university of
/ groningen

A parallel implementation of the dual-input
Max-Tree algorithm for attribute filtering

Georgios K. Ouzounis and Michael H.F. Wilkinson

Institute of Mathematics and Computing Science
University of Groningen

georgios@cs.rug.nl, m.h.f.wilkinson@rug.nl

ISMM 2007, 8-10 October, Rio de Janeiro

georgios@cs.rug.nl
m.h.f.wilkinson@rug.nl

university of
ke / groningen Introduction

® Many image processing operators allow easy parallellization through either locality
or separability

Connected operators are neither separable nor local

® Recently, a parallellization strategy for Max-Tree-based attribute filtering was
developed in Groningen

® |t is based on a simple strategy:
» Compute separate Max-Trees for N, slices of an image or volume
® Merge the trees into a single tree
o Filter the resulting tree using multiple CPUs concurrently

® Speed-up of up to 14 on 16 MIPS CPUs was obtained.

® |n this presentation an extension to the Dual-Input Max-Tree algorithm for second-
generation connectivity is proposed

ISMM 2007, 8-10 October, Rio de Janeiro 1 of 17

university of Attribute filters

groningen

C it T(C) is true
0 otherwise,

(1)

in which T' is a criterion which usually takes the form T(C) = (Attr(C') > \), and
CeC.

® The binary attribute opening I'" of set X with increasing criterion T is given by

(2)

ISMM 2007, 8-10 October, Rio de Janeiro 2 of 17

iversity of : ..
; / groningen Second-Generation Connectivity

® Second-generation connectivities use an operator 1) which modifies X and a base
class C.

® The resulting connectivity class is denoted C¥ and corresponds to a second-
generation connected opening 'Y

® The connected opening I'Y for a second-generation connectivity based on 1) of
iImage X Is

T.((X)NX ifzeXnNyX)
IY(X) = ¢ {z} if 2 € X\ (X) (3)
\(Z) otherwise,

in which I',, is the connected opening based on C.
If ¢ is extensive C¥ is clustering based.

® If ¢ is anti-extensive CV is partitioning based.

ISMM 2007, 8-10 October, Rio de Janeiro 3 of 17

gy
ersityof _ e
k2 E?JX?EZZK" Clustering vs. Partitioning

X (X) Iy (X) Iy (X)

Clustering-based connectivity

h(X) Iy (X)

Partitioning-based connectivity

s

Note that p = (65,85) and ¢ = (200, 225).

ISMM 2007, 8-10 October, Rio de Janeiro 4 of 17

= iversity of : .
ngﬂj gl{gl‘ﬁ?ego Second-Generation Connected Filtering in 3-D

original 26-connectivity

closing based connectivity difference

ISMM 2007, 8-10 October, Rio de Janeiro 5 of 17

iversity of : C ey
: / oroningen. Including union-find in the Max-Tree

groningen

Cy
|
o|1(2,/3]2|1/2]1/|0 0 9 Cl
; . 3 K
input signal Py P} Clo/
P} |
1L/0({1}22/1/1/1]0 Py o
par array peak components Max-Tree

® Example of input signal, peak components, Max-Tree and its encoding in a par
array.

® | denotes the overall root node, and boldface numbers denote the level roots, i.e.,
they point to positions in the input with grey level other than their own.

ISMM 2007, 8-10 October, Rio de Janeiro 6 of 17

university of
: / groningen

segment bounds

N

Merging in Dual-Input Max-Trees

segment bounds

N

.
0
Prs i Pro i P |
/L Pa |
P L Pro
f m: connectivity mask
| |
CO | | CO
l3 l3
CIS (f% 03\ Cy
co L oroc?lo¢ 0{/ Cl
lo \ \{ o \O/
Co | Co | C Co

partial Max-Trees

ISMM 2007, 8-10 October, Rio de Janeiro

Merged at level f

Max-Tree of f
(mask-based)

merged at level m

7 of 17

® Whenever m(x)

: / eyt Adaptations to the Parallel Max-Tree Algorithm

We store f and m consecutively in a single array of length 2 xvolsize and maintain
an array levroot of length G for each thread.

f(x) the algorithm does not change fundamentally

Whenever m(x) # f(x) we check whether there is a level root at level h = m(x),
and at f(x)

If not, levroot|m(z)] < x + volsize and/or levroot|f(x)| « x

® We then set par|z] to levroot|f(x)] and par|x + volsize] to levroot|m(x)]

® If when flooding we find a pixel at level h with f(y) = m(x), and levroot|h| =

x + volsize we set levroot|h] and par|x + volsize] to y

If m(z) < f(x) we immediately finalize the node at level f(x) and set
levroot|f(x)] to L.

ISMM 2007, 8-10 October, Rio de Janeiro 8 of 17

university of
; / groningen Data Structures

|
|
par [z] par [z]
|
|
|
attr[2] attr[]
|
Standard Parallel Dual-Input Parallel

ISMM 2007, 8-10 October, Rio de Janeiro 9 of 17

iversity of : : :
; / groningen Binary Tree used for Merging Domains

/N

ISMM 2007, 8-10 October, Rio de Janeiro 10 of 17

i .t f [e []
: / groningen . Concurrent construction and filtering thread p.

process ccaf(p)
build dual input Max-Tree Tree(p) for segment belonging to p
var . :=1, q:=p;
while p+1 < N, N gmod 2 =0 do
wait to glue with right-hand neighbor ;
for all edges (x, y) between Tree(p) and Tree(p + i) do
if f(z) # m(x) then z := x 4 volsize;
if f(y) # m(y) then y := vy + volsize;
connect(x, y) ;

end ;

1:=2%4; q:=q/2;
end ;
if p =0 then

release the waiting threads
else

signal left-hand neighbor ;
wait for thread 0
end ;
filter(p, lambda) ;
end ccaf.

ISMM 2007, 8-10 October, Rio de Janeiro 11 of 17

university of

groningen Merging TWO MaX—Tl’eeS
t bound T]1 1 1
segm? oun 714 711 L,
. l i l
1D} v 3 2|3 z|3
4 DU l l v l
o 4 4 4 4 4 |24
5l ¢ i i ¢ ¢ i
8 Dy i i 1 1 1 1
(a) signal (b) start; cor=0 (c) step 1; cor=1(d) step 2; cor=1
1 1 1 1
' o r o '’ r
af ’ l ” l i l i
e [Ble e 2Bl DL
1 1 1 = 1 L=y l=2 1=y 1l==
(e) step 3; cor= 3(f) step 4; cor= 3(g) step 5; cor=4 (h) final tree

ISMM 2007, 8-10 October, Rio de Janeiro 12 of 17

university of Timi
/ groningen iImings

1 2 3 4 5 6 7 8 10 20 30 40 50 60
Threads # Threads

® Speed-up for volume openings (solid) and non-compactness thinnings (dashed) as
a function of number of threads.

® Timings were performed on a 2-socket, dual-core opteron-based workstation (4
core total).

ISMM 2007, 8-10 October, Rio de Janeiro 13 of 17

university of
groningen

/

1.8
1.7¢ o T T T T T~
/ -~
/ = =~
1.6} roa T TT- TS
// , - -
P B
o 15 / 4
T
D 14
)
Q
0 13f
1.2} mrt8angio2
— — — fullhead8
1.1F —-— - angio8
, xmas8
1 Il Il Il Il Il Il
0 20 40 60 80 100 120

Number of Threads

140

Predicted Speed-up

Speed-up for Nipreqds > Ny

=
o]

=
iy
‘

=
o
T

=
l
‘

=
N
\

=
w
T

=
N
T

=
=
T

mrt8angio2

— — — fullhead8
—-—-angio8
Xxmas8

(=Y

20 40 60 80 100 120
Number of Threads

Left: Speed-up on single-core CPU (P4-520, 3.0 GHz)

Right: Predicted perfomance from cache thrashing (using valgrind)

ISMM 2007, 8-10 October, Rio de Janeiro

140

14 of 17

5 77 university of
g% / groningen Comp|eXlty

® Assuming a volume of X XY X Z = N, in the building phase the time complexity
is O(GN/N,)

® This complexity arises from the O(GN) complexity of Salembier et al's Max-Tree
algorithm

® |[f the number of grey levels is large, it may be better to replace this by Najman
and Couprie's method.

® The merging phase has complexity O(GXY log N log N,,) if the volume is split up
into slices orthogonal to the Z direction.

® Thelog N is due to the fact that we only use path compression, not union-by-rank.

® Memory requirements are O(N + G).

ISMM 2007, 8-10 October, Rio de Janeiro 15 of 17

E{V university of C lusi
ron / groningen onciusions

® As with the regular Max-Tree algorithm, the Dual-Input Max-Tree algorithm is
parallellizable through the use of union-find.

® Speed-up is (slightly better than) linear over four cores.

® Tests using more threads than cores suggest that improved speed-up beyond 4
CPUs is expected.

® This extended speed-up for Nihreads > IV, is due to reduced cache thrashing.

® For very high numbers of grey levels in particular, we should replace the building

phase by a version of Najman and Courpie's algorithm (IEEE Trans. Image Proc.
2006).

ISMM 2007, 8-10 October, Rio de Janeiro 16 of 17

university of .
/ groningen Questlons

ISMM 2007, 8-10 October, Rio de Janeiro 17 of 17

	Introduction
	Attribute filters
	Second-Generation Connectivity
	Clustering vs. Partitioning
	Second-Generation Connected Filtering in 3-D
	Including union-find in the Max-Tree
	Merging in Dual-Input Max-Trees
	Adaptations to the Parallel Max-Tree Algorithm
	Data Structures
	Binary Tree used for Merging Domains
	Concurrent construction and filtering thread p.
	Merging Two Max-Trees
	Timings
	Speed-up for Nthreads > Np
	Complexity
	Conclusions
	Questions

