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Introduction

Structural Pattern Recognition (SPR)

The Representation and Matching of Pictorial Structures

MARTIN A. FISCHLER axp ROBERT A. ELSCHLAGER

Abstract—The primary problem dealt with in this paper is the
following. Given some description of a visual object, find that object
in an actual photograph. Part of the solution to this problem is the
specification of a descriptive scheme, and a metric on which to base
the decision of “goodness” of matching or detection.

We offer a combined descriptive scheme and decision metric
which is general, intuitively satisfying, and which has led to promis-
ing experimental results. We also present an algorithm which takes
the above descriptions, together with a matrix representing the in-
tensities of the actual photograph, and then finds the described
object in the matrix. The algorithm uses a procedure similar to
dynamic programming in order to cut down on the vast amount of
computation otherwise necessary.

One desirable feature of the approach is its generality. A new
programming system does not need to be written for every new
description; instead, one just specifies descriptions in terms of a
certain set of primitives and parameters.

There are many areas of application : scene analysis and descrip-
tion, map matching for navigation and guidance, optical tracking,
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and August 21, 1972.
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stereo compilation, and image change detection. In fact, the ability
to describe, match, and register scenes is basic for almost anv
image processing task.

Index Terms—Dynamic programming, heuristic o
picture deseription, picture matching, picture processing
tatiom.
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Introduction: SPR

] Ledley, 1964: Syntactic decomposition

[J Barrow and Popplestone, 1971: High-level models
[ Minsky 1972: Frames

[J Pavlidis, 1977: SPR and shape analysis

[J Fu, 1982: Syntactic PR and Graphs

[J Bunke & Allerman, 1983: Inexact matching

[J Bloch, 1999, 2000: Spatial relations, graph fuzzy

[]
[]

nomomorphism
Hancock, 2001: EM formulation
~elzenswalb & Huttenlocher, 2004: Dynamic

Programming, shape priors
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Model-based image
segmentation

Image segmentation and
recognition of 1mage parts

Model image
Oversegmented input image
(R. Cesar et al., Pattern Recognition, 2005) 8



Model-based image
segmentation

Attributed relational graphs

Image objects (parts) Object feature
/GW/
G= e V)\
Structural relation Relational

between objects feature vector



Model-based image
segmentation

G,,: Model graph



Model-based image
segmentation

Big problem: too many possible solutions! |V
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Watershed
artitioning

Input image Oversegmented image

Graph matching

O Interactive model
generation

[J Model vertices are
defined by watershed
basins intercepted by
user traces

input graph model graph



Graph matching

Possible solutions are
cliques of the association graph
between G, and G,,.

Optimization
Algorithm: SFS

Supervertex




Graph matching

=)

Cost
function

Model graph G Realization graph g Image graph &

max |{P(G, =g )|

New graph matching approach
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Markers detection

Original
Image
Adobe |
Photoshop ':"ﬁ:‘??‘:’"“ 1

(Faustino & Figueiredo, Sibgrapi, 2005)

Paint Shop
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Markers detection
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Markers detection

Centroidal Voronoi1 diagrams:
each site 1s the centroid of its cell

(Faustino & Figueiredo, Sibgrapi, 2005)

Density function
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Markers detection
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Berkeley image
segmentation database

Experimental results

jIP - java Image Processing
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Experimental results
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Experimental results
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Berkeley image
segmentation database

Experimental results
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Berkeley image
segmentation database
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Berkeley image
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Berkeley image
segmentation database
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Berkeley image
segmentation database

Experimental results
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Concluding remarks

[1Contributions:

[Interactive image segmentation as model
generation for SPR

[JSegmentation of multiple objects / parts in
one pass (not limited to foreground /
background applications)

[JGraph matching algorithm based on SFS

[JGenerated model: segmentation of different
Images
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Concluding remarks

[1Future work:

[JWatershed simplification (hierarchical,
connected filters)

Software (soon available)
Color and texture
Video sequences
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Random Extras
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Introduction

[10Our method:

[JStructural pattern recognition approach
(SPR)

Structure together with features
Graph models

Interactive model generation . Y
Graph matching ey
Optimization problems




Introduction: Image
segmentation

User interaction (seeds):

[1 Watershed with markers
(Vincent, 1991)

JIFT (Falcao, 2004)

[1 Graph cuts (Boykov, 2001;
Rother, 2004)

[1Random walker (Grady, 20006)
...




Model-based image
segmentation

Image graph

Each region
corresponds to a
graph node.

The arcs represent
structural relations
between regions.
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Model-based image
segmentation

Attributed relational graphs

GZ(V,E, ,v)

Average gray level

Vector coordinates defined
by corresponding centroids




Graph matching

Model graph Image graph

Original graph matching approach
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Graph matching

[JOptimization algorithms:
1Gradient descent

Beam search (tree search)
Integer and linear programming
Cligues

EDAs (estimation of distribution)

[JGenetic algorithms
[IBayesian networks

Starting points: Luo & Hancock, PAMI, 2001; R. Cesar et al., PR, 2005 %



Optimization
Algorithm: SFS
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Experimental results

[JExploring the model to segment different
Images

[JExample: some frames from a video
seguence

[IModel generated for the first frame
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XM2VTS database
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XM2VTS database

jNon registered markers
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Image segmentation




