Locally finite spaces and the join operator

Erik Melin

Uppsala University, Department of Mathematics

ISMM Rio de Janeiro, October 11, 2007

What is our goal?

• We want to understand the local structure of digital topological spaces.

What is our goal?

- We want to understand the local structure of digital topological spaces.
- We show that such a space can be uniquely decomposed as a join of indecomposable spaces.

What is our goal?

- We want to understand the local structure of digital topological spaces.
- We show that such a space can be uniquely decomposed as a join of indecomposable spaces.
- A long-term goal is to understand global structure. What are the possibilities to introduce digital manifolds?

Why? What is the relation to mathematical morphology?

• Morphological operations are (sometimes) performed on digital images.

Why? What is the relation to mathematical morphology?

- Morphological operations are (sometimes) performed on digital images.
- Digital images are (sometimes) topological spaces. We might deal with complicated spaces.

Why? What is the relation to mathematical morphology?

- Morphological operations are (sometimes) performed on digital images.
- Digital images are (sometimes) topological spaces. We might deal with complicated spaces.
- We would (perhaps) like morphological operations compatible with the structure of the spaces, for example connectivity or closure operations.
 The formalism and the theorems proved about this formalism could be a useful tool.

Let X, Y, Z etc be smallest-neighborhood space. The *join* of X and Y is denoted $X \vee Y$. We have (technical details omitted):

Let X, Y, Z etc be smallest-neighborhood space. The *join* of X and Y is denoted $X \vee Y$. We have (technical details omitted):

Theorem (Uniqueness)

If $X = Y \lor Z$ and $X = \tilde{Y} \lor \tilde{Z}$, and Y, \tilde{Y} are indecomposable, then $Y = \tilde{Y}$ and $Z = \tilde{Z}$.

Let X, Y, Z etc be smallest-neighborhood space. The *join* of X and Y is denoted $X \vee Y$. We have (technical details omitted):

Theorem (Uniqueness)

If $X = Y \lor Z$ and $X = \tilde{Y} \lor \tilde{Z}$, and Y, \tilde{Y} are indecomposable, then $Y = \tilde{Y}$ and $Z = \tilde{Z}$.

Theorem (Decomposition)

A locally finite space can be written in a unique way as $Y_1 \vee Y_2 \vee \cdots \vee Y_n$, where each Y_i is indecomposable.

Let X, Y, Z etc be smallest-neighborhood space. The *join* of X and Y is denoted $X \vee Y$. We have (technical details omitted):

Theorem (Uniqueness)

If $X = Y \lor Z$ and $X = \tilde{Y} \lor \tilde{Z}$, and Y, \tilde{Y} are indecomposable, then $Y = \tilde{Y}$ and $Z = \tilde{Z}$.

Theorem (Decomposition)

A locally finite space can be written in a unique way as $Y_1 \vee Y_2 \vee \cdots \vee Y_n$, where each Y_i is indecomposable.

Theorem (Cancellation)

If $A \lor X$ and $B \lor X$ are homeomorphic, then A and B are homeomorphic.

Let X be a set and $\mathcal{T} \subseteq \mathcal{P}(X)$ a family of subsets.

Let X be a set and $\mathcal{T} \subseteq \mathcal{P}(X)$ a family of subsets.

• X and \varnothing belong to T.

Let X be a set and $\mathcal{T} \subseteq \mathcal{P}(X)$ a family of subsets.

- X and \varnothing belong to T.
- $A_i \in \mathcal{T}, i \in I \Longrightarrow \bigcup_{i \in I} A_i \in \mathcal{T}.$

Let X be a set and $\mathcal{T} \subseteq \mathcal{P}(X)$ a family of subsets.

- X and \varnothing belong to T.
- $A_i \in \mathcal{T}, i \in I \Longrightarrow \bigcup_{i \in I} A_i \in \mathcal{T}.$
- $A_i \in \mathcal{T}, i \in I \Longrightarrow \bigcap_{i \in I} A_i \in \mathcal{T}$ no restriction.

Let X be a set and $T \subseteq \mathcal{P}(X)$ a family of subsets.

- X and \varnothing belong to T.
- $A_i \in \mathcal{T}, i \in I \Longrightarrow \bigcup_{i \in I} A_i \in \mathcal{T}.$
- $A_i \in \mathcal{T}, i \in I \Longrightarrow \bigcap_{i \in I} A_i \in \mathcal{T}$ no restriction.

The spaces are called **smallest-neighborhood spaces** or **Alexandrov spaces**.

$$\mathcal{N}(x) = \bigcap (A; A \subseteq X \text{ is open and } x \in A).$$

$$\mathcal{N}(x) = \bigcap (A; A \subseteq X \text{ is open and } x \in A).$$

$$\mathscr{C}(x) = \bigcap (A; A \subseteq X \text{ is closed and } x \in A).$$

$$\mathcal{N}(x) = \bigcap (A; A \subseteq X \text{ is open and } x \in A).$$

$$\mathscr{C}(x) = \bigcap (A; A \subseteq X \text{ is closed and } x \in A).$$

Let
$$AN(x) = \mathcal{C}(x) \cup \mathcal{N}(x)$$
 and $\mathcal{A}(x) = AN(x) \setminus \{x\}$.

Let *X* be a topological space, and $x \in X$. Consider:

$$\mathcal{N}(x) = \bigcap (A; A \subseteq X \text{ is open and } x \in A).$$

$$\mathscr{C}(x) = \bigcap (A; A \subseteq X \text{ is closed and } x \in A).$$

Let
$$AN(x) = \mathscr{C}(x) \cup \mathscr{N}(x)$$
 and $\mathscr{A}(x) = AN(x) \setminus \{x\}$.

• If X a smallest-neighborhood space, then $\mathcal{N}(x)$ is open.

$$\mathcal{N}(x) = \bigcap (A; A \subseteq X \text{ is open and } x \in A).$$

$$\mathscr{C}(x) = \bigcap (A; A \subseteq X \text{ is closed and } x \in A).$$

Let
$$AN(x) = \mathcal{C}(x) \cup \mathcal{N}(x)$$
 and $\mathcal{A}(x) = AN(x) \setminus \{x\}$.

- If X a smallest-neighborhood space, then $\mathcal{N}(x)$ is open.
- $\mathscr{C}(x)$ is always closed.

$$\mathcal{N}(x) = \bigcap (A; A \subseteq X \text{ is open and } x \in A).$$

$$\mathscr{C}(x) = \bigcap (A; A \subseteq X \text{ is closed and } x \in A).$$

Let
$$AN(x) = \mathcal{C}(x) \cup \mathcal{N}(x)$$
 and $\mathcal{A}(x) = AN(x) \setminus \{x\}$.

- If X a smallest-neighborhood space, then $\mathcal{N}(x)$ is open.
- $\mathscr{C}(x)$ is always closed.
- $\{x,y\}$ connected if and only if $x \in AN(y)$.

Let us call a smallest-neighborhood space **locally finite** if AN(x) is a finite set for every point x. This condition excludes strange spaces, compare with the property *paracompactness* in topology.

Let us call a smallest-neighborhood space **locally finite** if AN(x) is a finite set for every point x. This condition excludes strange spaces, compare with the property *paracompactness* in topology.

The space is called **locally countable** if each AN(x) is countable.

Let us call a smallest-neighborhood space **locally finite** if AN(x) is a finite set for every point x. This condition excludes strange spaces, compare with the property *paracompactness* in topology.

The space is called **locally countable** if each AN(x) is countable.

Theorem

If X is locally finite and connected, then X is countable.

Let us call a smallest-neighborhood space **locally finite** if AN(x) is a finite set for every point x. This condition excludes strange spaces, compare with the property *paracompactness* in topology.

The space is called **locally countable** if each AN(x) is countable.

Theorem

If X is locally finite and connected, then X is countable.

Theorem

A space X is countable if and only if it is locally countable and has countably many connectivity components.

Dense sets in smallest-neighborhood spaces

Theorem

If X is locally finite, then the set of open points in X is dense in X.

Dense sets in smallest-neighborhood spaces

Theorem

If X is locally finite, then the set of open points in X is dense in X.

If a space is not locally finite, then this need not be the case.

Example

Consider \mathbb{Z} equipped with the open sets $]-\infty,m],\ m\in\mathbb{Z}$. This space has no open point.

Proof of countability

A **Khalimsky arc** in X is the homeomorphic image of a Khalimsky interval, $[a,b]_{\mathbb{Z}}$. The **length** of an arc is the number of points minus 1. The arc metric on X (provided X is T_0 and connected) is the following:

$$\rho(x,y) = \min(\text{Length}(A); A \text{ is a Kh. arc containing } x \text{ and } y.)$$

Proof of countability

A **Khalimsky arc** in X is the homeomorphic image of a Khalimsky interval, $[a,b]_{\mathbb{Z}}$. The **length** of an arc is the number of points minus 1. The arc metric on X (provided X is T_0 and connected) is the following:

$$\rho(x,y) = \min(\text{Length}(A); A \text{ is a Kh. arc containing } x \text{ and } y.)$$

Now fix a point $x \in X$, and consider balls $B_m = \{y \in X; \ \rho(x,y) \leqslant m\}$, m = 0,2... (Some technicalities needed of X is not T_0).

Proof of countability

A **Khalimsky arc** in X is the homeomorphic image of a Khalimsky interval, $[a,b]_{\mathbb{Z}}$. The **length** of an arc is the number of points minus 1. The arc metric on X (provided X is T_0 and connected) is the following:

$$\rho(x,y) = \min(\text{Length}(A); A \text{ is a Kh. arc containing } x \text{ and } y.)$$

Now fix a point $x \in X$, and consider balls $B_m = \{y \in X; \ \rho(x,y) \leqslant m\}$, m = 0,2... (Some technicalities needed of X is not T_0).

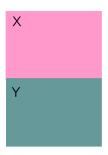
Every ball is finite, and $X = \bigcup_{m \in \mathbb{Z}} B_m$.

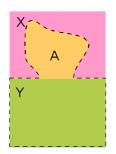
The join of two spaces

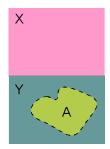
Let *X* and *Y* be topological spaces.

The join, $X \vee Y$, is the disjoint (set) union where $A \subset X \dot{\cup} Y$ is declared to be open if:

- $A \cap X$ open in X, $A \cap Y = Y$, or
- $A \cap Y$ open in Y, $A \cap X = \emptyset$.







The join in smallest-neighborhood spaces

Suppose $Z = X \lor Y$ where X and Y are smallest-neighborhood spaces. Then

- $\mathcal{N}_Z(x) = \mathcal{N}_X(x) \cup Y$ if $x \in X$.
- $\mathcal{N}_{Z}(y) = \mathcal{N}_{Y}(y)$ if $y \in Y$.

The join in smallest-neighborhood spaces

Suppose $Z = X \lor Y$ where X and Y are smallest-neighborhood spaces. Then

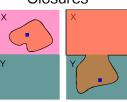
- $\mathcal{N}_Z(x) = \mathcal{N}_X(x) \cup Y$ if $x \in X$.
- $\mathcal{N}_Z(y) = \mathcal{N}_Y(y)$ if $y \in Y$.

Dually, the closures become.

- $\mathscr{C}_Z(x) = \mathscr{C}_Y(x)$ if $x \in X$.
- $\mathscr{C}_Z(y) = \mathscr{C}_X(y) \cup X$ if $y \in Y$.

Neighborhoods

Closures



Properties of the join operator

The following properties are straightforward to prove.

Properties of the join operator

The following properties are straightforward to prove.

• $\forall X : X = X \lor \emptyset = \emptyset \lor X$ (has identity).

Properties of the join operator

The following properties are straightforward to prove.

- $\forall X : X = X \lor \emptyset = \emptyset \lor X$ (has identity).
- $\exists X, Y \colon X \lor Y \neq Y \lor X$ (not commutative).

Properties of the join operator

The following properties are straightforward to prove.

- $\forall X : X = X \lor \emptyset = \emptyset \lor X$ (has identity).
- $\exists X, Y \colon X \lor Y \neq Y \lor X$ (not commutative).
- $\forall X, Y, Z : (X \lor Y) \lor Z = X \lor (Y \lor Z)$ (associative).

Properties of the join operator

The following properties are straightforward to prove.

- $\forall X : X = X \lor \emptyset = \emptyset \lor X$ (has identity).
- $\exists X, Y : X \lor Y \neq Y \lor X$ (not commutative).
- $\forall X, Y, Z : (X \lor Y) \lor Z = X \lor (Y \lor Z)$ (associative).
- $X \vee Y$ is always connected, provided $X \neq \emptyset$ and $Y \neq \emptyset$.

Decomposable spaces

Definition

Z is called **indecomposable** if $Z = X \lor Y$ implies $X = \emptyset$ or $Y = \emptyset$. Otherwise *Z* is called **decomposable**.

Decomposable spaces

Definition

Z is called **indecomposable** if $Z = X \lor Y$ implies $X = \emptyset$ or $Y = \emptyset$. Otherwise *Z* is called **decomposable**.

Example

The Khalimsky interval $I = [1,3]_{\mathbb{Z}}$ is decomposable. $I = \{2\} \vee \{1,3\}$ where the factors have the discrete topology.

Decomposable spaces

Definition

Z is called **indecomposable** if $Z = X \lor Y$ implies $X = \emptyset$ or $Y = \emptyset$. Otherwise *Z* is called **decomposable**.

Example

The Khalimsky interval $I = [1,3]_{\mathbb{Z}}$ is decomposable. $I = \{2\} \vee \{1,3\}$ where the factors have the discrete topology.

Theorem (Uniqueness)

Suppose that Z is locally finite and T_0 . If $Z = X \vee Y$, $Z = \tilde{X} \vee \tilde{Y}$ and if X, \tilde{X} are indecomposable, then $X = \tilde{X}$ and $Y = \tilde{Y}$.

Decomposable spaces continued

Can we somehow recognize indecomposable spaces?

Decomposable spaces continued

Can we somehow recognize indecomposable spaces?

Theorem

Let *Z* be a smallest-neighborhood space. If *Z* is decomposable, then $\rho(x,y) \leq 2$ for all $x,y \in Z$.

Decomposable spaces continued

Can we somehow recognize indecomposable spaces?

Theorem

Let *Z* be a smallest-neighborhood space. If *Z* is decomposable, then $\rho(x,y) \leqslant 2$ for all $x,y \in Z$.

Example

The Khalimsky interval $I = [1,4]_{\mathbb{Z}}$ is indecomposable.

Conclusion: The join is only of interest with a local perspective.

Cancellation laws

It is not true, in general, that we from $A \lor X \approx B \lor X$ can conclude that $A \approx B$. However, if X is locally finite, we have

Theorem

Let X be locally finite. Then for every smallest-neighborhood space A and B we have

$$A \lor X \approx B \lor X \implies A \approx B$$

and

$$X \lor A \approx X \lor B \implies A \approx B$$

Some observations

Claim

$$\mathscr{A}(x) = (\mathscr{C}(x) \setminus \{x\}) \vee (\mathscr{N}(x) \setminus \{x\})$$

Some observations

Claim

$$\mathscr{A}(x) = (\mathscr{C}(x) \setminus \{x\}) \vee (\mathscr{N}(x) \setminus \{x\})$$

Claim

$$AN(x) = (\mathscr{C}(x) \setminus \{x\}) \vee \{x\} \vee (\mathscr{N}(x) \setminus \{x\})$$

Some observations

Claim

$$\mathscr{A}(x) = (\mathscr{C}(x) \setminus \{x\}) \vee (\mathscr{N}(x) \setminus \{x\})$$

Claim

$$AN(x) = (\mathscr{C}(x) \setminus \{x\}) \vee \{x\} \vee (\mathscr{N}(x) \setminus \{x\})$$

Given $x \in \mathbb{Z}^n$ (Khalimsky *n*-space), we have $\mathcal{N}(x) \approx [-1, +1]^k$ and $\mathcal{C}(x) \approx [0, 2]^l$.

Understanding $\mathcal{A}(x)$ directly is relatively complicated...

(The characterization of \mathbb{Z}^n can be found in Evako et al. (1996)) Note: Unique decomposition immediately gives uniqueness of dimension.

Partial orders

Consider the Alexandrov-Birkhoff specialization order:

$$x \leq y \iff x \in \mathcal{N}(y) \iff y \in \mathcal{C}(x)$$

Partial orders

Consider the Alexandrov-Birkhoff specialization order:

$$x \leq y \iff x \in \mathcal{N}(y) \iff y \in \mathcal{C}(x)$$

That is:
$$\mathcal{N}(x) = \{y; \ y \leq x\}$$
 and $\mathcal{C}(x) = \{y; \ y \geq x\}$

Partial orders

Consider the Alexandrov–Birkhoff specialization order:

$$x \preccurlyeq y \iff x \in \mathcal{N}(y) \iff y \in \mathcal{C}(x)$$

That is: $\mathcal{N}(x) = \{y; \ y \leq x\}$ and $\mathcal{C}(x) = \{y; \ y \geq x\}$ Viewed as partial orders $X \vee Y$ means X is placed on top of Y.

$$\mathscr{A}(x) = (\mathscr{C}(x) \cup \mathscr{N}(x)) \setminus \{x\} = \{y; \ y \succ x\} \cup \{y; \ y \prec x\}$$

The first claim follows. The second claim is similar.

Consider again the second claim:

$$AN(x) = (\mathscr{C}(x) \setminus \{x\}) \vee \{x\} \vee (\mathscr{N}(x) \setminus \{x\}).$$

Consider again the second claim:

$$AN(x) = (\mathscr{C}(x) \setminus \{x\}) \vee \{x\} \vee (\mathscr{N}(x) \setminus \{x\}).$$

If X is locally finite, then $\mathcal{N}(x)$ is a finite set with a partial order. Therefore it has a minimal element m, i.e., for no $y \in \mathcal{N}(x)$ is $y \leq m$.

Consider again the second claim:

$$AN(x) = (\mathscr{C}(x) \setminus \{x\}) \vee \{x\} \vee (\mathscr{N}(x) \setminus \{x\}).$$

If X is locally finite, then $\mathcal{N}(x)$ is a finite set with a partial order. Therefore it has a minimal element m, i.e., for no $y \in \mathcal{N}(x)$ is $y \leq m$.

But m is then minimal also in X, hence $\{m\}$ is open.

Consider again the second claim:

$$AN(x) = (\mathscr{C}(x) \setminus \{x\}) \vee \{x\} \vee (\mathscr{N}(x) \setminus \{x\}).$$

If X is locally finite, then $\mathcal{N}(x)$ is a finite set with a partial order. Therefore it has a minimal element m, i.e., for no $y \in \mathcal{N}(x)$ is $y \leq m$.

But m is then minimal also in X, hence $\{m\}$ is open.

From this follows: The set of open points in X is dense in X.

Summary

 The join operator and decomposition of topological spaces into indecomposable building blocks is a tool to analyse local properties of smallest-neighborhood spaces.

Summary

- The join operator and decomposition of topological spaces into indecomposable building blocks is a tool to analyse local properties of smallest-neighborhood spaces.
- For many results we have to assume local finiteness, that is, finite neighborhoods.

Summary

- The join operator and decomposition of topological spaces into indecomposable building blocks is a tool to analyse local properties of smallest-neighborhood spaces.
- For many results we have to assume local finiteness, that is, finite neighborhoods.
- Next project: Understand the possibilities (or impossibility) of creating a (reasonable) digital Khalimsky manifold concept.