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Introduction Definitions Inverses Properties of inverses Division Pullbacks and pushforwards Cleistomorphisms and anoiktomorphisms

Lattice theory: a mature mathematical theory thanks to the pioneering
work by Garrett Birkhoff, Øystein Ore and others in the first half of the
twentieth century.

A standard reference is still Birkhoff’s book (1995),
first published in 1940. Developments in lattice theory originate in
several branches of mathematics, for instance
algebra (Blyth & Janowitz 1972, Blyth 2005),
logic (Stoltenberg-Hansen et al. 1994, Gierz et al. 2003),
general topology and functional analysis (Gierz et al.
2003:xxx–xxxii),
convexity theory (Singer 1997), and
image processing (Matheron 1975, Serra 1982, 1988, and Heijmans
1994; articles by Heijmans & Ronse 1990, Ronse 1990, Ronse &
Heijmans 1991, and Serra 2006).
This variety of sources for fundamental concepts has led to varying
terminology and hence to difficulties in tracing history.
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We shall introduce inverses and quotients of mappings between
complete lattices which are analogous to inverses 1/y and quotients
x/y of positive numbers.

These concepts are then used to create a
convenient formalism for a unified treatment of dilations δ : L→M and
erosions ε : L→M as well as of cleistomorphisms (closure operators)
κ : L→ L and anoiktomorphisms (kernel operators) α : L→ L. The
theory for inverses generalizes the theory of Galois
correspondences, which is equivalent to residuation theory .
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Both inverses and quotients come in two versions, upper and lower.

It
turns out that anoiktomorphisms can be characterized as lower
quotients of the form f/? f , and cleistomorphisms as upper quotients
f/?f .

To define an inverse of a general mapping seems to be a hopeless
task. However, if the mapping is between preordered sets, there is
some hope of constructing mappings that can serve in certain contexts
just like inverses do.
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Definition

A preorder in a set X is a binary relation which is reflexive (for all
x ∈ X , x 6 x)

and transitive (for all x ,y ,z ∈ X , x 6 y and y 6 z imply
x 6 z). An order is a preorder which is antisymmetric (for all x ,y ∈ X ,
x 6 y and y 6 x imply x = y ).

To any preorder 6 we introduce an equivalence relation x ∼ y defined
as x 6 y and y 6 x .If 6 is an order, this equivalence relation is just
equality. If we have two preorders, we say that 61 is stronger than or
finer than 62 if for all x and y , x 61 y implies x 62 y We also say that
62 is weaker than or coarser than 61. The finest preorder is the
discrete preorder , defined as equality; the coarsest preorder is the
chaotic preorder given by x 6 y for all x and y .
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Definition

A complete lattice is an ordered set such that any family (xj)j∈J of
elements possesses a smallest majorant and a largest minorant. We
denote them by

W
j∈J xj and

V
j∈J xj , respectively.

Definition

If f : X → Y is a mapping of a set into another, we define its graph as
the set

graph f = {(x ,y) ∈ X ×Y ;y = f (x)}.

If Y is preordered, we define also its epigraph and its hypograph as

epi f = {(x ,y)∈X×Y ; f (x)6 y}, hypo f = {(x ,y)∈X×Y ;y 6 f (x)}.

It is often convenient to express properties of mappings in terms of
their epigraphs or hypographs.
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Definition

If two preordered sets X and Y and a mapping f : X → Y are given,
we shall say that f is increasing if

for all x ,x ′ ∈ X , x 6X x ′ =⇒ f (x) 6Y f (x ′),

and that f is coincreasing if

for all x ,x ′ ∈ X , f (x) 6Y f (x ′) =⇒ x 6X x ′.

To emphasize the symmetry between the two notions, we define, given
any mapping f : X → Y , a preorder 6f in X by the requirement that
x 6f x ′ if and only if f (x) 6Y f (x ′). Then f is increasing if and only if
6X is finer than 6f , and f is coincreasing if and only if 6f is finer than
6X .
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Definition

A mapping f : L→M of a complete lattice L into a complete lattice M
is said to be a dilation if f

(W
j∈J xj

)
=

W
j∈J f (xj) for all families (xj)j∈J

of elements in L.

The mapping is said to be an erosion if
f
(V

j∈J xj
)

=
V

j∈J f (xj) for all families (xj)j∈J .

Definition

A mapping f : X → X of a preordered set X into itself is said to be an
ethmomorphism if it is increasing and idempotent. If in addition it is
extensive, i.e., f (x) > x for all x ∈ X , then it is said to be a
cleistomorphism; if it is antiextensive, i.e., f (x) 6 x for all x ∈ X , then
it is called an anoiktomorphism.
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For the notions just defined many terms have been used. Other terms
for ethmomorphism are morphological filter (Serra 1988:104),
projection operator and projection (Gierz & al. 2003:26).

For
cleistomorphism other terms include closure mapping (Blyth &
Janowitz 1972:9), closing (Matheron 1975:187; Serra 1982:56), hull
operator (Singer 1997:8), closure operator (Gierz & al. 2003:26). For
anoiktomorphism there are several other terms: dual closure mapping
(Blyth & Janowitz 1972:9), opening (Matheron 1975:187; Serra
1982:56), kernel operator (Gierz & al. 2003:26).



Introduction Definitions Inverses Properties of inverses Division Pullbacks and pushforwards Cleistomorphisms and anoiktomorphisms

For the notions just defined many terms have been used. Other terms
for ethmomorphism are morphological filter (Serra 1988:104),
projection operator and projection (Gierz & al. 2003:26). For
cleistomorphism other terms include closure mapping (Blyth &
Janowitz 1972:9), closing (Matheron 1975:187; Serra 1982:56), hull
operator (Singer 1997:8), closure operator (Gierz & al. 2003:26).

For
anoiktomorphism there are several other terms: dual closure mapping
(Blyth & Janowitz 1972:9), opening (Matheron 1975:187; Serra
1982:56), kernel operator (Gierz & al. 2003:26).
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Inverses of mappings

In general a mapping g : X → Y between sets does not have an
inverse. If g is injective, we may define a left inverse u : Y → X , thus
with u ◦g = IdX .

If g is surjective, we may define a right inverse
v : Y → X , thus with g ◦ v = IdY . We then need to define v(y) as an
element of {x ;g(x) = y}. In the general situation this has to be done
using the axiom of choice. In a complete lattice, however, it could be
interesting to define v(y) as the supremum or infimum of all x such
that g(x) = y , even though this supremum or infimum need not belong
to the set. However, for various purposes it is convenient to take
instead the infimum of all x such that g(x) > y or the supremum of all
x such that g(x) 6 y . This yields better monotonicity properties. (The
case g(x) = y is covered if we let the preorder in Y be the discrete
preorder.)
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Definition

Let L be a complete lattice, Y a preordered set, and g : L→ Y any
mapping. We then define the upper inverse g[−1] : Y → L and the
lower inverse g[−1] : Y → L as the mappings

g[−1](y) =
^
x∈L

(x ;g(x) >Y y) =
^
x∈L

(x ;(x ,y) ∈ hypog), y ∈ Y ; (1)

g[−1](y) =
_
x∈L

(x ;g(x) 6Y y) =
_
x∈L

(x ;(x ,y) ∈ epig), y ∈ Y . (2)
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We note that we always have(
epig[−1])−1 ⊃ hypog and

(
hypog[−1]

)−1 ⊃ epig. (3)

Here S−1 = {(y ,x) ∈ Y ×L;(x ,y) ∈ S} for any subset S of L×Y .

In
general these inclusions are strict.
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A special case

A special case for lower inverses is when the set of all x such that
g(x) 6Y y has a largest element,

in other words, when the supremum
in (2) is a maximum. It is equivalent to say that

g
(
g[−1](y)

)
6 y for all y .

We shall see that it is also equivalent to say that g is a dilation.

This special case has been studied for a long time, under several
different names.

We shall see that there are many instances when we do not have this
special case. After all, there are many mappings which are not
dilations.
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1. When the supremum in (2) is a maximum, the pair (g,g[−1]) is said
to be a Galois connection (Gierz & al. 2003:22), a concept which goes
back to Évariste Galois’ work on the automorphism groups of a field.

Singer (1997:172) calls a mapping f : L→M a duality if
f
(V

j∈J xj
)

=
W

j∈J f (xj) for all families (xj)j∈J of elements in L. Thus a
duality induces a dilation Lop→M and an erosion L→Mop if we
change the order in L or M to the opposite order; the study of dualities
in the sense of Singer is equivalent to that of dilations or erosions.
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2. One also says in this special case when the supremum is a
maximum that g is residuated and that g[−1] is its residual (Blyth &
Janowitz 1972:11; Blyth 2005:7).

If the infimum in (1) is a minimum, g
is said to be dually residuated and g[−1] is called its dual residual ; the
pair (g[−1],g) is a Galois correspondence between Y and L.
Residuation theory goes back at least to a paper by Ward & Dilworth
(1939).
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3. The pair (g,g[−1]) is also said to be an adjunction (Gierz & al.
2003:22) in this special case. This aspect probably originates in logic,
and is important in image processing.

4. Finally, there is duality in convexity theory. The Fenchel
transformation (Fenchel 1949) of a function ϕ : Rn→ [−∞,+∞] is
defined as

ϕ̃(ξ) = sup
x∈Rn

(
ξ · x−ϕ(x)

)
, ξ ∈ Rn,

and satisfies
ϕ̃ 6 f ⇐⇒ f̃ 6 ϕ.

After a change of order on one of the sides it satisfies (3) with equality,
which means that we have a Galois correspondence. It is also the
case that (

inf
j∈J

ϕ
)
˜= sup

j∈J
ϕ̃,

so that we have a duality in the sense of Singer; i.e., after a change of
the order relation we have a dilation or erosion.
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The results generalize residuation theory, equivalently the theory of
Galois correspondences, to a more general situation, a situation which
appears even in very simple examples as we shall see now.

Example

Take Y = L in the definition, fix an element c of L, and define a
mapping g : L→ L by g(x) = x ∨ c, x ∈ L. In this case, the supremum
in (2) is a maximum if y > c but only then. Thus g is not residuated
unless c = 0. But it is easy to determine its lower inverse: g[−1](y) = y
if y > c and g[−1](y) = 0 otherwise. We have

epig = {(x ,y) ∈ L2;y > x ∨ c},

while (
hypog[−1]

)−1 = epig∪{(0,y) ∈ L2;y 6> c},
so that(

hypog[−1]
)−1 r epig = {(0,y) ∈ L2;y 6> c} 6= Ø if c 6= 0.
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Example

Let now L be {0,1}2 with the coordinatewise order, and let g be as
before. We choose c = (1,0) and denote (0,1) by a so that L consists
of the four element 0 = (0,0), a = (0,1), c = (1,0), and 1 = (1,1).
We know that g[−1](y) = y if y > c and g(y) = 0 otherwise.

We find
that (

hypog[−1]
)−1 r epig = {(0,0),(0,a)} 6= Ø.

Thus g is not residuated.
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Properties of inverses

If, given a mapping g : L→ Y , we can find a mapping u : Y → L such
that epiu = (hypog)−1 we would be content to have a kind of inverse
to g. However, usually the best we can do is to study mappings with
epiu ⊃ (hypog)−1 or epiv ⊂ (hypog)−1. This we shall do in the
following proposition, which shows that the upper and lower inverses
are solutions to certain extremal problems.
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Proposition

Let L be a complete lattice, Y a preordered set, and let g : L→ Y,
u,v : Y → L be mappings. If epiu ⊃ (hypog)−1 ⊃ epiv, then
u 6 g[−1] 6 v and

epiu ⊃ epig[−1] ⊃ (hypog)−1 ⊃ epiv .

Hence g[−1] is the largest mapping u such that epiu contains
(hypog)−1.

Similarly, if hypou ⊂ (epig)−1 ⊂ hypov, then
u 6 g[−1] 6 v and

hypou ⊂ (epig)−1 ⊂ hypog[−1] ⊂ hypov .

Hence g[−1] is the smallest mapping v which satisfies
hypov ⊃ (epig)−1.
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Corollary

With g, u and v given as in the proposition, assume that
(epiu)−1 = hypog. Then u = g[−1]. Similarly, if (hypov)−1 = epig,
then v = g[−1].

If also Y is a complete lattice, then epiu = (hypog)−1

implies that u[−1] = g in addition to u = g[−1]. Similarly,
hypov = (epig)−1 implies v [−1] = g in addition to v = g[−1].

The corollary singles out the special case of adjunctions between L
and Y among all pairs

(
g,g[−1]

)
and adjunctions between Y and L

among all pairs
(
g[−1],g

)
.
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An ideal inverse u would satisfy u ◦g = IdL, g ◦u = IdY , and the
inverse of u would be g. It is therefore natural to compare g[−1] ◦g and

g[−1] ◦g with IdL; g ◦g[−1] and g ◦g[−1] with IdY ; and
(
g[−1]

)[−1]
and(

g[−1]
)
[−1] with g. This is what we shall do next.
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Left inverses

We shall now investigate to what extent g[−1] and g[−1] can serve as
left inverses to g.

Theorem

Let L be a complete lattice and Y a preordered set. Then the following
six conditions are equivalent.
(a) g is coincreasing;
(b) g[−1] ◦g > IdL;
(c) g[−1] ◦g = IdL;
(d) g[−1] ◦g 6 IdL;
(e) g[−1] ◦g = IdL;
(f) g[−1] 6 g[−1].
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Right inverses

Next we compose g[−1] with g in the other order: we shall see to what
extent the inverses we have constructed can serve as right inverses.
This will lead to a characterization of dilations—and, by duality, of
erosions.

Theorem

If L and M are complete lattices and g : L→M is any mapping, then
the following five properties are equivalent.
(A) g is a dilation;
(B)

(
hypo(g[−1])

)−1 ⊂ epig;

(C)
(

hypo(g[−1])
)−1 = epig;

(D) g is increasing and
(
graph(g[−1])

)−1 ⊂ epig;
(E) g is increasing and g ◦g[−1] 6 IdM .
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This theorem characterizes the special case when the supremum in (2)
is a maximum (property (E)); equivalently, it characterizes the special
case of residuated mappings or Galois correspondence (property (C)).

By duality we get a similar characterization of erosions; equivalently of
the case when the infimum defining the upper inverse is a minimum.

Corollary

If L and M are complete lattices and g : L→M and u : M→ L are two
mappings such that epig = (hypou)−1, then u is a dilation and g is an
erosion, and g[−1] = u, u[−1] = g.
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Inverses of inverses

Theorem

If L and M are complete lattices and g : L→M is any mapping, then

quite generally
(
g[−1]

)[−1]
6 g 6

(
g[−1]

)
[−1]. Equality holds at the first

place if and only if g is a dilation; at the second place if and only if g is
an erosion.

Theorem

If L and M are complete lattices and δ : L→M is a dilation, then
δ[−1] : M→ L is an erosion. Similarly, if ε : L→M is an erosion, then
ε[−1] is a dilation.
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A well-known consequence:

Corollary

For any dilation δ : L→M we have δ◦δ[−1] ◦δ = δ and
δ[−1] ◦δ◦δ[−1] = δ[−1]. In particular, δ[−1] ◦δ and δ◦δ[−1] are
idempotent and therefore ethmomorphisms. The first is a
cleistomorphism in L, the second an anoiktomorphism in M.

Dually
ε◦ ε[−1] ◦ ε = ε and ε[−1] ◦ ε◦ ε[−1] = ε[−1] for any erosion ε : L→M.
Also ε[−1] ◦ ε and ε◦ ε[−1] are idempotent; the first an
anoiktomorphism, the second a cleistomorphism.
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Division of mappings

We shall now generalize the definitions of upper and lower inverses.

Definition

Let a set X , a complete lattice M, and a preordered set Y , as well as
two mappings f : X →M and g : X → Y be given. We define two
mappings f/?g, f/? g : Y →M by

(f/?g)(y) =
^

x∈X

(f (x);g(x) >Y y), y ∈ Y ,

(f/? g)(y) =
_

x∈X

(f (x);g(x) 6Y y), y ∈ Y .

We shall call them the upper quotient and the lower quotient of f
and g.
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The quotients f/?g and f/? g increase when f increases and they
decrease when g increases—just as with division of positive numbers:

If f1 6M f2 and g1 >Y g2, then f1/
?g1 6M f2/

?g2 and f1/? g1 6M f2/? g2.

If we specialize the definitions to the situation when X = M and
f = IdX , then f/?g = IdX/?g = g[−1] and f/? g = IdX/? g = g[−1].
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Proposition

Let X be an arbitrary subset of a complete lattice M, let Y = M, and g
the inclusion mapping X →M. Then f/?g = f � and f/? g = f�, where f �

is the largest increasing mapping h : M→M such that h
∣∣
X minorizes

f , i.e.,

f �(y) = sup
h

(
h(y);h is increasing and h(x) 6 f (x) for all x ∈ X

)
;

and f� is the smallest increasing mapping k such that k
∣∣
X majorizes f ,

i.e.,

f�(y) = inf
k

(
k(y);k is increasing and k(x) > f (x) for all x ∈ X

)
.

If f itself is increasing, they are in fact extensions of f .
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If we specialize further, letting also f be the inclusion mapping X →M,
we obtain

(f/? g)(y) = (f/? f )(y) = f�(y) =
_

x∈X

(x ;x 6 y) = y◦ ∈M,

where the last equality defines y◦. It is easy to verify that y 7→ y◦ is an
anoiktomorphism. A well-known situation is described in the following
example.

Example

Let M be the complete lattice [−∞,+∞]E of functions on a vector
space E with values in the extended reals, let F be a vector subspace
of its algebraic dual E? (the space of all linear forms on E), and let X
be the set of all affine functions with linear part in F , i.e., functions of
the form α(x) = ξ(x)+ c for some linear form ξ ∈ F and some real
constant c. A function f such that f ◦ = f is called X-convex by Singer
(1997:10).
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We next compare the quotient f/?g and the composition f ◦g[−1] (think
of x/y = x · y−1 for positive numbers):

Proposition

For every increasing mapping f : X →M and every mapping
g : X → Y we have f/?g > f ◦g[−1] with equality if f is an erosion, and
f/? g 6 f ◦g[−1] with equality if f is a dilation. If g is coincreasing, then
f/? g 6 f ◦g[−1] 6 f ◦g[−1] 6 f/?g.
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Proposition

If P is a preordered set and h : M→ P is increasing, we have
h ◦ (f/?g) 6 (h ◦ f )/?g with equality if h is an erosion.

Similarly
h ◦ (f/? g) > (h ◦ f )/? g with equality if h is a dilation.
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Pullbacks and pushforwards

We shall now see how the notions introduced fit into the study of a
very fundamental situation, that of a mapping f : X → Y pulling back
mappings ψ : Y → L and pushing forward mappings ϕ : X → L.

Definition

Let three sets X , Y and L be given, as well as a mapping f : X → Y .
We define the pullback of f , denoted by f← : LY → LX and having as
values mappings f←(ψ) : X → L, by

f←(ψ) = ψ◦ f ∈ LX , ψ ∈ LY . (4)

One often writes f ∗ for f←.
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Definition

Let two sets X , Y and a complete lattice L be given, as well as a
mapping f : X → Y . We define the upper and lower pushforwards
denoted by f→, f→ : LX → LY and yielding as values mappings
f→(ϕ), f→(ϕ) : Y → L, by

f→(ϕ)(y) =
^

x∈X

(
ϕ(x); f (x) = y

)
, y ∈ Y , ϕ ∈ LX , (5)

and

f→(ϕ)(y) =
_

x∈X

(
ϕ(x); f (x) = y

)
, y ∈ Y , ϕ ∈ LX . (6)
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If y /∈ imf , we obtain f→(ϕ)(y) = 1L; the infimum is not attained.
Similarly, f→(ϕ)(y) = 0L. Of course there are many other cases when
the supremum and infimum in (5), (6) are not attained.

We note that the upper pushforward defined by (5) is actually an upper
quotient, f→(ϕ) = ϕ/?f , and similarly f→(ϕ) = f/? f , namely if we
provide Y with the discrete order. The results on quotients are
therefore available in this setting.

Proposition

Let f : X → Y and a complete lattice L be given. Then the pullback
f← : LY → LX is both a dilation and an erosion.
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Proposition

If X , Y are sets, f : X → Y a mapping, and L a complete lattice, then

epi f← =
(

hypo f→
)−1

(7)

and
hypo f← =

(
epi f→

)−1
. (8)
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Corollary

Let a mapping f : X → Y and a complete lattice L be given. Then the
lower inverse of the pullback is (f←)[−1] = f→, and the supremum in
the definition of the lower inverse is attained. Also the upper inverse of
f→ is (f→)[−1] = f←.

Corollary

Let a mapping f : X → Y and a complete lattice L be given. Then the
upper inverse of the pullback is (f←)[−1] = f→, and the infimum in the
definition of the upper inverse is attained. Also (f→)[−1] = f←.

Corollary

The upper pushforward mapping f→ is a dilation, and the lower
pushforward f→ is an erosion.
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We consider now the special case when L = {0,1} and ψ is a
characteristic function, ψ = χB ∈ {0,1}Y for some subset B of Y .
Then

f←(χB) = χA, where A = {x ∈ X ; f (x) ∈ B},

the preimage of B.

If ϕ is a characteristic function ϕ = χA for a subset of X , then

f→(χA) = χB, where B = {f (x);x ∈ A},

the direct image of A under f , and

f→(χA) = χC , where C = Y r{f (x);x /∈ A},

the complement of the direct image of the complement of A. Because
of this it is natural to define also a pullback f← : P(Y )→P(X) and
pushforwards f→, f→ : P(X)→P(Y ). There is in general no
inclusion relation between the two sets B and C defined by f→(χA)
and f→(χA), thus between f→(A) and f→(A) = {f→({A).
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Then

f←(χB) = χA, where A = {x ∈ X ; f (x) ∈ B},

the preimage of B.

If ϕ is a characteristic function ϕ = χA for a subset of X , then

f→(χA) = χB, where B = {f (x);x ∈ A},

the direct image of A under f , and

f→(χA) = χC , where C = Y r{f (x);x /∈ A},

the complement of the direct image of the complement of A. Because
of this it is natural to define also a pullback f← : P(Y )→P(X) and
pushforwards f→, f→ : P(X)→P(Y ).

There is in general no
inclusion relation between the two sets B and C defined by f→(χA)
and f→(χA), thus between f→(A) and f→(A) = {f→({A).
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Cleistomorphisms and anoiktomorphisms

Theorem

Let f : X →M be any mapping from a set X into a complete lattice M.
Then α = f/? f : M→M is an anoiktomorphism. Conversely, any
anoiktomorphism in M is of this form for some mapping f : X →M with
X = M. By duality we get analogous statements for the upper quotient
and cleistomorphisms.



Introduction Definitions Inverses Properties of inverses Division Pullbacks and pushforwards Cleistomorphisms and anoiktomorphisms

Cleistomorphisms and anoiktomorphisms

Theorem

Let f : X →M be any mapping from a set X into a complete lattice M.
Then α = f/? f : M→M is an anoiktomorphism. Conversely, any
anoiktomorphism in M is of this form for some mapping f : X →M with
X = M.

By duality we get analogous statements for the upper quotient
and cleistomorphisms.



Introduction Definitions Inverses Properties of inverses Division Pullbacks and pushforwards Cleistomorphisms and anoiktomorphisms

Cleistomorphisms and anoiktomorphisms

Theorem

Let f : X →M be any mapping from a set X into a complete lattice M.
Then α = f/? f : M→M is an anoiktomorphism. Conversely, any
anoiktomorphism in M is of this form for some mapping f : X →M with
X = M. By duality we get analogous statements for the upper quotient
and cleistomorphisms.



Introduction Definitions Inverses Properties of inverses Division Pullbacks and pushforwards Cleistomorphisms and anoiktomorphisms

Thank you for your interest!
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