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Introduction

Many image processing operators allow easy parallellization through either locality
or separability

Connected operators are neither separable nor local

Recently, a parallellization strategy for Max-Tree-based attribute filtering was
developed in Groningen

It is based on a simple strategy:

Compute separate Max-Trees for Np slices of an image or volume

Merge the trees into a single tree

Filter the resulting tree using multiple CPUs concurrently

Speed-up of up to 14 on 16 MIPS CPUs was obtained.

In this presentation an extension to the Dual-Input Max-Tree algorithm for second-
generation connectivity is proposed
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Attribute filters

Binary attribute filters are based on trivial filters ΓT which are defined as

ΓT (C) =

{
C if T (C) is true

∅ otherwise,
(1)

in which T is a criterion which usually takes the form T (C) = (Attr(C) ≥ λ), and
C ∈ C.

The binary attribute opening ΓT of set X with increasing criterion T is given by

ΓT (X) =
⋃
x∈X

ΓT (Γx(X)) (2)
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Second-Generation Connectivity

Second-generation connectivities use an operator ψ which modifies X and a base
class C.

The resulting connectivity class is denoted Cψ and corresponds to a second-
generation connected opening Γψx .

The connected opening Γψx for a second-generation connectivity based on ψ of
image X is

Γψx (X) =


Γx(ψ(X)) ∩X if x ∈ X ∩ ψ(X)
{x} if x ∈ X \ ψ(X)
∅ otherwise,

(3)

in which Γx is the connected opening based on C.

If ψ is extensive Cψ is clustering based.

If ψ is anti-extensive Cψ is partitioning based.
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Clustering vs. Partitioning

X ψ(X) Γψp (X) Γψq (X)
Clustering-based connectivity

X ψ(X) Γψp (X) Γψq (X)
Partitioning-based connectivity

Note that p = (65, 85) and q = (200, 225).
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Second-Generation Connected Filtering in 3-D

original 26-connectivity

closing based connectivity difference
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Including union-find in the Max-Tree
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Merging in Dual-Input Max-Trees
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Adaptations to the Parallel Max-Tree Algorithm

We store f and m consecutively in a single array of length 2∗volsize and maintain
an array levroot of length G for each thread.

Whenever m(x) = f(x) the algorithm does not change fundamentally

Whenever m(x) 6= f(x) we check whether there is a level root at level h = m(x),
and at f(x)

If not, levroot[m(x)]← x+ volsize and/or levroot[f(x)]← x

We then set par[x] to levroot[f(x)] and par[x+ volsize] to levroot[m(x)]

If when flooding we find a pixel at level h with f(y) = m(x), and levroot[h] =
x+ volsize we set levroot[h] and par[x+ volsize] to y

If m(x) < f(x) we immediately finalize the node at level f(x) and set
levroot[f(x)] to ⊥.
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Data Structures

par[x]

f(x) m(x)

par[x]

f(x)

attr[x]attr[x]

Standard Parallel Dual-Input Parallel
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Binary Tree used for Merging Domains
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Concurrent construction and filtering thread p.

process ccaf(p)
build dual input Max-Tree Tree(p) for segment belonging to p

var i := 1 , q := p ;

while p+ i < Np ∧ q mod 2 = 0 do
wait to glue with right-hand neighbor ;

for all edges (x, y) between Tree(p) and Tree(p+ i) do
if f(x) 6= m(x) then x := x+ volsize;

if f(y) 6= m(y) then y := y + volsize;

connect(x, y) ;

end ;

i := 2 ∗ i ; q := q/2 ;

end ;

if p = 0 then
release the waiting threads

else
signal left-hand neighbor ;

wait for thread 0

end ;

filter(p, lambda) ;

end ccaf.
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Merging Two Max-Trees
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Timings
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Speed-up for volume openings (solid) and non-compactness thinnings (dashed) as
a function of number of threads.

Timings were performed on a 2-socket, dual-core opteron-based workstation (4
core total).
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Speed-up for Nthreads > Np
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Left: Speed-up on single-core CPU (P4-520, 3.0 GHz)

Right: Predicted perfomance from cache thrashing (using valgrind)
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Complexity

Assuming a volume of X × Y ×Z = N , in the building phase the time complexity
is O(GN/Np)

This complexity arises from the O(GN) complexity of Salembier et al’s Max-Tree
algorithm

If the number of grey levels is large, it may be better to replace this by Najman
and Couprie’s method.

The merging phase has complexity O(GXY logN logNp) if the volume is split up
into slices orthogonal to the Z direction.

The logN is due to the fact that we only use path compression, not union-by-rank.

Memory requirements are O(N +G).
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Conclusions

As with the regular Max-Tree algorithm, the Dual-Input Max-Tree algorithm is
parallellizable through the use of union-find.

Speed-up is (slightly better than) linear over four cores.

Tests using more threads than cores suggest that improved speed-up beyond 4
CPUs is expected.

This extended speed-up for Nthreads > Np is due to reduced cache thrashing.

For very high numbers of grey levels in particular, we should replace the building
phase by a version of Najman and Courpie’s algorithm (IEEE Trans. Image Proc.
2006).
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Questions

?
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