitioning

X ψ(X) Γψp (X) Γψq (X)
Clustering-based connectivity

X ψ(X) Γψp (X) Γψq (X)
Partitioning-based connectivity

Note that p = (65, 85) and q = (200, 225).

ISMM 2007, 8-10 October, Rio de Janeiro 4 of 17

Second-Generation Connected Filtering in 3-D

original 26-connectivity

closing based connectivity difference

ISMM 2007, 8-10 October, Rio de Janeiro 5 of 17

Including union-find in the Max-Tree

0 1 2 3 2 1 2 1 0

input signal

⊥ 0 1 2 2 1 1 1 0

P 0
3

P 0
2 P 1

2

P 0
1

P 0
0

C0
3

?

C0
2
@

@@R

C1
2

�
��	

C0
1

?

C0
0

par array peak components Max-Tree

Example of input signal, peak components, Max-Tree and its encoding in a par
array.

⊥ denotes the overall root node, and boldface numbers denote the level roots, i.e.,
they point to positions in the input with grey level other than their own.

ISMM 2007, 8-10 October, Rio de Janeiro 6 of 17

Merging in Dual-Input Max-Trees

P 0
f3

P 0
f2 P 1

f2

P 1
f1P 0

f1

P 0
f0

segment bounds
�

�
��	

@
@

@@R

P 0
m3

P 0
m2

P 0
m1

P 0
m0

segment bounds
�

�
��	

@
@

@@R

C0
3

?

C0
2
@

@R

C0
1
@

@R

C1
1

?

C2
1

�
�	

C0
0

f m: connectivity mask Max-Tree of f

(mask-based)

C0
3

?

C0
2

?

C0
1

?

C0
0

C1
2

?

C1
1

@
@R

C2
1

�
�	

C1
0

C3
1

?

C2
0

C0
3

?

C0
2
@

@R

C1
2

�
�	

C0
1
@

@R

C1
1

�
�	

C0
0

C0
3

?

C0
2
@

@R

C0
1
@

@R

C1
1

?

C2
1

�
�	

C0
0

partial Max-Trees Merged at level f merged at level m

ISMM 2007, 8-10 October, Rio de Janeiro 7 of 17

Adaptations to the Parallel Max-Tree Algorithm

We store f and m consecutively in a single array of length 2∗volsize and maintain
an array levroot of length G for each thread.

Whenever m(x) = f(x) the algorithm does not change fundamentally

Whenever m(x) 6= f(x) we check whether there is a level root at level h = m(x),
and at f(x)

If not, levroot[m(x)]← x+ volsize and/or levroot[f(x)]← x

We then set par[x] to levroot[f(x)] and par[x+ volsize] to levroot[m(x)]

If when flooding we find a pixel at level h with f(y) = m(x), and levroot[h] =
x+ volsize we set levroot[h] and par[x+ volsize] to y

If m(x) < f(x) we immediately finalize the node at level f(x) and set
levroot[f(x)] to ⊥.

ISMM 2007, 8-10 October, Rio de Janeiro 8 of 17

Data Structures

par[x]

f(x) m(x)

par[x]

f(x)

attr[x]attr[x]

Standard Parallel Dual-Input Parallel

ISMM 2007, 8-10 October, Rio de Janeiro 9 of 17

Binary Tree used for Merging Domains

0 1 2 3 4 5 6 7

0 2 64

0 4

0

ISMM 2007, 8-10 October, Rio de Janeiro 10 of 17

Concurrent construction and filtering thread p.

process ccaf(p)
build dual input Max-Tree Tree(p) for segment belonging to p

var i := 1 , q := p ;

while p+ i < Np ∧ q mod 2 = 0 do
wait to glue with right-hand neighbor ;

for all edges (x, y) between Tree(p) and Tree(p+ i) do
if f(x) 6= m(x) then x := x+ volsize;

if f(y) 6= m(y) then y := y + volsize;

connect(x, y) ;

end ;

i := 2 ∗ i ; q := q/2 ;

end ;

if p = 0 then
release the waiting threads

else
signal left-hand neighbor ;

wait for thread 0

end ;

filter(p, lambda) ;

end ccaf.

ISMM 2007, 8-10 October, Rio de Janeiro 11 of 17

Merging Two Max-Trees

D0
41
D0

32
D0

24
D0

15
D0

08

segment bound
�

�	

x 1

?

z 2
?

4
?

⊥

y 1
?

3

?

4
?

⊥

1
XXXXz

y 2
?

4
?

⊥

x 1
?

z 3

?

4
?

⊥

1
XXXXz

y 2
?

4
?

⊥

2
?

x 3

?

z 4
?

⊥
(a) signal (b) start; cor=0 (c) step 1; cor=1 (d) step 2; cor=1

1
XXXXz

x 2
?

z 4
?

⊥

2
?

4����9

y 4
?

⊥

1
XXXXz

5
?

x 4
?

⊥ = z

2
?

4����9

y 4
?

⊥

1
XXXXz

5
? 7

-

⊥ = y

2
?

4����9

x 4
?

⊥ = z

1
XXXXz

5
? 7

-

⊥ = y

2
?

4����9

8
?

⊥ = x

(e) step 3; cor= 3 (f) step 4; cor= 3 (g) step 5; cor=4 (h) final tree

ISMM 2007, 8-10 October, Rio de Janeiro 12 of 17

Timings

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

Threads

S
pe

ed
−

up

10 20 30 40 50 60
1

2

3

4

5

6

7

Threads

S
pe

ed
−

up
Speed-up for volume openings (solid) and non-compactness thinnings (dashed) as
a function of number of threads.

Timings were performed on a 2-socket, dual-core opteron-based workstation (4
core total).

ISMM 2007, 8-10 October, Rio de Janeiro 13 of 17

Speed-up for Nthreads > Np

0 20 40 60 80 100 120 140
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of Threads

S
pe

ed
−

up

mrt8angio2

fullhead8

angio8

xmas8

0 20 40 60 80 100 120 140
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of Threads

P
re

di
ct

ed
 S

pe
ed

−
up

mrt8angio2
fullhead8
angio8
xmas8

Left: Speed-up on single-core CPU (P4-520, 3.0 GHz)

Right: Predicted perfomance from cache thrashing (using valgrind)

ISMM 2007, 8-10 October, Rio de Janeiro 14 of 17

Complexity

Assuming a volume of X × Y ×Z = N , in the building phase the time complexity
is O(GN/Np)

This complexity arises from the O(GN) complexity of Salembier et al’s Max-Tree
algorithm

If the number of grey levels is large, it may be better to replace this by Najman
and Couprie’s method.

The merging phase has complexity O(GXY logN logNp) if the volume is split up
into slices orthogonal to the Z direction.

The logN is due to the fact that we only use path compression, not union-by-rank.

Memory requirements are O(N +G).

ISMM 2007, 8-10 October, Rio de Janeiro 15 of 17

Conclusions

As with the regular Max-Tree algorithm, the Dual-Input Max-Tree algorithm is
parallellizable through the use of union-find.

Speed-up is (slightly better than) linear over four cores.

Tests using more threads than cores suggest that improved speed-up beyond 4
CPUs is expected.

This extended speed-up for Nthreads > Np is due to reduced cache thrashing.

For very high numbers of grey levels in particular, we should replace the building
phase by a version of Najman and Courpie’s algorithm (IEEE Trans. Image Proc.
2006).

ISMM 2007, 8-10 October, Rio de Janeiro 16 of 17

Questions

?
ISMM 2007, 8-10 October, Rio de Janeiro 17 of 17

	Introduction
	Attribute filters
	Second-Generation Connectivity
	Clustering vs. Partitioning
	Second-Generation Connected Filtering in 3-D
	Including union-find in the Max-Tree
	Merging in Dual-Input Max-Trees
	Adaptations to the Parallel Max-Tree Algorithm
	Data Structures
	Binary Tree used for Merging Domains
	Concurrent construction and filtering thread p.
	Merging Two Max-Trees
	Timings
	Speed-up for Nthreads > Np
	Complexity
	Conclusions
	Questions

