

Rio de Janeiro October 2007

Digital Steiner sets and Matheron semi-groups

Jean Serra

A2SI ESIEE

University of Paris-Est, France

J.Serra, Paris-Est ISMM 07 Octobre, Rio de Janeiro 0

Problems

How a digital pyramid of morphological operators does work?

Problems

How a digital pyramid of morphological operators does work?

It involves notions or properties that are not defined, or false, for digital spaces, e.g.

- is the dilate of a segment by itself still a segment ?
- What is the digital homothetics of a set ?

Problems

How a digital pyramid of morphological operators does work?

It involves notions or properties that are not defined, or false, for digital spaces, e.g.

- is the dilate of a segment by itself still a segment ?
- What is the digital homothetics of a set ?

Or notions that admit several definitions, e.g.

- Digital convexity is defined in five different manners in literature. Which one to take?

- In maths, convexity is a notion defined for *vector spaces*.
- In Rⁿ, set X is convex when either
- \Rightarrow X equals the intersection of the half spaces that contain it,

- In maths, convexity is a notion defined for *vector spaces*.
- In Rⁿ, set X is convex when either
- \Rightarrow X equals the intersection of the half spaces that contain it,
- $\Rightarrow \quad \text{or} \quad \{x,y\} \in X \quad \Rightarrow \quad [x,y] \in X$

- In maths, convexity is a notion defined for *vector spaces*.
- In Rⁿ, set X is convex when either
- \Rightarrow X equals the intersection of the half spaces that contain it,
- $\Rightarrow \text{ or } \{x,y\} \in X \Rightarrow [x,y] \in X$
- ⇒ or the measure of $X \oplus B$, both compact convex sets, is a linear function of their Minkowski functionals, e.g. in R²

 $\underline{A}(\mathbf{X} \oplus \mathbf{B}) = A(\mathbf{X}) + U(\mathbf{X}) \cdot U(\mathbf{B}) / 2\pi + A(\mathbf{B})$

Convexity and Scale-space Representation

 Still in space Rⁿ, denote by λB the set similar to B by factor λ. Then the semi-group law:

 $[(A \oplus \lambda B) \oplus \mu B)] = A \oplus (\lambda + \mu) B$

holds if and only if B is *compact convex* (GM 1975).

Convexity and Scale-space Representation

Still in space Rⁿ, denote by λB the set similar to B by factor λ. Then the semi-group law:

 $[(A \oplus \lambda B) \oplus \mu B)] = A \oplus (\lambda + \mu) B$

holds if and only if B is *compact convex* (GM 1975).

• W.r. to dilation, the similarity ratio is infinitely divisible. This property is the *core of all scale-space representations* in mathematical morphology. **Convexity and Scale-space Representation**

Still in space Rⁿ, denote by λB the set similar to B by factor λ. Then the semi-group law:

 $[(A \oplus \lambda B) \oplus \mu B)] = A \oplus (\lambda + \mu) B$

holds if and only if B is *compact convex* (GM 1975).

- W.r. to dilation, the similarity ratio is infinitely divisible. This property is the *core of all scale-space representations* in mathematical morphology.
- Note that set **A** is arbitrary. In particular we have that $\lambda B \oplus \mu B = (\lambda + \mu) B$

- Unfortunately, when passing from Rⁿ to Zⁿ all these nice equivalences vanish...
- e.g., the three segments belong to set X, which it is not convex,

- When passing from Rⁿ to Zⁿ all these nice equivalences vanish...
- e.g., the three segments belong to set X, which it is not convex,
- Also, a digital convex set may be non arcwise connected.

• Unfortunately, morphological scale-space processing is always digital ...

- Unfortunately, morphological scale-space processing is always digital ...
- Therefore we must analyse exactly how convexity appears, so that to chose the most convenient digital convexity

Matheron Semi-groups

- Unfortunately, morphological scale-space processing is always digital ...
- Therefore we must analyse exactly how convexity appears, so that to chose the most convenient digital convexity
- Indeed, the morph. scale-space pyramids are governed by *Matheron semi-group* law

 $\lambda \geq \mu > 0 \implies \psi_{\mu} \circ \psi_{\lambda} = \psi_{\lambda}$

Where $\{\psi_{\lambda}, \lambda > 0\}$ is a family of morph. filters

• The law applies for opening, ASF and levelling.

• In case of opening, Matheron semi-group is called a *granulometry*:

$$\lambda \ge \mu > 0 \implies \gamma_{\mu} \circ \gamma_{\lambda} = \gamma_{\lambda} \tag{1}$$

i.e. the strongest opening imposes its law

• In case of opening, Matheron semi-group is called a *granulometry*:

$$\lambda \ge \mu > 0 \implies \gamma_{\mu} \circ \gamma_{\lambda} = \gamma_{\lambda} \tag{1}$$

i.e. the strongest opening imposes its law

• For

- $\Rightarrow \mathcal{P}(E) \text{ lattices (e.g. } E = R^n \text{ or } Z^n)$
- \Rightarrow and $\{\delta_{\lambda}\}$ a family of dilations

Rel.(1) is equivalent to $\lambda \ge \mu \implies \delta_{\lambda}(\mathbf{x}) = \gamma_{\mu} \delta_{\lambda}(\mathbf{x})$

i.e. each structuring element *is open by the smaller ones.*

I.Serra, Paris-Est

- In the Euclidean and translation invariant case $\lambda \ge \mu \implies \delta_{\lambda}(x) = \gamma_{\mu} \delta_{\lambda}(x)$ becomes $\lambda \ge \mu \implies B_{\lambda} = \gamma_{\mu} B_{\lambda}$ (structuring elements)
- Then magnification \equiv convexity $\{\lambda \ge \mu \implies B_{\lambda} = \gamma_{\mu} B_{\lambda}\} + \text{Homothetics } B_{\lambda}$ is equivalent to

 $\{\lambda \ge \mu \implies B_{\lambda} = \gamma_{\mu} B_{\lambda}\} + \text{convex } B_{\lambda}$

• For Matheron semi-groups, magnification and convexity are the *same notion*.

• Conversely, we can drop convexity

• The B's are not convex, but also not homothetic, however the semi-group is satisfied.

• Note also that $A = A \circ B$ is not an inclusion relation

When A is open by B,

I.Serra, Paris-Est

• Note also that $A = A \circ B$ is not an inclusion relation

When A is open by B, it may be not open by smaller sets

• *Steiner class* : In Rⁿ, the convex sets which are dilates of segments, and their limits (e.g. the disc) are *Steiner*

• In R², they coincide with all convex sets with a centre of symmetry, but no longer in R³.

• *Directional measure*: The Steiner set X is equivalent to the measure $s_X(d\alpha)$, with

 $X = \oplus \{ L[s_X(d\alpha)], \alpha \in \Omega \}$

Euclidean Steiner class

• *Directional measure*: The Steiner set X is equivalent to the measure $s_X(d\alpha)$, with

 $X = \oplus \{ L[s_X(d\alpha)], \alpha \in \Omega \}$

• This directional measure *exchanges dilation and addition* $\mathbf{s}_{\mathbf{X} \oplus \mathbf{Y}} = \mathbf{s}_{\mathbf{X}} + \mathbf{s}_{\mathbf{Y}}$

hence

 $s_X \le s_Y \implies s_{X \ominus X} = s_X - s_Y \implies Y$ is open by X

Euclidean Steiner class

• *Directional measure*: The Steiner set X is equivalent to the measure $s_X(d\alpha)$, with

 $X = \oplus \{ L[s_X(d\alpha)], \alpha \in \Omega \}$

• This directional measure *exchanges dilation and addition*

$$\mathbf{s}_{\mathbf{X} \oplus \mathbf{Y}} = \mathbf{s}_{\mathbf{X}} + \mathbf{s}_{\mathbf{Y}}$$

hence

 $\mathbf{s}_{\mathbf{X}} \leq \mathbf{s}_{\mathbf{Y}} \implies \mathbf{s}_{\mathbf{X} \ominus \mathbf{X}} = \mathbf{s}_{\mathbf{X}} - \mathbf{s}_{\mathbf{Y}} \implies \mathbf{Y} \text{ is open by } \mathbf{X}$

• Every family of Steiner sets with increasing measures *generates a granulometry*.

• This sequence of Steiner sets generates a granulometry

From Rⁿ to Zⁿ

• Under which conditions can the dilate of two digital *parallel segments* be in turn a segment ?

- Under which conditions can the dilate of two digital *parallel segments* be in turn a segment ?
- What is a digital *Steiner set* ?

- Under which conditions can the dilate of two digital *parallel segments* be in turn a segment ?
- What is a digital *Steiner set* ?
- What is a digtal *convex set* ?

- Under which conditions can the dilate of two digital *parallel segments* be in turn a segment ?
- What is a digital *Steiner set* ?
- What is a digtal *convex set* ?
- Under which conditions is a digital convex set *connected*?

• *Bezout theorem*: The equation

 $a_1 u_1 + a_2 u_2 + \dots a_n u_n = 1$ (1) has solutions in Zⁿ iff the a_i are relatively prime.

• *Bezout theorem*: The equation

 $a_1 u_1 + a_2 u_2 + \dots a_n u_n = 1$ (1) has solutions in Zⁿ iff the a_i are relatively prime.

• *General solution*: One goes from the solutions of

 $a_1 x_1 + a_2 x_2 + \dots a_n x_n = c$ (2) to those for c + 1 by replacing the x_i by $x_i + u_i$, where the u_i are an arbitrary solution of (1).

Bezout planes in Zⁿ

• **Bezout theorem**: The equation

 $a_1 u_1 + a_2 u_2 + \dots a_n u_n = 1$ (1) has solutions in Zⁿ iff the a_i are relatively prime.

• *General solution*: One goes from the solutions of

 $a_1 x_1 + a_2 x_2 + \dots a_n x_n = c$ (2) to those for c + 1 by replacing the x_i by $x_i + u_i$, where the u_i are an arbitrary solution of (1).

Spanning of the space Therefore the hyper-planes (2) span the space Zⁿ, so that each point is met once and only once.
 N.B. in Z² this is also true for Bresenham lines (H.Talbot)

• When *a* and *b* are relatively prime, then $\exists u, v \in \mathbb{Z}$ such that au + bv = 1

If (x_0, y_0) is solution of ax + by = c, then **a** $(x_0 + u) + b (y_0 + v) = c + 1$

- When a and b are relatively prime, then
 ∃ u,v ∈ Z such that au + bv = 1
 If (x₀, y₀) is solution of ax + by = c, then
 a (x₀+u) + b (y₀+v) = c + 1
- All solutions of the equation ax+by = c+1 derive from the solutions of ax+by = c by translation of vector (u,v)
- An example : take the Bezout straight line
 2 x 3 y = 1
 which has vector (2,1) for solution.

The translates of the line by the Bezout vector span the digital plane

I.Serra, Paris-Est

• **Bezout direction**: every vector $\boldsymbol{\omega}$ of Z^n whose coordinates $\boldsymbol{\omega}_1, \boldsymbol{\omega}_2, \dots, \boldsymbol{\omega}_n$ are relatively prime.

- **Bezout direction**: every vector $\boldsymbol{\omega}$ of Z^n whose coordinates $\boldsymbol{\omega}_1, \boldsymbol{\omega}_2, \dots, \boldsymbol{\omega}_n$ are relatively prime.
- *Bezout line* going through the origin $D(\omega) = \{k \omega, k \in \mathbb{Z}\}$

- **Bezout direction**: every vector $\boldsymbol{\omega}$ of Z^n whose coordinates $\boldsymbol{\omega}_1, \boldsymbol{\omega}_2, \dots, \boldsymbol{\omega}_n$ are relatively prime.
- *Bezout line* going through the origin $D(\omega) = \{k \omega, k \in \mathbb{Z}\}$
- *Bezout line* going through point x and of direction ω : $D_x(\omega) = D(\omega) \oplus x = \{x + k \omega, k \in Z\}$

- **Bezout direction**: every vector $\boldsymbol{\omega}$ of Z^n whose coordinates $\boldsymbol{\omega}_1, \boldsymbol{\omega}_2, \dots, \boldsymbol{\omega}_n$ are relatively prime.
- *Bezout line* going through the origin $D(\omega) = \{k \omega, k \in \mathbb{Z}\}$
- *Bezout line* going through point x and of direction ω : $D_x(\omega) = D(\omega) \oplus x = \{x + k \omega, k \in Z\}$
- *Bezout segment* : the sequence of the (k+1) points $L_x(k, \omega) = \{x + p \omega, 0 \le p \le k\}$

Examples of Bezout vector, lines, and segment in the digital plane

I.Serra, Paris-Est

Theorem 1 :

• 1/ The Minkowski sum of the segments $L_x(k, \omega)$ and $L_y(m, \omega)$ is the segment

$$L_x(k, \omega) \oplus L_y(m, \omega) = L_{x+y}(k+m, \omega)$$

Theorem 1 :

- 1/ The Minkowski sum of the segments $L_x(k, \omega)$ and $L_y(m, \omega)$ is the segment $L_x(k, \omega) \oplus L_y(m, \omega) = L_{x+y}(k+m, \omega)$
- 2/ The opening of segment L_x(k, ω) by L_y(m, ω) is
 the segment L_x(k, ω) itself when k ≥ m
 - The empty set when not

Theorem 1 :

- 1/ The Minkowski sum of the segments $L_x(k, \omega)$ and $L_y(m, \omega)$ is the segment $L_x(k, \omega) \oplus L_y(m, \omega) = L_{x+y}(k+m, \omega)$
- 2/ The opening of segment L_x(k, ω) by L_y(m, ω) is
 the segment L_x(k, ω) itself when k ≥ m
 - The empty set when not
- 3/ The *only* digital segments that satisfy these two properties are the *Bezout* ones (because of their unit thickness).

- *Steiner sets* : A set in Zⁿ is *Steiner* when it can be decomposed into Minkowski sum of Bezout segments.
- A Steiner set is not always convex.

- *Steiner sets* : A set in Zⁿ is *Steiner* when it can be decomposed into Minkowski sum of Bezout segments.
- A Steiner set is not always convex. In the figure, if we add the centre, the set becomes convex, but it is no longer Steiner (though it is symmetrical...)

• **Digital convexity**: Set $X \subseteq Z^n$ is convex when it is the intersection of all Bezout half-spaces that contain it

- **Digital convexity**: Set $X \subseteq Z^n$ is convex when it is the intersection of all Bezout half-spaces that contain it
- Theorem 2
 - Every segment is convex ;
 - When points x and y belong to the convex set X, then all points of the Bezout segment [x,y] belong to X
- Hence, By using Bezout' background, we can identify both approaches of convexity, by convex hull, and by barycentre

Where the directional parameters *a*,*b*, are relatively prime

Reveillès Straight lines

I.Serra, Paris-Est

I.Serra, Paris-Est

Decomposition

Decomposition of Réveillès straight lines into Bezout ones

$$D: \quad \gamma \le ax + by < \gamma + \rho$$
$$D: \quad \bigcup_{\gamma \le c < \gamma + \rho} \{ax + by = c\}$$

I.Serra, Paris-Est

Convexity for Steiner sets

• **Theorem 3** : In Z^2 , a Steiner set X of measure

 $\{ \mathbf{k}_{i} \, \boldsymbol{\omega}_{\iota}, 1 \leq i \leq p \}$

is *convex* iff for one direction, p say, the dilate of the Bezout line D_p by the other segments, i.e.

 $\mathbf{D}_{\mathbf{p}} \oplus \mathbf{L}_1 \oplus \mathbf{L}_2 \oplus \dots \oplus \mathbf{L}_{\mathbf{p}\text{-}1}$

is a *Réveillès straight line*

• Similar statement in Zⁿ.

I.Serra, Paris-Est

And with the previous shifts

I.Serra, Paris-Est

Theorem 4

In Z^n , the Steiner set X of measure $\{k_i, 1 \le i \le p\}$ with $n \le p$, is *connected* if and only if for each j such that $n < j \le p$, the component ω_t^{j} of direction ω_j w.r.t. axis ω_t satisfies the inequality

$$\mathbf{k}_{j} \ \boldsymbol{\omega}_{\iota}^{j} \leq \mathbf{k}_{i}$$

Anamorphoses

• An *anamorphosis* between two lattices \mathcal{L} and \mathcal{L} 'is a mapping α such that

 α is a bijection from \mathcal{L} and \mathcal{L}' α and α^{-1} are both erosions and dilations.

• *Semi-anamorphosis* When $\alpha : \mathcal{L} \to \mathcal{L}$ 'is a dilation, every granulometry $\{\gamma_{\lambda}\}$ on \mathcal{L} induces a granulometry $\{\zeta_{\lambda}\}$ on \mathcal{L} ' and we have

 $\alpha \gamma_{\lambda}(X) \leq \zeta_{\lambda}(\alpha X) ,$

with the equality when is an anamorphosis.

• Example : α maps the plane \mathbb{R}^n on a torus.

I.Serra, Paris-Est

• Did you noticed that the previous scale-space approach ignores digital magnification?

- Did you noticed that the previous scale-space approach ignores digital magnification?
- In fact we used equivalence

 $\lambda \mathbf{B} \oplus \mu \mathbf{B} = (\lambda + \mu) \mathbf{B} \iff \mathbf{B}$ is compact convex

for *defining* homothetics, and we extended this type of decomposition to that of B into dilations of segments.

- Did you noticed that the previous scale-space approach ignores digital magnification?
- In fact we used equivalence

 $\lambda \mathbf{B} \oplus \mu \mathbf{B} = (\lambda + \mu) \mathbf{B} \iff \mathbf{B}$ is *compact convex*

for *defining* homothetics, and we extended this type of decomposition to that of B into dilations of segments.

• Arcwise connectivity turns out to be a very specific requirement, that one can add, but which plays no role in the theory.

- Did you noticed that the previous scale-space approach ignores digital magnification?
- In fact we used equivalence

 $\lambda \mathbf{B} \oplus \mu \mathbf{B} = (\lambda + \mu) \mathbf{B} \iff \mathbf{B}$ is compact convex

for *defining* homothetics, and we extended this type of decomposition to that of B into dilations of segments.

- Arcwise connectivity turns out to be a very specific requirement, that one can add, but which plays no role in the theory.
- Though figures are 2-D, the whole approach works in Zⁿ.

http://diwww.epfl.ch/w3lsp/publications/discretegeo/

- **R. Jones, P. Soille**, Perodic lines and their applications to granulometries, Mathematical Morphology and its applications to image and signal processing, Maragos P. et al. eds., Kluwer,(1996) pp. 263-272.
- **Ch. Kiselman** Convex functions on discrete sets. In: IWCIA 2004. R. Klette and J. Zunic (Eds.). Lecture Notes in Computer Science 3322 (2004), pp. 443-457.
- **E. Melin**, Digital straight lines in Khalimsky plane. Uppsala Un. Dpt. of Mathematics, Report 2003:30, (accepted for publication in Mathematica Scandinavia).
- G. Matheron, Random sets and integral geometry, Wiley, New-York, (1975).
- K. Murota, Discrete Convex Analysis, SIAM, Philadelphia (2003).
- Proceedings of the DGCI conferences (Discrete Geometry and Computer Imagery), série LNCS de Springer Verlag
- J-P. Reveillès Géométrie discrète, calcul en nombres entiers et algorithmique. Strasbourg: Université Louis Pasteur. Thèse d'Etat, 251pp. (1991).
- J. Serra Set connections and discrete filtering (Proc. DGCI 1999) Lecture Notes in Computer Science, Vol. 1568, G. Bertrand, M. Couprie and L Perroton (eds.), Springer, (1999), pp 191-206.
- **P. Soille et H. Talbot** Directional Morphological Filtering IEEE PAMI, Vol. 23 n°11,(Nov. 2001), pp.1313-1329.