Stochastic watershed segmentation

Jesús Angulo, Dominique Jeulin

{jesus.angulo,dominique.jeulin}@ensmp.fr , http://cmm.ensmp.fr/ \sim angulo

Centre de Morphologie Mathématique - Ecole des Mines de Paris 35, rue Saint-Honoré, 77305 Fontainebleau cedex - France

> ISMM'2007 - Rio de Janeiro, Brazil October 10-13, 2007

Plan

- Introduction
- 2 General methodology
- Probabilistic uniform segmentation
- Probabilistic regionalized segmentation
- 5 Probabilistic uniform-levelled segmentation
- 6 Conclusions and perspectives

- Introduction
- 2 General methodology
- 3 Probabilistic uniform segmentation
- 4 Probabilistic regionalized segmentation
- 5 Probabilistic uniform-levelled segmentation
- 6 Conclusions and perspectives

Introduction

Motivation

- watershed-based algorithms for image segmentation: markers, non-parametric pyramids, hierarchies according to morphological criteria, interactive segmentation
- in many applications from natural images: unsupervised segmentation in very few regions

Example: Volumic extinction values to determine the R most significant regions

Introduction

More examples:

Introduction

Aim

- ullet to improve the watershed-based segmentation in very few regions ($R\sim 10,20)$
- to detect the most significant contours from the gradient: the contours which are robust with respect to variations in the segmentation conditions
- to work in a probabilistic framework in order to build a pdf of contours by Monte-Carlo simulations
- to use the pdf of contours for defining the most significant regions

- Introduction
- 2 General methodology
- 3 Probabilistic uniform segmentation
- Probabilistic regionalized segmentation
- 5 Probabilistic uniform-levelled segmentation
- 6 Conclusions and perspectives

Main concept

- The classical paradigm of watershed segmentation lays on the appropriate choice of markers: the most intelligent part resides in the development of criteria used to select the required markers
- Stochastic paradigm: To select random germs for markers. This arbitrary choice is balanced by the use of a given number of realizations

Transformations and main operators (1/2)

Colour gradient
$$\varrho^{LS+H}(\mathbf{f}(\mathbf{x})) = f_S(x) \times \varrho^{\circ}(f_H(x)) + (1 - f_S(x)) \times \varrho(f_L(x)) + \varrho(f_S(x))$$

Watershed segmentation

- Marker-based segmentation (image of markers mrk(x)): $sg^{mrk}(\mathbf{f}(x)) = Wshed(\rho^{LS+H}(\mathbf{f}(x)), mrk(x))$
- Volumic-based segmentation in R regions: $sg^{R-vol}(\mathbf{f}(x)) = Wshed(\varrho^{LS+H}(\mathbf{f}), R)$

Markers: Random points

- N Spatially uniform points: $mrk_i(x) = uniform(N)$
- Regionalized Poisson points of density $\theta(x)$: $mrk_i^{\theta}(x) = poisson(\theta)$
- M: Number of realizations $(i = 1, 2, \dots, M)$

Transformations and main operators (2/2)

Probability density functions of contours (Parzen estimate):

$$pdf(x) = \frac{1}{M} \sum_{i=1}^{M} k_i(x) = \frac{1}{M} \sum_{i=1}^{M} sg_i^{mrk}(\mathbf{f}(x)) * G_{\sigma}$$

 G_{σ} is a gaussian filter, $sg_{i}^{mrk}(\mathbf{f}(x)) = Wshed(\varrho^{LS+H}(x), mrk_{i}(x))$

Probabilistic segmentation from wshed on pdf In R volumic regions:

$$sg^{R-vol}(pdf(x)) = Wshed(pdf(x), R)$$

Probabilistic segmentation from wshed on probabilistic gradient

$$\rho(x) = \omega_1 \rho^{LS+H}(\mathbf{f}(x)) + \omega_2 p df(x); \quad \omega_1 = (1-\lambda), \ \omega_1 = \lambda$$
$$sg^{R-vol}(\rho(x)) = Wshed(\rho(x), R)$$

Remarks

Interpretation

- Each catchment basin (each minima) of pdf(x) corresponds to one the regions of the sum (or union) of different $sg_i^{mrk}(x)$.
- The integral of each catchment basin corresponds to the probability to be region of the segmentation.
- The volumic watershed of pdf(x) yields the regions according to their probabilities.

Implementation

- The *M* realizations of contours segmentation are obtained from the same function (i.e., colour gradient) using different markers.
- Consequently, working on the neighbourhood graph and its MST, the R random markers can be considered as N random nodes of the MST.

- Introduction
- 2 General methodology
- 3 Probabilistic uniform segmentation
- 4 Probabilistic regionalized segmentation
- 5 Probabilistic uniform-levelled segmentation
- **6** Conclusions and perspectives

Algorithm

 $sg_i^{mrk}(x)$

Uniform random markers and watershed on colour gradient

Uniform random markers and watershed on colour gradient

Uniform random markers and watershed on colour gradient

N = 10, M = 50

$$N = 10, M = 100$$
 $R = 10$

$$N = 10, M = 100$$
 $R = 10$

Probabilistic gradient and volumic watershed

 $\rho^{LS+H}(x)$

pdf(x)

- Introduction
- 2 General methodology
- 3 Probabilistic uniform segmentation
- Probabilistic regionalized segmentation
- 5 Probabilistic uniform-levelled segmentation
- 6 Conclusions and perspectives

Algorithm

Function of regionalization to define random markers

Regionalized random markers, pdf estimate and volumic watershed

- Introduction
- 2 General methodology
- 3 Probabilistic uniform segmentation
- 4 Probabilistic regionalized segmentation
- 5 Probabilistic uniform-levelled segmentation
- 6 Conclusions and perspectives

Algorithm

Uniform random markers, levelled colour images

Uniform random markers, levelled-based colour gradients

$$N = 50, M = 100$$
 $R = 20$
 $R = 50$

Averaged probabilistic gradient and volumic watershed

$$N = 100, M = 200$$
 $\rho(x)$
 $\lambda = 0.5$

$$N = 100, M = 200$$

$$\rho^{lev}(x)$$
 $\lambda = 0.5$

- Introduction
- 2 General methodology
- 3 Probabilistic uniform segmentation
- 4 Probabilistic regionalized segmentation
- 5 Probabilistic uniform-levelled segmentation
- 6 Conclusions and perspectives

Conclusions

- Complex images segmented in a few regions: both (uniform and regionalized) probabilistic approaches outperform the standard watershed segmentation.
- Images presenting specific objects on an homogeneous background: the improvement is less important.
- Uniform segmentation is mainly depending on parameter N (number of random points) which is related to R (number of regions to be determined): N >> R.
- Regionalized segmentation depends on parameter *S* (spacing for Poisson density function) and the properties of colour gradient.
- Probabilistic approaches working on the same gradient can be adapted to a graph-based framework to obtain an optimized algorithm. The approach using random marker levellings has a huge computational load (time of computation).

Perspectives

- Other variants:
 - Evolved random point simulations (structural grids, conditional models, etc.)
 - Multi-scale framework (working on image pyramids)
- To study the relation with other techniques such as random walks, Galton-Watson processus, etc.
- Probabilistic approaches combining colour gradients and texture information

Two types of contours associated to watershed

- 1st order contours: corresponding to "significant" regions and relatively independent from markers.
- 2nd order contours: corresponding to "small", "low contrasted" or "textured" regions and depend strongly on the place of markers.

It is possible to determine the type of each contour without using a probabilistic approach?