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PART I
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BACKGROUND

• Mathematical Morphology

• We will focus on the set or binary framework

• Basic morphological filters

Openings

Closings

• Connectivity

Connected class

A connected class C in P(E) is a subset of P(E) such that

(a) ∅ ∈ C and for all x ∈ E, {x} ∈ C; and
(b) for each family Ci in C,

V

i Ci 6= ∅ implies
W

i Ci ∈ C.
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BACKGROUND (CONT.)

• Opening γx
The subclass Cx that has all members of C that contain x (i.e., Cx = {C ∈ C : x ∈ C})
leads to the definition of an opening γx called point opening. For all x ∈ E, A ∈ P (E),

γx(A) =
_

{C : C ∈ Cx, C ≤ A}. (1)

Connected component extraction operation

x x

(a) Input set A (b) γx(A)
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BACKGROUND (CONT.)

• Connected operator

Relationships between the flat zones of the input and the output

Inclusion relationship

• Connected openings and connected closings

Connected opening:

Connected closing:

• Connectivity requirement: strong connectivity
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ADJACENCY STABLE CONNECTED OPERATORS

• Origin of the concept: consideration of the following question:

Given an input set, there are several connected outputs that satisfy the
inclusion relationship between the input and the output.

Input set

8 possible connected outputs

However, some possible outputs cannot be computed using
morphological connected openings and closings.
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ADJACENCY STABLE CONNECTED OPERATORS (CONT.)

(a) Input set

(b)
√

(c)
√

(d) Not possible (e)
√

(f) Not possible (g) Not possible (h)
√

(i)
√

• Normal morphological connected operators impose certain adjacency
restrictions.
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ADJACENCY STABLE CONNECTED OPERATORS (CONT.)

Definition 1 Let E be a space endowed with γx, x ∈ E. An operator
ψ : P(E) −→ P(E) is adjacency stableif, for all x ∈ E:

γx(id
∨

ψ) = γx
∨

γxψ. (2)

[Crespo-Serra-Schafer, 1993] [Crespo, 1993] [Crespo and Schafer, 1997].

Note that γx commutes under the inf (γx(
∧

i ψi) =
∧

i γxψi) but not in general
under the sup.

Both grains and pores are considered.

What matters is the switch from grain to pore and vice-versa.

The dual of an adjacency stable operator is adjacency stable.
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ADJACENCY STABLE CONNECTED OPERATORS (CONT.)

For an adjacency stable connected operator:

1 0

Input

=⇒















































































Possible output :

0

Possible output :

1

Possible output :

1 0

0 1

Not possible output
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ADJACENCY STABLE CONNECTED OPERATORS (CONT.)

Example in which the adjacency stability equation is not satisfied

x x

(a) Input set A (in dark) (b) ψ(A) (ψ is adjacency unstable)

x x

(c) γx(A)
W

γxψ(A) (d) γx(id
W

γxψ)(A)
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ADJACENCY STABLE CONNECTED OPERATORS (CONT.)

(a) Input set (in dark)

(b) (c) (d) No AS (e)

(f) No AS (g) No AS (h) (i)
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LEVELINGS

Definition 2 An image g is a leveling of an input image f if and only if:

∀ (p, q) neighboring pixels : gp > gq ⇒ fp ≥ gp and gq ≥ fq (3)

Notes:

The previous definition of leveling is that in [Meyer, 1998a, Definition 4
(p. 193)] [Meyer and Maragos, 2000, Definition 2.2 (p. 4)].

We focus on set operators.

• Let us write expression (3) as:

∀ (p, q) neighboring pixels : I ′p > I ′q ⇒ Ip ≥ I ′p and I ′q ≥ Iq

where I and I’ denote, respectively, the input and output images.
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SET LEVELINGS

• Set levelings are levelings in the set or binary framework.

Binary function expressions will be used in the following.

• An inequality such as I ′p > I ′q can only occur when there is a discontinuity
where I ′p and I ′q are 1 and 0, respectively. Then, the leveling expression

I ′p > I ′q ⇒ Ip ≥ I ′p and I ′q ≥ Iq

reduces to

1 > 0 ⇒ 1 ≥ 1 and 0 ≥ 0 (4)

I.e., Ip has to be 1, and Iq must be 0.
1 0

=⇒
1 0

Output Input

• If I ′p = 1 and I ′q = 0, the case where Ip = 0 and Iq = 1 is excluded:

0 1
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RELATIONSHIPS BETWEEN ADJACENCY STABLE
CONNECTED OPERATORS AND SET LEVELINGS

• Relationships:

(a) Both adjacent stable connected operators and set levelings impose
restrictions on the input/output variations.

(b) The imposed restrictions are equivalent

If I ′p = 1 and I ′q = 0, then Ip and Iq must be 1 and 0, respectively.

• Thus: the set leveling concept and the adjacency stable connected
operator concept are equivalent .

• Chronology of the introduction of concepts

[Crespo-Serra-Schafer, 1993] [Crespo, 1993] [Crespo and Schafer, 1997]
are prior in time to [Meyer, 1998a] [Meyer, 1998b] [Meyer and Maragos,
2000] [Meyer, 2004].
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SOME COMMENTS ABOUT THE GRAY -LEVEL CASE

• We can directly extend those adjacency restrictions to flat gray-level connected
operators that commute with thresholding.

The restrictions must hold for all sections of the input and output gray-level
functions.

If p and q are neighbors to each other (or if they belong to adjacent flat zones), then:

(a) Ip = Iq =⇒ I′p = I′q .

(b) Ip > Iq =⇒

8

>

>

<

>

>

:

I′p > I′q

or

I′p = I′q

(5)

Note: the case symmetric to (b) is not shown.
The case ruled out is: Ip < Iq , and I′p > I′q (as well as the symmetric one: Ip > Iq , and
I′p < I′q).

This case is also excluded by the expression of levelings.

• Increasingness requirement
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SOME USEFUL PROPERTIES

Some results about adjacency stable connected operators and set levelings:

Property 1 Extensive and anti-extensive mappings are adjacency stable.

Property 2 The class of adjacency stable connected operators is closed under
the sup, the inf and the sequential composition operations.

Lemma 1 Let E be a space endowed with γx, x ∈ E. A connected operator
ψ : P(E) −→ P(E) is adjacency stable if and only if, for all A ∈ P(E), ψ(A) and
A \ ψ(A) are not connected to each other (i.e., are not adjacent).

Lemma 1 is useful to relate the input and the output.

Note: see also [Crespo-Serra-Schafer, 1993] [Crespo, 1993] [Crespo and
Schafer, 1997].

Adjacency stability and connected-component locality
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PART II
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BACKGROUND II: STRONG PROPERTY

• A morphological filter Ψ is strong if and only if

Ψ = Ψ(id
∧

Ψ) = Ψ(id
∨

Ψ). (6)

We also have that if Ψ is a strong filter:

A
∧

Ψ(A) ≤ B ≤ A
∨

Ψ(A) =⇒ Ψ(A) = Ψ(B) (7)

• Binary example:

A

Ψ(Α)

B

Sets A, B y Ψ(A): If Ψ is a strong filter, then Ψ(B) = Ψ(A).
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BACKGROUND II: STRONG PROPERTY (CONT.)

• 1-D non-binary example:

g

f

h

If f is an input function and g = Ψ(f), where Ψ is a strong filter, it is true
that Ψ(h) = Ψ(f) = g for all function h between f and g.
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BACKGROUND II: STRONG PROPERTY (CONT.)

• If an operator can be expressed as a sequential composition of an opening and
a closing, and vice-versa, then it is a strong filter.
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SOME MARKER -BASED OPERATORS
AND THE STRONG PROPERTY

• Some objections to statements regarding levelings and the strong property in
some previous research works can be made.

• Let us define two operators, γ and ϕ, based on makers that are presented in
[Serra, 2000, p. 176].

Besides one normal input set, those operators use a second one, which is a
marker set.

Definition 3 Let A and M be two sets. The connected operator γ of a set A
based on marker M , symbolized by γ(A,M), is defined as:

γ(A,M) =
⋃

{γx(A) : γx(A) ‖M} (8)

Definition 4 Let A and B be, respectively, a grain (a connected set) and a set. A ‖ B if A

and B have a non-empty intersection or are adjacent. [Serra, 2000, Definition 7.3]
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SOME MARKER -BASED OPERATORS
AND THE STRONG PROPERTY (CONT.)

Definition 5 Let A and M be two sets. The connected operator ϕ of a set A
based on marker N , symbolized by ϕ(A,N), is defined as:

∁[ϕ(A, ∁N)] =
⋃

{γx(∁A), x ∈ E : γx(∁A) ‖ N} (9)

• In [Serra, 2000], it is established that there exists a commutative property for γ
and ϕ ([Serra, 2000, Theorem 7.3]):

γ(ϕ(A, ∁N),M) = ϕ(γ(A,M), ∁N) (10)

• It is indicated in [Serra, 2000] that γ(ϕ(A, ∁N),M) (or ϕ(γ(A,M), ∁N)) is a
leveling and that is a strong filter.

Expression (10) is considered in [Serra, 2000] as a sequential composition
of an opening and a closing, and of a closing and an opening.
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SOME MARKER -BASED OPERATORS
AND THE STRONG PROPERTY (CONT.)

• Moreover, in [Meyer and Maragos, 2000] [Meyer, 2004], it is indicated that
levelings are strong filters.

The discussion refers to a commutative expression analogous to the
aforementioned one.

• This should be clarified:

Not all levelings are strong filters.

• It seems there could be some confusion about whether all levelings can be
formulated as sequential compositions of an opening and a closing, and
vice-versa.
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SOME MARKER -BASED OPERATORS
AND THE STRONG PROPERTY (CONT.)

• Operators with markers

A ψ(A)ψ ψ′(A,M)
A

M ψ′

ψ(A)A

ψ

M
ψ′
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SOME MARKER -BASED OPERATORS
AND THE STRONG PROPERTY (CONT.)

• Operators with markers (cont.)

ψψ(A)ψ(A)

ψ

M ′ ψ′

• See [Crespo et al., 2002] [Crespo and Maojo, 2007] for further discussion
about the strong property of connected alternated filters.
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A COMMUTATIVE PROPERTY FOR ALTERNATED
ATTRIBUTE FILTERS

• Let γ̃ and ϕ̃ denote, respectively, an attribute opening [Serra, 1988] and an
attribute closing.

Area openings and closings are examples of attribute openings and
closings, respectively.

• Alternated attribute filters ϕ̃γ̃ are strong filters.

Note: in the following, when we write ϕ̃γ̃ it is clear that the criterion (and
associated marker) of ϕ̃ is applied to the output computed by the previous γ̃.
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A COMMUTATIVE PROPERTY FOR ALTERNATED
ATTRIBUTE FILTERS (CONT.)

Property 3 An attribute alternated filter ϕ̃γ̃ can be expressed as a
commutative sequential composition of an opening and a closing as follows:

ϕ̃γ̃ = γ̃ (id
∨

ϕ̃γ̃) = (id
∨

ϕ̃γ̃) γ̃ (11)

Proof of Property 3: There are two equalities to consider.

(a) LetA be a set. Sincẽγ is connected-component local we haveγ̃ =
W

x
γxγ̃ =

W

x
γ̃γx.

Thus,γ̃(id
W

ϕ̃γ̃)(A) =
W

x
γxγ̃(id

W

ϕ̃γ̃)(A) =
W

x
γ̃γx(id

W

ϕ̃γ̃)(A). From
Property 1 and Property 2,̃ϕγ̃ is an adjacency stable connected operator, and, from
Lemma 1,ϕ̃γ̃(A) andA \ ϕ̃γ̃(A) are not adjacent [Crespo, 1993] [Crespo and Schafer,
1997]. Then,

γ̃γx(id
_

ϕ̃γ̃)(A) =

8

<

:

γ̃γx(A) = ∅, x ∈ A \ ϕ̃γ̃(A).

γ̃γxϕ̃γ̃(A), x ∈ ϕ̃γ̃(A).
(12)

Thus,
W

x
γ̃γxϕ̃γ̃ =

W

x
γxγ̃ϕ̃γ̃ = γ̃ϕ̃γ̃. Finally, γ̃ϕ̃γ̃ = ϕ̃γ̃ (sinceϕ̃γ̃ ≤ γ̃ϕ̃ and

γ̃ϕ̃γ̃ = ϕ̃γ̃ [Serra and Salembier, 1993] [Salembier and Serra, 1995]).
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A COMMUTATIVE PROPERTY FOR ALTERNATED
ATTRIBUTE FILTERS (CONT.)

Proof of Property 3 (cont.):

(b) (id
W

ϕ̃γ̃) γ̃ = γ̃
W

ϕ̃γ̃γ̃ = γ̃
W

ϕ̃γ̃ = ϕ̃γ̃.

• Notes:

(a) (id
∨

ϕ̃γ̃) is a closing (and different from ϕ̃).

(b) Property 3 is different from [Heijmans, 1999, Proposition 10.2].

(c) This proof also provides an example of using adjacent stable connected
operators properties to manipulate expressions.

(d) Concerning filter expressions and decompositions, see also [Crespo and
Maojo, 1998].
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CONCLUSION

• This work has focused on adjacency stable connected operators and set
levelings.

• A close relationship has been identified.

The leveling notion in the set or binary framework can be traced back to
[Crespo, Serra and Schafer, 1993] [Crespo, 1993] [Crespo and Schafer,
1997].

Some useful properties for manipulating expressions with levelings have
been commented.

• Some objections to statements about the strong property for levelings have
been raised.

• A commutativity property for alternated attribute filters has been presented.
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QUESTIONS ?

THANKS !
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CONNECTED-COMPONENT LOCALITY

G

E

A1

G

E

A2

(a) Grain G in set A1 (b) Grain G in set A2 (A2 = G)

E

P

A3

P

E

A4

(c) Pore P in set A3 (d) Pore P in set A4 (A4 = E \ P )
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ATTRIBUTE OPENINGS AND CLOSINGS

• “Basic” connected filters

• Attribute openings and closings can be defined based on the so-called trivial
openings and closings. Let T be an increasing criterion.

– Trivial opening
γT(A) =







A if T(A) = True

∅ otherwise
(13)

– Trivial closing
ϕT(A) =







E if T(A) = True

A otherwise
(14)

• Attribute opening
γ̃ =

∨

x∈E

γTγx, (15)

• Attribute closing
ϕ̃ =

∧

x∈E

ϕTϕx, (16)
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