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Hyperspectral image

Definition

Hyperspectral image: at each point x; is associated a vector with values
in spectrum, time, wavelength, or associated to an index j.

f.{E — Tt with ECR%, 7T CR
Tlx - (%) = (Hu(x), Ko (%), - H(x))
fy; \Jj€{1,2,...,L} is a channel (L is the number of channels)

Image source: Spectral Database,
University of Joensuu Color Group,
http://spectral. joensuu.fi/

Spectral image: 400 nm to 700 nm 5 nm

Image size : 45 x 76 x 61
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Hyperspectral image

Image woman face in wavelength (152 x 91 x 61)

channels A = [400 : 5 : 700] nm
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Quasi-flat zones

Definition: Quasi-flat zones or A-flat zones (A-FZ)

Given a distance d : 75 x Tt — R™*, two points x, y € E belongs to the
same quasi-flat zone of an hyperspectral image f) if and only if there is a
path (po, p1,-.-,Pn) € E" such as pg = x and p, = y and, if, for all /,

(pi, pi+1) € E? are neighbours and d (f(pi), fx(piv1)) < A, with A € RT.

100 | Grey levels
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40
301 _ L _ ‘P‘n‘(els
1 5 10
Image Row profile A-FZ A-FZ
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21 zones 1 zone
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SIS

Limitations of A-Flat Zones: they are very sensitive to parameter \
because only local information is taken into account.

Aim of the study: To solve this effect we introduce finer partitions of
each A\-FZ using regional information.

Starting with an initial partition by A-FZ with a non critical high value of
A that leads to a sub-segmentation, a second segmentation is performed
based on two new connections:

o 7-Bounded Regions: n-BR
o 1-Geodesic Balls: u-GB

The corresponding algorithms are founded on seed-based region growing
inside the \-FZ.
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General notions

Definitions

Definition (Partition)

Let E be an arbitrary set. A partition D of E is a mapping x — D(x)
from E into P(E) such that: (i) for all x € E: x € D(x), (ii) for all
x,y € E: D(x) = D(y) or D(x) N D(y) = 0. D(x) is called the class of
the partition of origin x.

The set of partitions of an arbitrary set E is ordered as follows.

Definition (Order of partitions)

A partition A is said to be finer (resp. coarser) than a partition 5,
A < B (resp. A > B), when each class of A is included in a class of B.

This leads to the notion of ordered hierarchy of partitions MY, D;, such
that D; < Dj41, and even to a complete lattice [Serra(2006)].
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General notions

Definitions

To solve this effect (too high sensitivity of A parameter), we create finer
partitions of each A\-FZ. These partitions are defined with connections.

Definition (Connection)

Let E be an arbitrary non empty set. We call connected class or
connection C any family in P(E) such that: (0) @ € C, (i) for all x € E,
{x} €C, (ii) for each family C;,i € I in C, N;C; # () implies U; C; € C.
Any set C of a connected class C is said to be connected.
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Vectorial median

Definition (Vectorial median)

A vectorial median of a set R C E is any value fy(k) in the set at point
k € R such as:

k = argminper Z d (fx(p), Fr(x;)) = argminyeror(fr(p)) (1)
I‘/X,'ER

i.e. "one of the points which minimize the sum of distances to the
others".

dr: ascending ordered list based on the cumulative distance (of each
point of R to the others).

The first element of the list dz is the vectorial median (the last element
is considered as the anti-median).
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n-bounded regions n-BR

Comparison with \-FZ

For A-FZ, a hiker starting from one point only deals with the local slope
and not with the difference in altitude on the \-flat zones.

Principle for n-BR

Considering the difference in altitude, a hiker starting from one point x
has a walk restricted to a ball of diameter 2 x 7 centered on x inside a
M-FZ.

N,

100(Grey Tevels 100(Grey levels

80 80 ‘
60 9 - 60 5
40 L
43‘(0)_ U_I_ 301 o ... _Pixels
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n-bounded regions n-BR

Definition (n-bounded connection)

Given an hyperspectral image f)(x) and its initial partition based on
A-flat zones, AFZ, where \FZ; is the connected class i and R; C E (with
cardinal K) is the set of points px, k =0,1,2,..., K — 1, that belongs to
the class i. Let pp be a point of R;, named the center of class /, and let
n € RT be a positive value. A point px belongs to the n-connected
component centered at py, denoted nBR?*, if and only if

d(fx(po), fx(pk)) < n and py and py are connected.

Seed (center of the class): 1°f non assigned-point of ascending ordered
list based on the cumulative distance dg in a A\-FZ.
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n-bounded regions n-BR

Construction of 7-BR

For each class AFZ; the method is iterated with different centers p;
(=0,1,---J) until: UL nBRY = AFZ;, N_ynBR = () where the
n-bounded regions are connected.

Properties of n-BR
o Each seed p; belongs to AFZ; \ U/_inBR.
e Vx € E, nBR(x) < AFZ(x)
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n-bounded regions n-BR
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n-bounded regions n-BR

A=10, n=20

100- Grey levels
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n-bounded regions n-BR
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n-bounded regions n-BR
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n-bounded regions n-BR
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n-bounded regions n-BR
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p-geodesic balls

(-geodesic balls u-GB

Principle of u-GB
A hiker starting from one point k has a walk restricted by a cumulative
difference in altitude less than p, inside a A\-FZ.

100 Grey levels JJ | 100|Grey levels
80| Tﬂjijj 80/
601 — - Seed ' 60 — Seed™
g?) | B Pixels 3‘8 | #=00 Pixels
1 5 10 15 20 1 5 10 15 20
uw=20 w = 60
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(-geodesic balls u-GB

Definition (u-geodesic connection)

Given an hyperspectral image fy(x) and its initial partition based on
A-flat zones, AFZ, where A\FZ; is the connected class / and R; C E (with
cardinal K) is the set of points px, k =0,1,2,..., K — 1, that belongs to
the class i. Let pg be a point of R;, named the center of class 7, and let
1 € RT be a positive value. A point px belongs to the p-connected
component centered at pg, denoted LGB if and only if

dgeo(fr(Po), Fr(PK)) < p.

Seed (center of the class): 1°f non assigned-point of ascending ordered
list based on the cumulative distance dg in a A\-FZ.
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(-geodesic balls u-GB

Construction of u-GB

u-geodesic balls are built as n-bounded regions, except that from each
seed the geodesic ball is computed inside the A-FZ.

4

Properties of u-GB

o Each seed p; belongs to AFZ; \ U/_guGB".
e Vx € E, uGB(x) < AFZ(x)
@ we have a regional control of the “geodesic size” of the classes
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(-geodesic balls u-GB
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p-geodesic balls -GB
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Comparison between 7-BR and ©-GB
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Comparison between 7-BR and ©-GB

100

|Grey levels [
80
607 Seed
g‘g UJ Pixels
1 5 10 15 20
n-BRn =20
100’Grey levels  []
30 | %U*H
60 [ Seed
1] =20
40- Uj K .
300 = - _Pixels

100
80
60

40.
30°

100

80

60

401
301 _

|Grey levels

Pixels

1 5 10 15 20
n-BRn =30

Grey levels

\
4 — Seed

L f =60
o Pixels

1 5 10 15 20
1-GB = 60

24 /38



On distances, paths and connections for hyperspectral image segmentation

Results and discussions

Comparison between 7-BR and ©-GB

u-GB

Sensitivity to bumps (and hollows)

Control of the size of the region
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Results in image space

Generalization to hyperspectral images:
@ use of vector distances (Chi-Squared, Euclidean)
@ seed: vectorial median and not the minima or the maxima which

does not exist.
-
r i
— X
.K"L'l" W

N

Frex A-FZ A-FZ A-FZ
(45 x 76 x 61) A =0.003 A =0.004 A =0.005

Chi-squared distance is used d,.
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Results in image space

7n-BR
n = 0.02

1n-BR
n = 0.011

u-GB
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Results in image space

Seed: anti-median. Few changes are observed.
= robustness of the method to the seeds choice.

A-FZ n-BR n-BR
A=0.005 | n=0.009 n=0.011

Chi-squared distance is used d,.
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Results in factor space

FCA (Factor Correspondence Analysis) [Benzécri(1973)]

Factor axes filtered by leveling (structuring element squared 3 x 3).

r

h

f

f
inertia é7.8% inertia 10.2%  inertia 1.5%

f

C, C, C,
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Results in factor space

\FZ n-BR n-BR
A=004 | p=01  p=015

Euclidean distance is used dg.
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Some other results on a satellite image

fr, green

©CNES

synthetic RGB

a4 proche IR fag Panchrom.

©CNES ©CNES

Image "Roujan" 365 x 365 x 5 pixels. Resolution 0.70 meters.
Source: CNES (French space agency) + Pr. G. Flouzat (Laboratoire de
Télédétection a Haute Résolution, Toulouse 3)
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Some other results on a satellite image

Image space: Chi-squared distance is used d,z.

synthetic RGB
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Some other results on a satellite image

Image space: Chi-squared distance is used d,z.
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Application fields

@ Definition of homogeneous regions useful as markers for watershed
segmentation

@ Detection and characterization of textured regions
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Conclusions and perspectives

e 7-BR and u-GB improve A-FZ (local information) by introduction of
regional information.

@ n-bounded connection and p-geodesic connection are connections of
2" order because they are included in \-FZ.

@ The approach consists in selecting a sufficiently high parameter A to
obtain first a sub-segmentation.

@ These connections lead to a pyramid of partition which is not an
ordered pyramid.

@ They are the generalization of the jump connection [Serra(1999)]
with the difference that the seeds p; cannot be the minima or
maxima. Seed: vector median.

@ Perspective: to select locally for each A-FZ the value for n or u.
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