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since the 19th century (Maxwell, Jordan, ...)

@ For topographic purposes, the watershed has been studied
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@ One hundred years later (1978), it was introduced by
Digabel and Lantuéjoul for image segmentation
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Context

@ One hundred years later (1978), it was introduced by
Digabel and Lantuéjoul for image segmentation
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Hypothesis

@ Most existing approaches consider a grayscale image as a
vertex-weighted graph
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@ Watersheds in edge-weighted graphs?
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@ Watersheds in edge-weighted graphs?
@ What mathematical properties?
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@ Watersheds in edge-weighted graphs?
@ What mathematical properties?

@ How to efficiently compute them?
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° Watershed cuts: definition and consistency

e Relative minimum spanning forests: watershed optimality
e Algorithm
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@ Let G = (V,E) be a graph.

@ Let F be a map from E to Z.
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Image and edge-weighted graph

For applications to image analysis
@ V is the set of pixels
@ E corresponds to an adjacency relation on V, (e.g., 4- or
8-adjacency in 2D)
@ The altitude of u, an edge between two pixels x and y,
represents the dissimilarity between x and y

o F(u) = I(x) = I(y)l-
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Regional minima

Definition

A subgraph X of G is a minimum of F (at altitude k) if:
@ X is connected; and
@ k is the altitude of any edge of X; and

@ the altitude of any edge adjacent to X is strictly greater
than k
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Extension

a subgraph X

Definition (from Def. 12, (Ber05))
Let X and Y be two non-empty subgraphs of G.

@ We say that Y is an extension of X (in G) if X C Y and if
any component of Y contains exactly one component of X.
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Graph cut
a subgraph X a (graph) cut S for X

Definition (Graph cut)
Let X be a subgraph of G and S C E, a set of edges.

@ We say that S is a (graph) cut for X if S is an extension
of X and if S is minimal for this property
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Watershed cut

@ The church of Sorbier
(a topographic intuition)

Definition (drop of water principle)

The set S C E is a watershed cut of F if S is an extension
of M(F) and if for any u = {xo,Yo} € S, there exist (X, . .., Xn)
and (yo, ..., Ym), two descending paths in S such that:

@ x, and y,, are vertices of two distinct minima of F; and
@ F(u) > F({xXo,x1})ifn>0and F(u) > F({yo,y1})ifm >0
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Watershed cut: example
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Watershed cut: example
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Let 7 = (Xo,...,X) be a path in G.

@ The path = is a path with steepest descent for F if:
Vi e [1,|], F({Xi_l,Xi}) = min{xi_lyy}eE F({Xi_l,y}) @

- DA
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Catchment basins by a steepest descent property

Definition

Let S be a cut for M(F), the minima of F.

We say that S is a basin cut of F if, from each Eoint of V

to M(F), there exists, in the graph induced by S, a path with
steepest descent for F.
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An edge-set S C E is a basin cut of F if and only if S is a
watershed cut of F.
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In 1994, F. Meyer shows the links between flooding from
markers and minimum spanning forest
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In 1994, F. Meyer shows the links between flooding from
markers and minimum spanning forest

@ What about watershed cuts ? '
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Relative forest

a subgraph X a forest Y relative to X

Definition
Let X and Y be two non-empty subgraphs of G.
We say that Y is a forest relative to X if:
@ Y is an extension of X; and
@ any cycle of Y is also a cycle of X @
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@ The weight of a forest Y is the sum of its edge weights
e, D ueg(y) F ().
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Minimum spanning forest

@ The weight of a forest Y is the sum of its edge weights
e, D yee(y) F ().

Definition

We say that Y is a minimum spanning forest (MSF) relative

to X if Y is a spanning forest relative to X and if the weight of Y
is less than or equal to the weight of any other spanning forest
relative to X.

J. Cousty , G. Bertrand, L. Najman and M. Couprie ~ Watershed cuts
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Minimum spanning forest: example

@ If Y is a MSF relative to X, there exists a unique cut S
for Y and this cut is also a cut for X;
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Minimum spanning forest: example

@ If Y is a MSF relative to X, there exists a unique cut S
for Y and this cut is also a cut for X;
@ In this case, we say that S is a MSF cut for X.
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if S is a watershed cut of F.

An edge-set S C E is a MSF cut for the minima of F if and only
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@ Computing a MSF < computing a minimum spanning tree
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@ Computing a MSF < computing a minimum spanning tree
@ Best algorithm [CHAZELOQ]: quasi-linear time
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@ Computing a MSF < computing a minimum spanning tree
@ Best algorithm [CHAZELOQ]: quasi-linear time

cuts?

Can we reach a better complexity for computing watershed

«0O0» «F» « =)»

it
v

?



Watershed cuts: definition and consistency
Relative minimum spanning forests: watershed optimality

Algorithm
Streams
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Definition

We say that a vertex-set L C V is a stream if, for any two points
x and y of L, there exists, in L, either a path from x to y or from
y to x, with steepest descent for F
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Definition

We say that a point x of a stream L is a top of L if for any point
y in L, there exists, from x to y, a path in L, which is a path with
steepest descent for F
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Definition

We say that a point x of a stream L is a bottom of L if for any
pointy in L, there exists, fromy to x, a path in L, which is a
path with steepest descent for F
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How to extract a stream ? I

«O>» «F»

«CE)r» «

@

A2 N e







Watershed cuts: definition and consistency
Relative minimum spanning forests: watershed optimality
Algorithm

Stream concatenation

Definition

Let L; and L, be two disjoint streams (L, N Ly = ).

We say that L, is under L, (written L; < L), if there exist a

top x of Ly, a bottom y of L,, such that x and y are adjacent
and (x,y) is a path with steepest descent for F ©
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Stream concatenation
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Stream concatenation
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A stream L,

Definition

Let L; and L, be two disjoint streams (L, N Ly = ).

We say that L, is under L, (written L; < L), if there exist a
top x of Ly, a bottom y of L,, such that x and y are adjacent
and (x,y) is a path with steepest descent for F
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Stream concatenation

‘1.505
2 5

L1-<|_2

Definition

Let L; and L, be two disjoint streams (L, N Ly = ).

We say that L, is under L, (written L1 < L), if there exist a

top x of Ly, a bottom y of L,, such that x and y are adjacent B
and (x,y) is a path with steepest descent for F ©
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Stream concatenation
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a stream
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Property

Let L; and L, be two disjoint streams (L, N Ly, = ().
If Ly < Ly, then Ly UL, is a stream

J. Cousty , G. Bertrand, L. Najman and M. Couprie Watershed cuts



The bottoms of L




L is also an
<-stream




@ The proposed algorithm is based on <-streams extraction

«O>» «F»

«CE)r» «

A2 N e




set of a minimum of F

A stream L is an <-stream if and only if L contains the vertex
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of G?

From the streams of F, how can we partition the vertex set
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@ Let £ ={Ly,...,L,} be a set of n <-streams. We say
that £ is a flow family if:

-U{L lie{1,...,n}} =V;and
- for any two distinct L, and L, in £, if Ly NLy # 0,
then L; N L, is the vertex set of a minimum of F.
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Flow familly

@ Let £L={Ly,...,Ln} be a set of n <-streams. We say
that £ is a flow family if:
-U{Li|ie{1,...,n}} =V;and
- for any two distinct L, and L, in £, if Ly NLy # 0,
then L; N L, is the vertex set of a minimum of F.

@ We remark that a flow family induces a unique graph cut
for the minima of F.
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An edge set S C E is a watershed cut of F if and only if S is a
cut induced by a flow family.
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Linear-time algorithm

1
2

3
4

5
6
7

© ©

Algorithm 1 : LPE par flux

Data: (V,E,F): an edge-weighted graph;
Result: ¢: a flow mapping of F.
foreach x € V do 9(x) := NO_LABEL;
nb_labs := 0 ; /* the number of minima already found */
foreach x €V such that ¢(x) = NO_LABEL do
[L,lab] := stream (V,E,F,¢,Xx);
if lab = () then /* L is an <-stream */
nb_labs + + ;
foreach y € L do ¢(y) := nb_labs;
else
| foreach y € Ldo v(y) :=lab;
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Linear-time algorithm

Function Stream( V,E,F, ¢, x)

Data: (V,E,F): an edge-weighted graph; ¢: a labeling of V; x: a pointin V.
Result: [L,lab] where L is a stream such that x is a top of L, and lab is either a label of an

~-stream under L or 0.

1 L:={x};

2

L

:= {x}; /* the set of non-explored bottoms of L */

3 while there exists y € L' do

4
5
6

10
11

12
13

14
15
16

17

LU=L\{yk

breadth_first := TRUE ;

while (breadth_first) and (there exists {y,z} € E suchthatz ¢ L

and F({y,z}) = F(y)) do

if 1(z) # NO_LABEL then

/* there is an <-stream under L already labelled */

return [L,(z)] ;

else if F(z) < F(y) then
L:=LuU{z};/* z is now the only bottom of L */
L":={z}; I* hence, switch to depth-first exploration */
breadth_first := FALSE ;

else
L:=LuU{z};/*F(z) =F(y), thus z is also a bottom of L */
L' := L' U{z} ; /* continue breadth-first exploration */

return [L, 0] ;
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@ Stream Algorithm runs in linear time whatever the range of
the input map
o No need to sort

@ No need to use a hierarchical queue
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Algorithm

Result

@ Stream Algorithm runs in linear time whatever the range of
the input map
e No need to sort
@ No need to use a hierarchical queue

@ Furthermore, Stream Algorithm does not need to compute
the minima as a pre-processing step.
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MST algorithms @
(Boruvska, Prim, Kruskal)




@ In fact, there is more to say on watershed cuts . ..
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Topological cut

(BMSTk:ll‘;: s - C MsFaut ) C Basincu Flow cut algorithm
oruvska, R
IFT algorithms " Flooding algorithm

GRAYSCALE-TRANSFORM PARADIGMS




@ Hierarchical segmentations

e Saliency of watershed contours
@ Incremental MSF
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@ Hierarchical segmentations

e Saliency of watershed contours
@ Incremental MSF

@ Topological properties of watershed cuts (simplicial,
cubical complexes)
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@ Hierarchical segmentations

e Saliency of watershed contours
@ Incremental MSF

@ Topological properties of watershed cuts (simplicial,
cubical complexes)

@ Minimum spanning tree by watersheds
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To finish : illustration

Vertices+Deriche
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Vertices+morpho. grad.
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