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One hundred years later (1978), it was introduced by
Digabel and Lantuéjoul for image segmentation

Hypothesis

Most existing approaches consider a grayscale image as a
vertex-weighted graph
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Edge-weighted graph

Let G = (V ,E) be a graph.

Let F be a map from E to Z.
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Image and edge-weighted graph

For applications to image analysis

V is the set of pixels

E corresponds to an adjacency relation on V , (e.g., 4- or
8-adjacency in 2D)
The altitude of u, an edge between two pixels x and y ,
represents the dissimilarity between x and y

F (u) = |I(x)− I(y)|.
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Regional minima
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Definition

A subgraph X of G is a minimum of F (at altitude k ) if:

X is connected; and

k is the altitude of any edge of X ; and

the altitude of any edge adjacent to X is strictly greater
than k
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Extension

a subgraph X

an extension Y of X

Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G.

We say that Y is an extension of X (in G) if X ⊆ Y and if
any component of Y contains exactly one component of X .
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Graph cut

a subgraph X a (graph) cut S for X

Definition (Graph cut)

Let X be a subgraph of G and S ⊆ E, a set of edges.

We say that S is a (graph) cut for X if S is an extension
of X and if S is minimal for this property
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Watershed cut

The church of Sorbier

(a topographic intuition)

Definition (drop of water principle)

The set S ⊆ E is a watershed cut of F if S is an extension
of M(F ) and if for any u = {x0, y0} ∈ S, there exist 〈x0, . . . , xn〉
and 〈y0, . . . , ym〉, two descending paths in S such that:

1 xn and ym are vertices of two distinct minima of F ; and
2 F (u) ≥ F ({x0, x1}) if n > 0 and F (u) ≥ F ({y0, y1}) if m > 0
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Watershed cut: example
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Steepest descent
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Definition

Let π = 〈x0, . . . , xl〉 be a path in G.

The path π is a path with steepest descent for F if:
∀i ∈ [1, l], F ({xi−1, xi}) = min{xi−1,y}∈E F ({xi−1, y})
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Catchment basins by a steepest descent property

Definition

Let S be a cut for M(F ), the minima of F .
We say that S is a basin cut of F if, from each point of V
to M(F ), there exists, in the graph induced by S, a path with
steepest descent for F .
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Catchment basins by a steepest descent property

Theorem (consistency)

An edge-set S ⊆ E is a basin cut of F if and only if S is a
watershed cut of F .
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Relative forests

In 1994, F. Meyer shows the links between flooding from
markers and minimum spanning forest

Problem

What about watershed cuts ?
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Relative forest

a subgraph X a forest Y relative to X

Definition

Let X and Y be two non-empty subgraphs of G.
We say that Y is a forest relative to X if:

1 Y is an extension of X ; and
2 any cycle of Y is also a cycle of X
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Minimum spanning forest

The weight of a forest Y is the sum of its edge weights
i.e.,

∑
u∈E(Y ) F (u).

Definition

We say that Y is a minimum spanning forest (MSF) relative
to X if Y is a spanning forest relative to X and if the weight of Y
is less than or equal to the weight of any other spanning forest
relative to X.
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Minimum spanning forest: example
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If Y is a MSF relative to X , there exists a unique cut S
for Y and this cut is also a cut for X ;

In this case, we say that S is a MSF cut for X .
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Watershed optimality

Theorem

An edge-set S ⊆ E is a MSF cut for the minima of F if and only
if S is a watershed cut of F .
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Minimum spanning tree

Computing a MSF ⇔ computing a minimum spanning tree

Best algorithm [CHAZEL00]: quasi-linear time

Problem

Can we reach a better complexity for computing watershed
cuts?
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Streams
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Definition

We say that a vertex-set L ⊆ V is a stream if, for any two points
x and y of L, there exists, in L, either a path from x to y or from
y to x, with steepest descent for F
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We say that a vertex-set L ⊆ V is a stream if, for any two points
x and y of L, there exists, in L, either a path from x to y or from
y to x, with steepest descent for F
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Definition

We say that a point x of a stream L is a top of L if for any point
y in L, there exists, from x to y, a path in L, which is a path with
steepest descent for F
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Definition

We say that a point x of a stream L is a bottom of L if for any
point y in L, there exists, from y to x, a path in L, which is a
path with steepest descent for F
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Streams

Problem

How to extract a stream ?
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Streams concatenation

J. Cousty , G. Bertrand, L. Najman and M. Couprie Watershed cuts



Watershed cuts: definition and consistency
Relative minimum spanning forests: watershed optimality

Algorithm

Stream concatenation
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A stream L1

Definition

Let L1 and L2 be two disjoint streams (L1 ∩ L2 = ∅).
We say that L1 is under L2 (written L1 ≺ L2), if there exist a
top x of L1, a bottom y of L2, such that x and y are adjacent
and 〈x , y〉 is a path with steepest descent for F
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A stream L2

Definition

Let L1 and L2 be two disjoint streams (L1 ∩ L2 = ∅).
We say that L1 is under L2 (written L1 ≺ L2), if there exist a
top x of L1, a bottom y of L2, such that x and y are adjacent
and 〈x , y〉 is a path with steepest descent for F

J. Cousty , G. Bertrand, L. Najman and M. Couprie Watershed cuts



Watershed cuts: definition and consistency
Relative minimum spanning forests: watershed optimality

Algorithm

Stream concatenation

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

5

5 8 1

4 5 2

3 4 7 0

4

6

3

4

5

4

5

1

0

0

1

2

3

a b c d

e f g h

i j k l

m n o p

L1 ≺ L2

Definition

Let L1 and L2 be two disjoint streams (L1 ∩ L2 = ∅).
We say that L1 is under L2 (written L1 ≺ L2), if there exist a
top x of L1, a bottom y of L2, such that x and y are adjacent
and 〈x , y〉 is a path with steepest descent for F
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L = L1 ∪ L2 is also
a stream

Property

Let L1 and L2 be two disjoint streams (L1 ∩ L2 = ∅).
If L1 ≺ L2, then L1 ∪ L2 is a stream

top x of L1, a bottom y of L2, such that x and y are adjacent
and 〈x , y〉 is a path with steepest descent for F
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The bottoms of L

Definition

A stream L is an ≺-stream if there is no stream under L

top x of L1, a bottom y of L2, such that x and y are adjacent
and 〈x , y〉)
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L is also an
≺-stream

Definition

A stream L is an ≺-stream if there is no stream under L

top x of L1, a bottom y of L2, such that x and y are adjacent
and 〈x , y〉)
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Streams and minima

The proposed algorithm is based on ≺-streams extraction
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Streams and minima

Property

A stream L is an ≺-stream if and only if L contains the vertex
set of a minimum of F
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Problem

From the streams of F , how can we partition the vertex set
of G?
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Flow familly

Let L = {L1, . . . ,Ln} be a set of n ≺-streams. We say
that L is a flow family if:
- ∪{Li | i ∈ {1, . . . ,n}} = V ; and
- for any two distinct L1 and L2 in L, if L1 ∩ L2 6= ∅,
then L1 ∩ L2 is the vertex set of a minimum of F .

We remark that a flow family induces a unique graph cut
for the minima of F .
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Streams and watershed cut

Theorem

An edge set S ⊆ E is a watershed cut of F if and only if S is a
cut induced by a flow family.

J. Cousty , G. Bertrand, L. Najman and M. Couprie Watershed cuts



Watershed cuts: definition and consistency
Relative minimum spanning forests: watershed optimality

Algorithm

Linear-time algorithm
Algorithm 1 : LPE par flux

Data: (V ,E ,F ): an edge-weighted graph;

Result : ψ: a flow mapping of F .

foreach x ∈ V do ψ(x) := NO_LABEL;1

nb_labs := 0 ; /* the number of minima already found */2

foreach x ∈ V such that ψ(x) = NO_LABEL do3

[L, lab] := stream (V ,E ,F , ψ, x) ;4

if lab = ∅ then /* L is an ≺-stream */5

nb_labs + + ;6

foreach y ∈ L do ψ(y) := nb_labs;7

else8

foreach y ∈ L do ψ(y) := lab;9
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Linear-time algorithm
Function Stream( V, E, F , ψ, x)

Data: (V ,E ,F ): an edge-weighted graph; ψ: a labeling of V ; x : a point in V .

Result : [L, lab] where L is a stream such that x is a top of L, and lab is either a label of an
≺-stream under L or ∅.

L := {x} ;1

L′ := {x} ; /* the set of non-explored bottoms of L */2

while there exists y ∈ L′ do3

L′ := L′ \ {y};4

breadth_first := TRUE ;5

while (breadth_first) and (there exists {y , z} ∈ E such that z /∈ L6

and F ({y , z}) = F (y)) do
if ψ(z) 6= NO_LABEL then7

/* there is an ≺-stream under L already labelled */8

return [L, ψ(z)] ;9

else if F (z) < F (y) then10

L := L ∪ {z} ; /* z is now the only bottom of L */11

L′ := {z} ; /* hence, switch to depth-first exploration */12

breadth_first := FALSE ;13

else14

L := L ∪ {z} ; /* F (z) = F (y), thus z is also a bottom of L */15

L′ := L′ ∪ {z} ; /* continue breadth-first exploration */16

return [L, ∅] ;17
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Algorithm

Result

Stream Algorithm runs in linear time whatever the range of
the input map

No need to sort
No need to use a hierarchical queue

Furthermore, Stream Algorithm does not need to compute
the minima as a pre-processing step.
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Conclusion

Graph cut

MST algorithms
(Boruvska, Prim, Kruskal)

Watershed cut

MSF cut Basin cut

TOPOGRAPHICAL PARADIGMSOPTIMALITY PARADIGMS

Flow cut algorithm
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Conclusion

In fact, there is more to say on watershed cuts . . .
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Conclusion

Graph cut

Topological cut

IFT algorithms

MST algorithms
(Boruvska, Prim, Kruskal)

Watershed cut

MSF cut

SPF cut

Basin cut

TOPOGRAPHICAL PARADIGMS

GRAYSCALE−TRANSFORM PARADIGMS

OPTIMALITY PARADIGMS

M−Border cut

(Meyer)
Flooding algorithm

Border cut

Flooding cut

Flow cut algorithm

(Dijkstra, Falcao et al.)

M−Border algorithm
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Perspectives

Hierarchical segmentations
Saliency of watershed contours
Incremental MSF

Topological properties of watershed cuts (simplicial,
cubical complexes)

Minimum spanning tree by watersheds
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To finish : illustration

Edges Vertices+Deriche Vertices+morpho. grad.

J. Cousty , G. Bertrand, L. Najman and M. Couprie Watershed cuts



Watershed cuts: definition and consistency
Relative minimum spanning forests: watershed optimality

Algorithm

The plateau problem
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