On distances, paths and connections for hyperspectral image segmentation

Guillaume Noyel, Jesus Angulo, Dominique Jeulin

{guillaume.noyel, jesus.angulo, dominique.jeulin}@ensmp.fr

Centre de Morphologie Mathématique Ecole des Mines de Paris 35, rue Saint-Honoré, 77305 Fontainebleau cedex - France

8th International Symposium on Mathematical Morphology October 10-13, 2007 - Rio de Janeiro, Brazil

Contents

- Introduction
- 2 General notions
- (3) η -bounded regions
- 4 μ -geodesic balls
- 5 Results and discussions
- 6 Conclusions and perspectives

1 Introduction

- ② General notions
- (3) η -bounded regions
- 4 μ -geodesic balls
- 6 Results and discussions
- 6 Conclusions and perspectives

On distances, paths and connections for hyperspectral image segmentation Introduction

Hyperspectral image

Definition

Hyperspectral image: at each point x_i is associated a vector with values in spectrum, time, wavelength, or associated to an index j.

$$\begin{aligned} \mathbf{f}_{\lambda} : \left\{ \begin{array}{l} E & \to & \mathcal{T}^{L} & \text{with } E \subset \mathbb{R}^{2}, \ \mathcal{T} \subset \mathbb{R} \\ x & \to & \mathbf{f}_{\lambda}(x) = (f_{\lambda_{1}}(x), f_{\lambda_{2}}(x), \dots, f_{\lambda_{L}}(x)) \\ f_{\lambda_{j}} \setminus j \in \{1, 2, \dots, L\} \text{ is a channel } (L \text{ is the number of channels}) \end{aligned} \right. \end{aligned}$$

Image source: Spectral Database, University of Joensuu Color Group, http://spectral.joensuu.fi/

Spectral image: 400 nm to 700 nm 5 nm

Image size : $45 \times 76 \times 61$

On distances, paths and connections for hyperspectral image segmentation Introduction

Hyperspectral image

Image woman face in wavelength $(152 \times 91 \times 61)$

channels $\lambda = [400:5:700]$ nm

Quasi-flat zones

Definition: Quasi-flat zones or λ -flat zones (λ -FZ)

Given a distance $d: \mathcal{T}^L \times \mathcal{T}^L \to \mathbb{R}^+$, two points $x, y \in E$ belongs to the same quasi-flat zone of an hyperspectral image \mathbf{f}_{λ} if and only if there is a path $(p_0, p_1, \ldots, p_n) \in E^n$ such as $p_0 = x$ and $p_n = y$ and, if, for all i, $(p_i, p_{i+1}) \in E^2$ are neighbours and $d(\mathbf{f}_{\lambda}(p_i), \mathbf{f}_{\lambda}(p_{i+1})) \leq \lambda$, with $\lambda \in \mathbb{R}^+$.

Issue

Limitations of λ -Flat Zones: they are very sensitive to parameter λ because only local information is taken into account.

Aim of the study: To solve this effect we introduce finer partitions of each λ -FZ using regional information.

Starting with an initial partition by λ -FZ with a non critical high value of λ that leads to a sub-segmentation, a second segmentation is performed based on two new connections:

- η -Bounded Regions: η -BR
- μ -Geodesic Balls: μ -GB

The corresponding algorithms are founded on seed-based region growing inside the $\lambda\text{-FZ}.$

- (3) η -bounded regions
- 4 μ -geodesic balls
- 6 Results and discussions
- 6 Conclusions and perspectives

Definitions

Definition (Partition)

Let *E* be an arbitrary set. A partition \mathcal{D} of *E* is a mapping $x \to D(x)$ from *E* into $\mathcal{P}(E)$ such that: (i) for all $x \in E$: $x \in D(x)$, (ii) for all $x, y \in E$: D(x) = D(y) or $D(x) \cap D(y) = \emptyset$. D(x) is called the class of the partition of origin *x*.

The set of partitions of an arbitrary set E is ordered as follows.

Definition (Order of partitions)

A partition \mathcal{A} is said to be finer (resp. coarser) than a partition \mathcal{B} , $\mathcal{A} \leq \mathcal{B}$ (resp. $\mathcal{A} \geq \mathcal{B}$), when each class of \mathcal{A} is included in a class of \mathcal{B} .

This leads to the notion of ordered hierarchy of partitions $\prod_{i=1}^{N} D_i$, such that $D_i \leq D_{i+1}$, and even to a complete lattice [Serra(2006)].

Definitions

To solve this effect (too high sensitivity of λ parameter), we create finer partitions of each $\lambda\text{-FZ}$. These partitions are defined with connections.

Definition (Connection)

Let *E* be an arbitrary non empty set. We call connected class or connection *C* any family in $\mathcal{P}(E)$ such that: (0) $\emptyset \in C$, (i) for all $x \in E$, $\{x\} \in C$, (ii) for each family $C_i, i \in I$ in $C, \cap_i C_i \neq \emptyset$ implies $\cup_i C_i \in C$. Any set *C* of a connected class *C* is said to be connected.

Vectorial median

Definition (Vectorial median)

A vectorial median of a set $R \subset E$ is any value $\mathbf{f}_{\lambda}(k)$ in the set at point $k \in R$ such as:

$$k = \operatorname{argmin}_{p \in R} \sum_{i/x_i \in R} d\left(\mathbf{f}_{\lambda}(p), \mathbf{f}_{\lambda}(x_i)\right) = \operatorname{argmin}_{p \in R} \delta_R(\mathbf{f}_{\lambda}(p)) \quad (1)$$

i.e. "one of the points which minimize the sum of distances to the others".

 δ_R : ascending ordered list based on the cumulative distance (of each point of R to the others).

The first element of the list δ_R is the vectorial median (the last element is considered as the anti-median).

Introduction

- ② General notions
- (3) η -bounded regions
- 4 μ -geodesic balls
- 6 Results and discussions
- 6 Conclusions and perspectives

η -bounded regions η -BR

Comparison with λ -FZ

For λ -FZ, a hiker starting from one point only deals with the local slope and not with the difference in altitude on the λ -flat zones.

Principle for η -BR

Considering the difference in altitude, a hiker starting from one point x has a walk restricted to a ball of diameter $2 \times \eta$ centered on x inside a λ -FZ.

$\eta\text{-}\mathsf{bounded}$ regions $\eta\text{-}\mathsf{BR}$

Definition (η -bounded connection)

Given an hyperspectral image $\mathbf{f}_{\lambda}(x)$ and its initial partition based on λ -flat zones, λFZ , where λFZ_i is the connected class i and $R_i \subseteq E$ (with cardinal K) is the set of points p_k , k = 0, 1, 2, ..., K - 1, that belongs to the class i. Let p_0 be a point of R_i , named the center of class i, and let $\eta \in \mathbb{R}^+$ be a positive value. A point p_k belongs to the η -connected component centered at p_0 , denoted $\eta BR_i^{p_0}$, if and only if $d(\mathbf{f}_{\lambda}(p_0), \mathbf{f}_{\lambda}(p_k)) \leq \eta$ and p_0 and p_k are connected.

Seed (center of the class): 1^{st} non assigned-point of ascending ordered list based on the cumulative distance δ_R in a λ -FZ.

η -bounded regions η -BR

Construction of η -BR

For each class λFZ_i the method is iterated with different centers p_j $(j = 0, 1, \dots, J)$ until: $\bigcup_{j=0}^{J} \eta BR_i^{p_j} = \lambda FZ_i, \cap_{j=0}^{J} \eta BR_i^{p_j} = \emptyset$ where the η -bounded regions are connected.

Properties of η -BR

- Each seed p_j belongs to $\lambda FZ_i \setminus \bigcup_{l=0}^{j-1} \eta BR_i^{p_l}$.
- $\forall x \in E, \ \eta BR(x) \leq \lambda FZ(x)$

$$\lambda = 10$$
, $\eta = 20$

$$\lambda = 10$$
, $\eta = 20$

$$\lambda = 10, \eta = 20$$

Introduction

- ② General notions
- (3) η -bounded regions

4 μ -geodesic balls

- B Results and discussions
- 6 Conclusions and perspectives

μ -geodesic balls μ -GB

Principle of μ -GB

A hiker starting from one point k has a walk restricted by a cumulative difference in altitude less than μ , inside a λ -FZ.

$\mu\text{-}\mathsf{geodesic}$ balls $\mu\text{-}\mathsf{GB}$

Definition (μ -geodesic connection)

Given an hyperspectral image $\mathbf{f}_{\lambda}(x)$ and its initial partition based on λ -flat zones, λFZ , where λFZ_i is the connected class i and $R_i \subseteq E$ (with cardinal K) is the set of points p_k , k = 0, 1, 2, ..., K - 1, that belongs to the class i. Let p_0 be a point of R_i , named the center of class i, and let $\mu \in \mathbb{R}^+$ be a positive value. A point p_k belongs to the μ -connected component centered at p_0 , denoted $\mu GB_i^{p_0}$ if and only if $d_{geo}(\mathbf{f}_{\lambda}(p_0), \mathbf{f}_{\lambda}(p_k)) \leq \mu$.

Seed (center of the class): 1^{st} non assigned-point of ascending ordered list based on the cumulative distance δ_R in a λ -FZ.

μ -geodesic balls μ -GB

Construction of μ -GB

 $\mu\text{-}\mathsf{geodesic}$ balls are built as $\eta\text{-}\mathsf{bounded}$ regions, except that from each seed the geodesic ball is computed inside the $\lambda\text{-}\mathsf{FZ}.$

Properties of μ -GB

- Each seed p_j belongs to $\lambda FZ_i \setminus \bigcup_{l=0}^{j-1} \mu GB_i^{p_l}$.
- $\forall x \in E, \ \mu GB(x) \leq \lambda FZ(x)$
- we have a regional control of the "geodesic size" of the classes

$$\lambda = 10, \ \mu = 20$$

Introduction

- ② General notions
- (3) η -bounded regions

4 μ -geodesic balls

- 5 Results and discussions
- 6 Conclusions and perspectives

Comparison between η -BR and μ -GB

Comparison between η -BR and μ -GB

Comparison between η -BR and μ -GB

	η -BR	μ -GB
Sensitivity to bumps (and hollows)	+	_
Control of the size of the region	-	+

Results in image space

Generalization to hyperspectral images:

- use of vector distances (Chi-Squared, Euclidean)
- seed: vectorial median and not the minima or the maxima which does not exist.

Chi-squared distance is used d_{χ^2} .

Results in image space

 λ -FZ $\lambda = 0.005$

 $\begin{array}{l} \eta\text{-}\mathsf{BR}\\ \eta=0.007 \end{array}$

 μ -GB $\mu = 0.01$

 η -BR $\eta = 0.009$

 μ -GB $\mu = 0.02$

 η -BR $\eta = 0.011$

 η -BR $\eta = 0.02$

 μ -GB $\mu = 0.05$ 27/38

Results in image space

Seed: anti-median. Few changes are observed. \implies robustness of the method to the seeds choice.

Chi-squared distance is used d_{χ^2} .

Results in factor space

FCA (Factor Correspondence Analysis) [Benzécri(1973)]

Factor axes filtered by leveling (structuring element squared 3×3).

Results in factor space

Euclidean distance is used d_E .

Some other results on a satellite image

 f_{λ_1} blue ©CNES

 f_{λ} , green ©CNES

 f_{λ_3} red ©CNES

synthetic RGB

 f_{λ_A} proche IR ©CNES

 $f_{\lambda_{\mathbf{F}}}$ panchrom. ©CNES

Image "Roujan" $365 \times 365 \times 5$ pixels. Resolution 0.70 meters. Source: CNES (French space agency) + Pr. G. Flouzat (Laboratoire de Télédétection à Haute Résolution, Toulouse 3)

Some other results on a satellite image

Image space: Chi-squared distance is used d_{χ^2} .

synthetic RGB

 $\begin{array}{l} \lambda \text{-FZ} \\ \lambda = 0.005 \end{array}$

 $\begin{array}{l} \lambda \text{-FZ} \\ \lambda = 0.015 \end{array}$

Some other results on a satellite image

Image space: Chi-squared distance is used d_{χ^2} .

synthetic RGB

 λ -FZ $\lambda = 0.015$

 $\eta = 0.02$

 μ -GB

 $\mu = 0.1$

η-BR

 η -BR $\eta = 0.03$

 μ -GB

 $\mu = 0.2$

 η -BR $\eta = 0.04$

 μ -GB $\mu = 0.3^{33/38}$

Application fields

- Definition of homogeneous regions useful as markers for watershed segmentation
- Detection and characterization of textured regions

Introduction

- 2 General notions
- (3) η -bounded regions
- 4 μ -geodesic balls
- 6 Results and discussions
- 6 Conclusions and perspectives

Conclusions and perspectives

- η -BR and μ -GB improve λ -FZ (local information) by introduction of regional information.
- η -bounded connection and μ -geodesic connection are connections of 2^{nd} order because they are included in λ -FZ.
- The approach consists in selecting a sufficiently high parameter λ to obtain first a sub-segmentation.
- These connections lead to a pyramid of partition which is not an ordered pyramid.
- They are the generalization of the jump connection [Serra(1999)] with the difference that the seeds p_j cannot be the minima or maxima. Seed: vector median.
- Perspective: to select locally for each λ -FZ the value for η or μ .

References

J. Serra (1999).

Set connections and discrete filtering. Proc. DGCI 1999. Lecture Notes in Computer Science, Vol. 1568, Springer: 191-206.

J. Serra (2006).

A lattice approach to image segmentation.

Springer Science, Journal of Mathematical Imaging and Vision 24: 83-130.

F. Zanoguera and F. Meyer (2002).

On the implementation of non-separable vector levelings. CSIRO, Proc. ISMM02, International Symposium on Mathematical Morphology: 369-377.

D. Brunner and P. Soille (2003).

Iterative area seeded region growing for multichannel image simplification. Proc. ISMM'05, International Symposium on Mathematical Morphology: 397-406.

J. Crespo, R. Schafer, J. Serra, C. Gratin, and F. Meyer (1997).

The flat zone approach: a general low-level region merging segmentation method. Signal Processing 62: 37-60.

G. Noyel, J. Angulo, and D. Jeulin (2007).

Morphological Segmentation of hyperspectral images.

Proc. ICS XII International Congress of Stereology - St Etienne - France - 2007. Accepted in Image Analysis and Stereology.

References

F. Meyer (1998).

The levelings.

Kluwer, Proc. ISMM98, International Symposium on Mathematical Morphology: 199-206.

P. Salembier, L. Garrido, and D. Garcia (1998).

Auto-dual connected operators based on iterative merging algorithms. Kluwer, Proc. ISMM98, International Symposium on Mathematical Morphology: 183-190.

L. Vincent (1998).

Minimal Path Algorithms for the Robust Detection of Linear Features in Gray Images. Kluwer, Proc. ISMM98, International Symposium on Mathematical Morphology: 331-338.

J.P. Benzécri JP (1973).

L'Analyse Des Données. L'Analyse des Correspondances. Vol. 2. Paris. Dunod: 1–166.

W. Dijkstra (1959).

A Note on Two Problems in Connection with Graphs. Numerische Mathematik: 269-271.

J. Astola, J. Haavisto, and Y. Neuvo, (1990). Vector Median Filters.

Processing, Vol. 78 (4).