On distances, paths and connections for hyperspectral image segmentation

Guillaume Noyel, Jesus Angulo, Dominique Jeulin
\{guillaume.noyel, jesus.angulo, dominique.jeulin\}@ensmp.fr

Centre de Morphologie Mathématique
Ecole des Mines de Paris
35, rue Saint-Honoré, 77305 Fontainebleau cedex - France

8th International Symposium on Mathematical Morphology
October 10-13, 2007 - Rio de Janeiro, Brazil

Contents

(1) Introduction
(2) General notions
(3) η-bounded regions
(4) μ-geodesic balls
(5) Results and discussions
(6) Conclusions and perspectives

On distances, paths and connections for hyperspectral image segmentation

Introduction

(1) Introduction
(2) General notions
(3) η-bounded regions
(4) μ-geodesic balls
(5) Results and discussions
(6) Conclusions and perspectives

Hyperspectral image

Definition

Hyperspectral image: at each point x_{i} is associated a vector with values in spectrum, time, wavelength, or associated to an index j.

$$
\mathbf{f}_{\lambda}:\left\{\begin{array}{rll}
E & \rightarrow & \mathcal{T}^{L} \quad \text { with } E \subset \mathbb{R}^{2}, \mathcal{T} \subset \mathbb{R} \\
x & \rightarrow & \mathbf{f}_{\lambda}(x)=\left(f_{\lambda_{1}}(x), f_{\lambda_{2}}(x), \ldots, f_{\lambda_{L}}(x)\right)
\end{array}\right.
$$

$f_{\lambda_{j}} \backslash j \in\{1,2, \ldots, L\}$ is a channel (L is the number of channels)

Image source: Spectral Database, University of Joensuu Color Group, http://spectral.joensuu.fi/

Spectral image: 400 nm to 700 nm 5 nm
Image size: $45 \times 76 \times 61$

On distances, paths and connections for hyperspectral image segmentation

Hyperspectral image

Image woman face in wavelength $(152 \times 91 \times 61)$

Quasi-flat zones

Definition: Quasi-flat zones or λ-flat zones (λ-FZ)

Given a distance $d: \mathcal{T}^{L} \times \mathcal{T}^{L} \rightarrow \mathbb{R}^{+}$, two points $x, y \in E$ belongs to the same quasi-flat zone of an hyperspectral image \mathbf{f}_{λ} if and only if there is a path $\left(p_{0}, p_{1}, \ldots, p_{n}\right) \in E^{n}$ such as $p_{0}=x$ and $p_{n}=y$ and, if, for all i, $\left(p_{i}, p_{i+1}\right) \in E^{2}$ are neighbours and $d\left(\mathbf{f}_{\lambda}\left(p_{i}\right), \mathbf{f}_{\lambda}\left(p_{i+1}\right)\right) \leq \lambda$, with $\lambda \in \mathbb{R}^{+}$.

Image
(21×21)

Row profile

λ-FZ $\lambda=9,9$ 21 zones

λ-FZ
$\lambda=10$
1 zone

Issue

Limitations of λ-Flat Zones: they are very sensitive to parameter λ because only local information is taken into account.

Aim of the study: To solve this effect we introduce finer partitions of each λ-FZ using regional information.

Starting with an initial partition by λ-FZ with a non critical high value of λ that leads to a sub-segmentation, a second segmentation is performed based on two new connections:

- η-Bounded Regions: η-BR
- μ-Geodesic Balls: μ-GB

The corresponding algorithms are founded on seed-based region growing inside the $\lambda-\mathrm{FZ}$.

On distances, paths and connections for hyperspectral image segmentation
General notions

(1) Introduction

(2) General notions
(3) η-bounded regions

4 μ-geodesic balls
(5) Results and discussions
(6) Conclusions and perspectives

Definitions

Definition (Partition)

Let E be an arbitrary set. A partition \mathcal{D} of E is a mapping $x \rightarrow D(x)$ from E into $\mathcal{P}(E)$ such that: (i) for all $x \in E: x \in D(x)$, (ii) for all $x, y \in E: D(x)=D(y)$ or $D(x) \cap D(y)=\emptyset . D(x)$ is called the class of the partition of origin x.

The set of partitions of an arbitrary set E is ordered as follows.

Definition (Order of partitions)

A partition \mathcal{A} is said to be finer (resp. coarser) than a partition \mathcal{B}, $\mathcal{A} \leq \mathcal{B}($ resp. $\mathcal{A} \geq \mathcal{B})$, when each class of \mathcal{A} is included in a class of \mathcal{B}.

This leads to the notion of ordered hierarchy of partitions $\Pi_{i=1}^{N} \mathcal{D}_{i}$, such that $\mathcal{D}_{i} \leq \mathcal{D}_{i+1}$, and even to a complete lattice [Serra(2006)].

Definitions

To solve this effect (too high sensitivity of λ parameter), we create finer partitions of each λ-FZ. These partitions are defined with connections.

Definition (Connection)

Let E be an arbitrary non empty set. We call connected class or connection \mathcal{C} any family in $\mathcal{P}(E)$ such that: (0) $\emptyset \in \mathcal{C}$, (i) for all $x \in E$, $\{x\} \in \mathcal{C}$, (ii) for each family $C_{i}, i \in I$ in $\mathcal{C}, \cap_{i} C_{i} \neq \emptyset$ implies $\cup_{i} C_{i} \in \mathcal{C}$. Any set \mathcal{C} of a connected class \mathcal{C} is said to be connected.

Vectorial median

Definition (Vectorial median)

A vectorial median of a set $R \subset E$ is any value $\mathbf{f}_{\lambda}(k)$ in the set at point $k \in R$ such as:

$$
\begin{equation*}
k=\operatorname{argmin}_{p \in R} \sum_{i / x_{i} \in R} d\left(\mathbf{f}_{\lambda}(p), \mathbf{f}_{\lambda}\left(x_{i}\right)\right)=\operatorname{argmin}_{p \in R} \delta_{R}\left(\mathbf{f}_{\lambda}(p)\right) \tag{1}
\end{equation*}
$$

i.e. "one of the points which minimize the sum of distances to the others".
δ_{R} : ascending ordered list based on the cumulative distance (of each point of R to the others).

The first element of the list δ_{R} is the vectorial median (the last element is considered as the anti-median).

On distances, paths and connections for hyperspectral image segmentation η-bounded regions

(1) Introduction

(2) General notions

(3) η-bounded regions
(4) μ-geodesic balls
(5) Results and discussions
(6) Conclusions and perspectives

η-bounded regions η-BR

Comparison with λ-FZ

For λ-FZ, a hiker starting from one point only deals with the local slope and not with the difference in altitude on the λ-flat zones.

Principle for η-BR

Considering the difference in altitude, a hiker starting from one point x has a walk restricted to a ball of diameter $2 \times \eta$ centered on x inside a $\lambda-F Z$.

η-bounded regions η-BR

Definition (η-bounded connection)

Given an hyperspectral image $\mathbf{f}_{\lambda}(x)$ and its initial partition based on λ-flat zones, $\lambda F Z$, where $\lambda F Z_{i}$ is the connected class i and $R_{i} \subseteq E$ (with cardinal K) is the set of points $p_{k}, k=0,1,2, \ldots, K-1$, that belongs to the class i. Let p_{0} be a point of R_{i}, named the center of class i, and let $\eta \in \mathbb{R}^{+}$be a positive value. A point p_{k} belongs to the η-connected component centered at p_{0}, denoted $\eta B R_{i}^{p_{0}}$, if and only if $d\left(\mathbf{f}_{\lambda}\left(p_{0}\right), \mathbf{f}_{\lambda}\left(p_{k}\right)\right) \leq \eta$ and p_{0} and p_{k} are connected.

Seed (center of the class): $1^{\text {st }}$ non assigned-point of ascending ordered list based on the cumulative distance δ_{R} in a λ-FZ.

η-bounded regions η-BR

Construction of η-BR

For each class $\lambda F Z_{i}$ the method is iterated with different centers p_{j} $(j=0,1, \cdots J)$ until: $\cup_{j=0}^{J} \eta B R_{i}^{p_{j}}=\lambda F Z_{i}, \cap_{j=0}^{J} \eta B R_{i}^{p_{j}}=\emptyset$ where the η-bounded regions are connected.

Properties of η-BR

- Each seed p_{j} belongs to $\lambda F Z_{i} \backslash \cup_{I=0}^{j-1} \eta B R_{i}^{P_{I}}$.
- $\forall x \in E, \eta B R(x) \leq \lambda F Z(x)$

On distances, paths and connections for hyperspectral image segmentation
η-bounded regions

η-bounded regions η-BR

$$
\lambda=10, \quad \eta=20
$$

η-bounded regions η-BR

$$
\lambda=10, \quad \eta=20
$$

η-bounded regions η-BR

$$
\lambda=10, \quad \eta=20
$$

η-bounded regions η-BR

$$
\lambda=10, \quad \eta=20
$$

η-bounded regions η-BR

$$
\lambda=10, \quad \eta=20
$$

η-bounded regions η-BR

$$
\lambda=10, \quad \eta=20
$$

η-bounded regions η-BR

$$
\lambda=10, \quad \eta=20
$$

η-bounded regions η-BR

$$
\lambda=10, \quad \eta=20
$$

On distances, paths and connections for hyperspectral image segmentation
μ-geodesic balls

(1) Introduction

(2) General notions

(3) η-bounded regions
(4) μ-geodesic balls

(5) Results and discussions

(6) Conclusions and perspectives

μ-geodesic balls μ-GB

Principle of μ-GB

A hiker starting from one point k has a walk restricted by a cumulative difference in altitude less than μ, inside a λ - FZ .

μ-geodesic balls μ-GB

Definition (μ-geodesic connection)

Given an hyperspectral image $\mathbf{f}_{\lambda}(x)$ and its initial partition based on λ-flat zones, $\lambda F Z$, where $\lambda F Z_{i}$ is the connected class i and $R_{i} \subseteq E$ (with cardinal K) is the set of points $p_{k}, k=0,1,2, \ldots, K-1$, that belongs to the class i. Let p_{0} be a point of R_{i}, named the center of class i, and let $\mu \in \mathbb{R}^{+}$be a positive value. A point p_{k} belongs to the μ-connected component centered at p_{0}, denoted $\mu G B_{i}^{p_{0}}$ if and only if $d_{g e o}\left(\mathbf{f}_{\lambda}\left(p_{0}\right), \mathbf{f}_{\lambda}\left(p_{k}\right)\right) \leq \mu$.

Seed (center of the class): $1^{\text {st }}$ non assigned-point of ascending ordered list based on the cumulative distance δ_{R} in a $\lambda-F Z$.

μ-geodesic balls μ-GB

Construction of μ-GB

μ-geodesic balls are built as η-bounded regions, except that from each seed the geodesic ball is computed inside the λ-FZ.

Properties of μ-GB

- Each seed p_{j} belongs to $\lambda F Z_{i} \backslash \cup_{I=0}^{j-1} \mu G B_{i}^{p_{1}}$.
- $\forall x \in E, \mu G B(x) \leq \lambda F Z(x)$
- we have a regional control of the "geodesic size" of the classes

μ-geodesic balls μ-GB

$$
\lambda=10, \quad \mu=20
$$

μ-geodesic balls μ-GB

$$
\lambda=10, \quad \mu=20
$$

μ-geodesic balls μ-GB

$$
\lambda=10, \quad \mu=20
$$

μ-geodesic balls μ-GB

$$
\lambda=10, \quad \mu=20
$$

μ-geodesic balls μ-GB

$$
\lambda=10, \quad \mu=20
$$

μ-geodesic balls μ-GB

$$
\lambda=10, \quad \mu=20
$$

μ-geodesic balls μ-GB

$$
\lambda=10, \quad \mu=20
$$

μ-geodesic balls μ-GB

$$
\lambda=10, \quad \mu=20
$$

(2) General notions
(3) η-bounded regions
(4) μ-geodesic balls
(5) Results and discussions

6 Conclusions and perspectives

Comparison between η-BR and μ-GB

Comparison between η - BR and μ-GB

Comparison between η - BR and μ-GB

Results in image space

Generalization to hyperspectral images:

- use of vector distances (Chi-Squared, Euclidean)
- seed: vectorial median and not the minima or the maxima which does not exist.

$f_{\lambda_{61}}$
$(45 \times 76 \times 61)$

λ-FZ
$\lambda=0.003$

$\lambda-F Z$
$\lambda=0.004$
$\lambda=0.005$

λ-FZ

$\lambda-F Z$
$\lambda=0.006$

Chi-squared distance is used $d_{\chi^{2}}$.

Results in image space

λ-FZ
$\lambda=0.005$

η-BR

μ-GB
$\mu=0.01$

η-BR
$\eta=0.009$

μ-GB
$\mu=0.02$

η-BR
$\eta=0.011$

μ-GB
$\mu=0.03$

η-BR

μ-GB
$\mu=0.05$

Results in image space

Seed: anti-median. Few changes are observed.
\Longrightarrow robustness of the method to the seeds choice.

η-BR
$\eta=0.009$

η-BR
$\eta=0.011$

μ-GB
$\mu=0.02$

μ-GB
$\mu=0.03$

Chi-squared distance is used $d_{\chi^{2}}$.

Results in factor space

FCA (Factor Correspondence Analysis) [Benzécri(1973)]

Factor axes filtered by leveling (structuring element squared 3×3).

Results in factor space

μ-GB
μ-GB
$\mu=0.1$
$\mu=0.3$

Euclidean distance is used d_{E}.

Some other results on a satellite image

$f_{\lambda_{1}}$ blue
(c)CNES

$f_{\lambda_{4}}$ proche IR (c)CNES

$f_{\lambda_{2}}$ green
(C)CNES

$f_{\lambda_{5}}$ panchrom.
(c)CNES

Image "Roujan" $365 \times 365 \times 5$ pixels. Resolution 0.70 meters.
Source: CNES (French space agency) + Pr. G. Flouzat (Laboratoire de Télédétection à Haute Résolution, Toulouse 3)

Some other results on a satellite image

Image space: Chi-squared distance is used $d_{\chi^{2}}$.

synthetic RGB

λ-FZ
$\lambda=0.005$

On distances, paths and connections for hyperspectral image segmentation

Results and discussions

Some other results on a satellite image

Image space: Chi-squared distance is used $d_{\chi^{2}}$.

synthetic RGB

λ-FZ
$\lambda=0.015$

η-BR
$\eta=0.02$

μ-GB
$\mu=0.1$

η-BR

μ-GB
$\mu=0.2$

η-BR
$\eta=0.04$

μ-GB
$\mu=0.3^{33 / 38}$

Application fields

- Definition of homogeneous regions useful as markers for watershed segmentation
- Detection and characterization of textured regions
(1) Introduction
(2) General notions
(3) η-bounded regions
(4) μ-geodesic balls
(5) Results and discussions
(6) Conclusions and perspectives

Conclusions and perspectives

- η-BR and μ-GB improve λ-FZ (local information) by introduction of regional information.
- η-bounded connection and μ-geodesic connection are connections of $2^{\text {nd }}$ order because they are included in λ-FZ.
- The approach consists in selecting a sufficiently high parameter λ to obtain first a sub-segmentation.
- These connections lead to a pyramid of partition which is not an ordered pyramid.
- They are the generalization of the jump connection [Serra(1999)] with the difference that the seeds p_{j} cannot be the minima or maxima. Seed: vector median.
- Perspective: to select locally for each λ-FZ the value for η or μ.

References

J. Serra (1999).

Set connections and discrete filtering.
Proc. DGCI 1999. Lecture Notes in Computer Science, Vol. 1568, Springer: 191-206.
J. Serra (2006).

A lattice approach to image segmentation.
Springer Science, Journal of Mathematical Imaging and Vision 24: 83-130.
F. Zanoguera and F. Meyer (2002).

On the implementation of non-separable vector levelings.
CSIRO, Proc. ISMM02, International Symposium on Mathematical Morphology: 369-377.
D. Brunner and P. Soille (2003).

Iterative area seeded region growing for multichannel image simplification.
Proc. ISMM'05, International Symposium on Mathematical Morphology: 397-406.
J. Crespo, R. Schafer, J. Serra, C. Gratin, and F. Meyer (1997).

The flat zone approach: a general low-level region merging segmentation method.
Signal Processing 62: 37-60.
G. Noyel, J. Angulo, and D. Jeulin (2007).

Morphological Segmentation of hyperspectral images.
Proc. ICS XII International Congress of Stereology - St Etienne - France - 2007. Accepted in Image Analysis and Stereology.

References

F. Meyer (1998).

The levelings.
Kluwer, Proc. ISMM98, International Symposium on Mathematical Morphology: 199-206.
P. Salembier, L. Garrido, and D. Garcia (1998).

Auto-dual connected operators based on iterative merging algorithms.
Kluwer, Proc. ISMM98, International Symposium on Mathematical Morphology: 183-190.
L. Vincent (1998).

Minimal Path Algorithms for the Robust Detection of Linear Features in Gray Images.
Kluwer, Proc. ISMM98, International Symposium on Mathematical Morphology: 331-338.
J.P. Benzécri JP (1973).

L'Analyse Des Données. L'Analyse des Correspondances. Vol. 2.
Paris. Dunod: 1-166.
W. Dijkstra (1959).

A Note on Two Problems in Connection with Graphs.
Numerische Mathematik: 269-271.
J. Astola, J. Haavisto, and Y. Neuvo, (1990).

Vector Median Filters.
Processing, Vol. 78 (4).

