Digital Steiner sets and Matheron semi-groups

Jean Serra
A2SI ESIEE
University of Paris-Est,
France

Problems

How a digital pyramid of morphological operators does

 work?
Problems

How a digital pyramid of morphological operators does work?

It involves notions or properties that are not defined, or false, for digital spaces, e.g.

- is the dilate of a segment by itself still a segment?
- What is the digital homothetics of a set?

Problems

How a digital pyramid of morphological operators does work?

It involves notions or properties that are not defined, or false, for digital spaces, e.g.

- is the dilate of a segment by itself still a segment?
- What is the digital homothetics of a set?

Or notions that admit several definitions,e.g.

- Digital convexity is defined in five different manners in literature. Which one to take?

Convexity

- In maths, convexity is a notion defined for vector spaces.
- In R^{n}, set X is convex when either
$\Rightarrow \mathrm{X}$ equals the intersection of the half spaces that contain it,

Convexity

- In maths, convexity is a notion defined for vector spaces.
- In R^{n}, set X is convex when either
$\Rightarrow \mathrm{X}$ equals the intersection of the half spaces that contain it,
$\Rightarrow \quad$ or $\quad\{\mathbf{x}, \mathbf{y}\} \in \mathbf{X} \Rightarrow[\mathbf{x}, \mathbf{y}] \in \mathbf{X}$

Convexity

- In maths, convexity is a notion defined for vector spaces.
- In R^{n}, set X is convex when either
$\Rightarrow \mathrm{X}$ equals the intersection of the half spaces that contain it,
$\Rightarrow \quad$ or $\quad\{\mathbf{x}, \mathbf{y}\} \in \mathbf{X} \Rightarrow[\mathbf{x}, \mathbf{y}] \in \mathbf{X}$
\Rightarrow or the measure of $\mathbf{X} \oplus \mathbf{B}$, both compact convex sets, is a linear function of their Minkowski functionals, e.g. in R^{2}

$$
\underline{A}(\mathbf{X} \oplus \mathbf{B})=A(\mathbf{X})+U(\mathbf{X}) \cdot U(\mathbf{B}) / 2 \pi+A(\mathbf{B})
$$

Convexity and Scale-space Representation

- Still in space R^{n}, denote by $\lambda \mathrm{B}$ the set similar to B by factor λ. Then the semi-group law:

$$
[(\mathbf{A} \oplus \lambda \mathbf{B}) \oplus \mu \mathbf{B})]=\mathbf{A} \oplus(\lambda+\mu) \mathbf{B}
$$

holds if and only if B is compact convex (GM 1975).

Convexity and Scale-space Representation

- Still in space R^{n}, denote by λB the set similar to B by factor λ. Then the semi-group law:

$$
[(\mathbf{A} \oplus \lambda \mathbf{B}) \oplus \mu \mathbf{B})]=\mathbf{A} \oplus(\lambda+\mu) \mathbf{B}
$$

holds if and only if B is compact convex (GM 1975).

- W.r. to dilation, the similarity ratio is infinitely divisible. This property is the core of all scale-space representations in mathematical morphology.

Convexity and Scale-space Representation

- Still in space R^{n}, denote by λB the set similar to B by factor λ. Then the semi-group law:

$$
[(\mathbf{A} \oplus \lambda \mathbf{B}) \oplus \mu \mathbf{B})]=\mathbf{A} \oplus(\lambda+\mu) \mathbf{B}
$$

holds if and only if B is compact convex (GM 1975).

- W.r. to dilation, the similarity ratio is infinitely divisible. This property is the core of all scale-space representations in mathematical morphology.
- Note that set \mathbf{A} is arbitrary. In particular we have that

$$
\lambda \mathbf{B} \oplus \mu \mathbf{B}=(\lambda+\mu) \mathbf{B}
$$

Digital Convexity

- Unfortunately, when passing from R^{n} to Z^{n} all these nice equivalences vanish...
- e.g., the three segments belong to set X , which it is not convex,

Digital Convexity

- When passing from R^{n} to Z^{n} all these nice equivalences vanish...
- e.g., the three segments belong to set X , which it is not convex,
- Also, a digital convex set may be non arcwise connected.

Matheron Semi-groups

- Unfortunately, morphological scale-space processing is always digital ...

Matheron Semi-groups

- Unfortunately, morphological scale-space processing is always digital ...
- Therefore we must analyse exactly how convexity appears, so that to chose the most convenient digital convexity

Matheron Semi-groups

- Unfortunately, morphological scale-space processing is always digital ...
- Therefore we must analyse exactly how convexity appears, so that to chose the most convenient digital convexity
- Indeed, the morph. scale-space pyramids are governed by

Matheron semi-group law

$$
\lambda \geq \mu>0 \Rightarrow \psi_{\mu}{ }^{\circ} \psi_{\lambda}=\psi_{\lambda}
$$

Where $\left\{\psi_{\lambda}, \lambda>0\right\}$ is a family of morph. filters

- The law applies for opening, ASF and levelling.

Granulometries

- In case of opening, Matheron semi-group is called a granulometry:

$$
\begin{equation*}
\lambda \geq \mu>0 \Rightarrow \gamma_{\mu} \circ \gamma_{\lambda}=\gamma_{\lambda} \tag{1}
\end{equation*}
$$

i.e. the strongest opening imposes its law

Granulometries

- In case of opening, Matheron semi-group is called a granulometry:

$$
\begin{equation*}
\lambda \geq \mu>0 \Rightarrow \gamma_{\mu} \circ \gamma_{\lambda}=\gamma_{\lambda} \tag{1}
\end{equation*}
$$

i.e. the strongest opening imposes its law

- For
$\Rightarrow \quad \mathcal{P}(\mathrm{E})$ lattices (e.g. $\mathrm{E}=\mathrm{R}^{\mathrm{n}}$ or Z^{n})
\Rightarrow and $\left\{\delta_{\lambda}\right\}$ a family of dilations
Rel.(1) is equivalent to $\lambda \geq \mu \Rightarrow \delta_{\lambda}(\mathbf{x})=\gamma_{\mu} \delta_{\lambda}(\mathbf{x})$
i.e. each structuring element is open by the smaller ones.

Granulometries

- In the Euclidean and translation invariant case

$$
\begin{aligned}
& \lambda \geq \mu \Rightarrow \delta_{\lambda}(\mathrm{x})=\gamma_{\mu} \delta_{\lambda}(\mathrm{x}) \text { becomes } \\
& \lambda \geq \mu \Rightarrow \mathrm{B}_{\lambda}=\gamma_{\mu} \mathrm{B}_{\lambda} \quad \text { (structuring elements) }
\end{aligned}
$$

- Then magnification \equiv convexity

$$
\left\{\lambda \geq \mu \Rightarrow \mathrm{B}_{\lambda}=\gamma_{\mu} \mathrm{B}_{\lambda}\right\}+\text { Homothetics } \mathrm{B}_{\lambda}
$$

is equivalent to

$$
\left\{\lambda \geq \mu \Rightarrow \mathrm{B}_{\lambda}=\gamma_{\mu} \mathrm{B}_{\lambda}\right\}+\text { convex } \mathrm{B}_{\lambda}
$$

- For Matheron semi-groups, magnification and convexity are the same notion.

Granulometries

- Conversely, we can drop convexity

- The B's are not convex, but also not homothetic,
.... however the semi-group is satisfied.

Granulometries

- Note also that $\mathrm{A}=\mathrm{A} \circ \mathrm{B}$ is not an inclusion relation When A is open by B ,

a)

Granulometries

- Note also that $\mathrm{A}=\mathrm{A} \circ \mathrm{B}$ is not an inclusion relation

When A is open by B, it may be not open by smaller sets

a)

b)

Euclidean Steiner class

- Steiner class : In R^{n}, the convex sets which are dilates of segments, and their limits (e.g. the disc) are Steiner

- In R ${ }^{2}$, they coincide with all convex sets with a centre of symmetry, but no longer in R^{3}.

Euclidean Steiner class

- Directional measure: The Steiner set X is equivalent to the measure $\mathrm{s}_{\mathrm{X}}(\mathrm{d} \alpha)$, with

$$
\mathbf{X}=\oplus\left\{\mathbf{L}\left[\mathbf{s}_{\mathbf{X}}(\mathrm{d} \alpha)\right], \alpha \in \Omega\right\}
$$

Euclidean Steiner class

- Directional measure: The Steiner set X is equivalent to the measure $\mathrm{s}_{\mathrm{X}}(\mathrm{d} \alpha)$, with

$$
\mathbf{X}=\oplus\left\{\mathrm{L}\left[\mathbf{s}_{\mathbf{X}}(\mathrm{d} \alpha)\right], \alpha \in \Omega\right\}
$$

- This directional measure exchanges dilation and addition

$$
\mathbf{s}_{\mathbf{X} \oplus \mathbf{Y}}=\mathbf{s}_{\mathbf{X}}+\mathbf{s}_{\mathbf{Y}}
$$

hence

$$
\mathbf{s}_{\mathbf{X}} \leq \mathbf{s}_{\mathbf{Y}} \Rightarrow \mathbf{s}_{\mathbf{X} \ominus \mathbf{X}}=\mathbf{s}_{\mathbf{X}}-\mathbf{s}_{\mathbf{Y}} \Rightarrow \mathbf{Y} \text { is open by } \mathbf{X}
$$

Euclidean Steiner class

- Directional measure: The Steiner set X is equivalent to the measure $\mathrm{s}_{\mathrm{X}}(\mathrm{d} \alpha)$, with

$$
\mathbf{X}=\oplus\left\{\mathrm{L}\left[\mathbf{s}_{\mathbf{X}}(\mathrm{d} \alpha)\right], \alpha \in \Omega\right\}
$$

- This directional measure exchanges dilation and addition

$$
\mathbf{s}_{\mathbf{X} \oplus \mathbf{Y}}=\mathbf{s}_{\mathbf{X}}+\mathbf{s}_{\mathbf{Y}}
$$

hence

$$
\mathbf{s}_{\mathbf{X}} \leq \mathbf{s}_{\mathbf{Y}} \Rightarrow \mathbf{s}_{\mathbf{X} \ominus \mathbf{X}}=\mathbf{s}_{\mathbf{X}}-\mathbf{s}_{\mathbf{Y}} \Rightarrow \mathbf{Y} \text { is open by } \mathbf{X}
$$

- Every family of Steiner sets with increasing measures generates a granulometry.

An example

- This sequence of Steiner sets generates a granulometry

From \mathbf{R}^{n} to Z^{n}

Several questions arise:

From \mathbf{R}^{n} to \mathbf{Z}^{n}

Several questions arise:

- Under which conditions can the dilate of two digital parallel segments be in turn a segment?

From \mathbf{R}^{n} to \mathbf{Z}^{n}

Several questions arise:

- Under which conditions can the dilate of two digital parallel segments be in turn a segment?
- What is a digital Steiner set ?

From \mathbf{R}^{n} to Z^{n}

Several questions arise:

- Under which conditions can the dilate of two digital parallel segments be in turn a segment?
- What is a digital Steiner set ?
- What is a digtal convex set?

From \mathbf{R}^{n} to Z^{n}

Several questions arise:

- Under which conditions can the dilate of two digital parallel segments be in turn a segment?
- What is a digital Steiner set ?
- What is a digtal convex set?
- Under which conditions is a digital convex set connected?

Bezout planes in $\mathbf{Z}^{\text {n }}$

- Bezout theorem: The equation

$$
\begin{equation*}
a_{1} \mathbf{u}_{1}+a_{2} u_{2}+\ldots a_{n} u_{n}=1 \tag{1}
\end{equation*}
$$

has solutions in Z^{n} iff the a_{i} are relatively prime.

Bezout planes in $\mathbf{Z}^{\mathbf{n}}$

- Bezout theorem: The equation

$$
\begin{equation*}
a_{1} u_{1}+a_{2} u_{2}+\ldots a_{n} u_{n}=1 \tag{1}
\end{equation*}
$$

has solutions in Z^{n} iff the a_{i} are relatively prime.

- General solution: One goes from the solutions of

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\ldots a_{n} x_{n}=c \tag{2}
\end{equation*}
$$

to those for $\mathrm{c}+1$ by replacing the x_{i} by $\mathrm{x}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}$, where the u_{i} are an arbitrary solution of (1).

Bezout planes in $\mathbf{Z}^{\mathbf{n}}$

- Bezout theorem: The equation

$$
\begin{equation*}
a_{1} u_{1}+a_{2} u_{2}+\ldots a_{n} u_{n}=1 \tag{1}
\end{equation*}
$$

has solutions in Z^{n} iff the a_{i} are relatively prime.

- General solution: One goes from the solutions of

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\ldots a_{n} x_{n}=c \tag{2}
\end{equation*}
$$

to those for $\mathrm{c}+1$ by replacing the x_{i} by $\mathrm{x}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}$, where the u_{i} are an arbitrary solution of (1).

- Spanning of the space Therefore the hyper-planes (2) span the space Z^{n}, so that each point is met once and only once.
N.B. in Z^{2} this is also true for Bresenham lines (H.Talbot)

Bezout lines in \mathbf{Z}^{2}

- When a and b are relatively prime, then $\exists \mathbf{u}, \mathbf{v} \in \mathbf{Z} \quad$ such that $\quad \mathbf{a u}+\mathbf{b v}=\mathbf{1}$

If $\left(x_{0}, y_{0}\right)$ is solution of $a x+b y=c$, then

$$
a\left(x_{0}+u\right)+b\left(y_{0}+v\right)=c+1
$$

Bezout lines in \mathbb{Z}^{2}

- When a and b are relatively prime, then

$$
\exists \mathbf{u}, \mathbf{v} \in \mathbf{Z} \quad \text { such that } \quad \mathbf{a u}+\mathbf{b v}=\mathbf{1}
$$

If $\left(x_{0}, y_{0}\right)$ is solution of $a x+b y=c$, then

$$
a\left(x_{0}+u\right)+b\left(y_{0}+v\right)=c+1
$$

- All solutions of the equation $a x+b y=c+1$ derive from the solutions of $a x+b y=c$ by translation of vector (u, v)
- An example : take the Bezout straight line

$$
2 x-3 y=1
$$

which has vector $(2,1)$ for solution.

Bezout lines in \mathbb{Z}^{2}

The translates of the line by the Bezout vector span the digital plane

Bezout directions and segments

- Bezout direction: every vector ω of Z^{n} whose coordinates $\omega_{1}, \omega_{2}, \ldots \omega_{\mathrm{n}}$ are relatively prime.

Bezout directions and segments

- Bezout direction: every vector ω of Z^{n} whose coordinates $\omega_{1}, \omega_{2}, \ldots \omega_{\mathrm{n}}$ are relatively prime.
- Bezout line going through the origin

$$
\mathbf{D}(\omega)=\{\mathbf{k} \omega, \mathbf{k} \in \mathbf{Z}\}
$$

Bezout directions and segments

- Bezout direction: every vector ω of Z^{n} whose coordinates $\omega_{1}, \omega_{2}, \ldots \omega_{\mathrm{n}}$ are relatively prime.
- Bezout line going through the origin

$$
\mathbf{D}(\omega)=\{\mathbf{k} \omega, \mathbf{k} \in \mathbf{Z}\}
$$

- Bezout line going through point x and of direction ω :

$$
\mathbf{D}_{\mathbf{x}}(\omega)=\mathbf{D}(\omega) \oplus \mathbf{x}=\{\mathbf{x}+\mathbf{k} \omega, \mathbf{k} \in \mathbf{Z}\}
$$

Bezout directions and segments

- Bezout direction: every vector ω of Z^{n} whose coordinates $\omega_{1}, \omega_{2}, \ldots \omega_{\mathrm{n}}$ are relatively prime.
- Bezout line going through the origin

$$
\mathbf{D}(\omega)=\{\mathbf{k} \omega, \mathbf{k} \in \mathbf{Z}\}
$$

- Bezout line going through point x and of direction ω :

$$
\mathbf{D}_{\mathbf{x}}(\omega)=\mathbf{D}(\omega) \oplus \mathbf{x}=\{\mathbf{x}+\mathbf{k} \omega, \mathbf{k} \in \mathbf{Z}\}
$$

- Bezout segment : the sequence of the $(\mathrm{k}+1)$ points

$$
\mathbf{L}_{\mathbf{x}}(\mathbf{k}, \omega)=\{\mathbf{x}+\mathbf{p} \omega, 0 \leq \mathbf{p} \leq k\}
$$

Bezout lines in \mathbb{Z}^{2}

Examples of Bezout vector, lines, and segment in the digital plane

Dilation on Bezout segments

Theorem 1 :

- 1/ The Minkowski sum of the segments $\mathrm{L}_{\mathrm{x}}(\mathrm{k}, \omega)$ and $\mathrm{L}_{\mathrm{y}}(\mathrm{m}, \omega)$ is the segment

$$
\mathbf{L}_{\mathbf{x}}(\mathbf{k}, \omega) \oplus \mathbf{L}_{\mathbf{y}}(\mathbf{m}, \omega)=\mathbf{L}_{\mathbf{x}+\mathbf{y}}(\mathbf{k}+\mathbf{m}, \omega)
$$

Dilation on Bezout segments

Theorem 1:

- $1 /$ The Minkowski sum of the segments $L_{x}(k, \omega)$ and $\mathrm{L}_{\mathrm{y}}(\mathrm{m}, \omega)$ is the segment

$$
\mathbf{L}_{\mathbf{x}}(\mathbf{k}, \omega) \oplus \mathbf{L}_{\mathbf{y}}(\mathbf{m}, \omega)=\mathbf{L}_{\mathbf{x}+\mathbf{y}}(\mathbf{k}+\mathbf{m}, \omega)
$$

- 2/ The opening of segment $\mathbf{L}_{\mathbf{x}}(\mathbf{k}, \omega)$ by $\mathbf{L}_{\mathbf{y}}(\mathbf{m}, \omega)$ is
- the segment $L_{x}(k, \omega)$ itself when $k \geq m$
- The empty set when not

Dilation on Bezout segments

Theorem 1 :

- 1 / The Minkowski sum of the segments $\mathrm{L}_{\mathrm{x}}(\mathrm{k}, \omega)$ and $\mathrm{L}_{\mathrm{y}}(\mathrm{m}, \omega)$ is the segment

$$
\mathbf{L}_{\mathbf{x}}(\mathbf{k}, \omega) \oplus \mathbf{L}_{\mathbf{y}}(\mathbf{m}, \omega)=\mathbf{L}_{\mathbf{x}+\mathbf{y}}(\mathbf{k}+\mathbf{m}, \omega)
$$

- 2/ The opening of segment $\mathbf{L}_{\mathbf{x}}(\mathbf{k}, \omega)$ by $\mathbf{L}_{\mathbf{y}}(\mathbf{m}, \omega)$ is
- the segment $L_{x}(k, \omega)$ itself when $k \geq m$
- The empty set when not
- 3/ The only digital segments that satisfy these two properties are the Bezout ones (because of their unit thickness).

Digital Steiner sets

- Steiner sets : A set in Z^{n} is Steiner when it can be decomposed into Minkowski sum of Bezout segments.
- A Steiner set is not always convex.

Digital Steiner sets

- Steiner sets : A set in Z^{n} is Steiner when it can be decomposed into Minkowski sum of Bezout segments.
- A Steiner set is not always convex. In the figure, if we add the centre, the set becomes convex, but it is no longer Steiner (though it is symmetrical...)

Digital Convexity

- Digital convexity: Set $\mathrm{X} \subseteq \mathrm{Z}^{\mathrm{n}}$ is convex when it is the intersection of all Bezout half-spaces that contain it

Digital Convexity

- Digital convexity: Set $\mathrm{X} \subseteq \mathrm{Z}^{\mathrm{n}}$ is convex when it is the intersection of all Bezout half-spaces that contain it
- Theorem 2
- Every segment is convex ;
- When points x and y belong to the convex set X , then all points of the Bezout segment $[\mathrm{x}, \mathrm{y}$] belong to X
- Hence, By using Bezout' background, we can identify both approaches of convexity, by convex hull, and by barycentre

Reveillès Straight lines

Where the directional parameters a, b, are relatively prime

Reveillès Straight lines

$$
\gamma \leq a x+b y<\gamma+\rho
$$

Thickness of the Réveillès lines

Decomposition

Decomposition of Réveillès straight lines into Bezout ones

$$
\begin{aligned}
& D: \quad \gamma \leq a x+b y<\gamma+\rho \\
& D: \quad \bigcup_{\gamma \leq c<\gamma+\rho}\{a x+b y=c\}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \leq 3 x-5 y<5 \\
& 3 x-5 y=0 \\
& 3 x-5 y=1 \\
& 3 x-5 y=2 \\
& 3 x-5 y=3 \\
& 3 x-5 y=4
\end{aligned}
$$

Convexity for Steiner sets

- Theorem 3 : $\operatorname{In} \mathrm{Z}^{2}$, a Steiner set X of measure

$$
\left\{\mathbf{k}_{\mathrm{i}} \omega_{\mathrm{l}}, 1 \leq \mathrm{i} \leq \mathrm{p}\right\}
$$

is convex iff for one direction, p say, the dilate of the Bezout line D_{p} by the other segments, i.e.

$$
\mathbf{D}_{\mathbf{p}} \oplus \mathbf{L}_{1} \oplus \mathbf{L}_{\mathbf{2}} \oplus \ldots \oplus \mathbf{L}_{\mathrm{p}-1}
$$

is a Réveillès straight line

- Similar statement in Z^{n}.

Steiner convex sets

a)

b)

ISMM 07 Octobre, Rio de Janeiro 55

Steiner convex sets

$2 \mathrm{x}-3 \mathrm{y}=0, \quad$ shifted by \bullet gives $2 \mathrm{x}-3 \mathrm{y}=2$

Steiner convex sets

$2 \mathrm{x}-3 \mathrm{y}=0, \quad$ shifted by \bullet gives $2 \mathrm{x}-3 \mathrm{y}=2$
shifted by gives $2 x-3 y=-3$

Steiner convex sets

$2 x-3 y=0, \quad$ shifted by $\quad \int$ gives $2 x-3 y=-1$

Steiner convex sets

And with the previous shifts

Steiner convex sets

a)

b)

ISMM 07 Octobre, Rio de Janeiro 60

Steiner sets and connectivity

Theorem 4
In Z^{n}, the Steiner set X of measure $\left\{\mathbf{k}_{\mathbf{i}}, \mathbf{1} \leq \mathbf{i} \leq \mathbf{p}\right\}$ with $\mathrm{n} \leq \mathrm{p}$, is connected if and only if for each j such that $\mathrm{n}<\mathrm{j} \leq \mathrm{p}$, the component ω_{i}^{j} of direction ω_{j} w.r.t. axis ω_{\imath} satisfies the inequality

$$
\mathbf{k}_{\mathrm{j}} \omega_{\mathrm{l}}{ }^{\mathrm{j}} \leq \mathbf{k}_{\mathrm{i}}
$$

Anamorphoses

- An anamorphosis between two lattices \mathcal{L} and \mathcal{L} ' is a mapping α such that
α is a bijection from \mathcal{L} and \mathcal{L}^{\prime}
α and α^{-1} are both erosions and dilations.
- Semi-anamorphosis When $\alpha: \mathcal{L} \rightarrow \mathcal{L}^{\prime}$ is a dilation, every granulometry $\left\{\gamma_{\lambda}\right\}$ on \mathcal{L} induces a granulometry $\left\{\zeta_{\lambda}\right\}$ on \mathcal{L}^{\prime} and we have

$$
\alpha \gamma_{\lambda}(X) \leq \zeta_{\lambda}(\alpha X)
$$

with the equality when is an anamorphosis.

- Example : α maps the plane R^{n} on a torus.

Conclusions

- Did you noticed that the previous scale-space approach ignores digital magnification?

Conclusions

- Did you noticed that the previous scale-space approach ignores digital magnification?
- In fact we used equivalence

$$
\lambda \mathbf{B} \oplus \mu \mathbf{B}=(\lambda+\mu) \mathbf{B} \quad \Leftrightarrow \quad \mathbf{B} \text { is compact convex }
$$

for defining homothetics, and we extended this type of decomposition to that of B into dilations of segments.

Conclusions

- Did you noticed that the previous scale-space approach ignores digital magnification?
- In fact we used equivalence

$$
\lambda \mathbf{B} \oplus \mu \mathbf{B}=(\lambda+\mu) \mathbf{B} \quad \Leftrightarrow \quad \mathbf{B} \text { is compact convex }
$$

for defining homothetics, and we extended this type of decomposition to that of B into dilations of segments.

- Arcwise connectivity turns out to be a very specific requirement, that one can add, but which plays no role in the theory.

Conclusions

- Did you noticed that the previous scale-space approach ignores digital magnification?
- In fact we used equivalence

$$
\lambda \mathbf{B} \oplus \mu \mathbf{B}=(\lambda+\mu) \mathbf{B} \quad \Leftrightarrow \quad \mathbf{B} \text { is compact convex }
$$

for defining homothetics, and we extended this type of decomposition to that of B into dilations of segments.

- Arcwise connectivity turns out to be a very specific requirement, that one can add, but which plays no role in the theory.
- Though figures are 2-D, the whole approach works in Z^{n}.

References

http://diwww.epfl.ch/w31sp/publications/discretegeo/

R. Jones, P. Soille, Perodic lines and their applications to granulometries, Mathematical Morphology and its applications to image and signal processing, Maragos P. et al. eds., Kluwer,(1996) pp. 263-272.
Ch. Kiselman Convex functions on discrete sets. In: IWCIA 2004. R. Klette and J. Zunic (Eds.). Lecture Notes in Computer Science 3322 (2004), pp. 443-457.
E. Melin, Digital straight lines in Khalimsky plane. Uppsala Un. Dpt. of Mathematics, Report 2003:30, (accepted for publication in Mathematica Scandinavia).
G. Matheron, Random sets and integral geometry, Wiley, New-York, (1975).
K. Murota, Discrete Convex Analysis, SIAM, Philadelphia (2003).

Proceedings of the DGCI conferences (Discrete Geometry and Computer Imagery), série LNCS de Springer Verlag
J-P. Reveillès Géométrie discrète, calcul en nombres entiers et algorithmique. Strasbourg: Université Louis Pasteur. Thèse d'Etat, 251pp. (1991).
J. Serra Set connections and discrete filtering (Proc. DGCI 1999) Lecture Notes in Computer Science, Vol. 1568, G. Bertrand, M. Couprie and L Perroton (eds.), Springer, (1999), pp 191-206.
P. Soille et H. Talbot Directional Morphological Filtering IEEE PAMI, Vol. $23 n^{\circ} 11$,(Nov. 2001), pp.1313-1329.

