
The Image Foresting Transform
from the Image Domain

to the Feature Space
Alexandre Xavier Falcão

afalcao@ic.unicamp.br.

Laboratory of Visual Informatics (LIV), Institute of Computing (IC),

State University of Campinas (UNICAMP)

A.X. Falcão, ISMM 2007 – p.1/49

http://www.ic.unicamp.br/~afalcao/


What is the IFT ?

The Image Foresting Transform (IFT) is a tool
primarily to the design of image processing
operators based on connectivity [1].
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Contributors

Several colleagues and students who appear in
the list of references at the end of this talk.
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Outline

A short review on the IFT.
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Outline

A short review on the IFT.

How to use it in image processing with a few
examples.

Its extension to the feature space.

Data clustering and watershed segmentation.

On-going works and open problems.
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Motivation

Unification: Several image operators are
derived from a general algorithm. This favors

hardware-based implementations [2],
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Motivation

Unification: Several image operators are
derived from a general algorithm. This favors

hardware-based implementations [2],
to understand the relation among some
image operators [3, 4, 5, 6], and
possible extensions [7, 8, 9, 10, 11, 12].
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Motivation

Efficiency: Most image operators can be
implemented in linear time and further
optimizations are possible with differential
computation [13, 14] and for some specific
applications [15, 16, 17, 18].
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Motivation

Efficiency: Most image operators can be
implemented in linear time and further
optimizations are possible with differential
computation [13, 14] and for some specific
applications [15, 16, 17, 18].

Simplicity: The image operators are reduced
to the choice of a few parameters in the IFT
algorithm and a local processing of its output.
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What kind of problems the IFT solve?

Problems which are either directly or indirectly
related to an optimal image (set) partition.

Distance transforms and related operators:
Euclidean distance transform [19], multiscale
skeletonization [19], fractal dimensions [7],
shape filtering [15, 19], shape
saliences [7, 20, 21], shape
description [20, 22], tensor scale
computation [22], geodesic paths, etc.
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What kind of problems the IFT solve?

Image filtering and segmentation:
Morphological reconstructions [3] and image
segmentation based on watershed
transforms [4, 6, 13, 23], live wire [16, 24],
tree pruning [8, 25, 26], graph-cut
measures [9], and fuzzy-connected
components [10, 17].

Pattern recognition:
Data clustering [11] and supervised pattern
classification [12, 27].
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Images as graphs

The image is interpreted as a graph whose the
nodes are the pixels and the arcs are defined by
an adjacency relation A : (s, t) ∈ A if ‖t− s‖ ≤ di.

s t

(a) (b)

(a) di = 1 and (b) di = 2.
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Paths in the graph

A path πt is a sequence of adjacent nodes
with terminus at some node t.
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Paths in the graph

A path πt is a sequence of adjacent nodes
with terminus at some node t.

The predecessor P (s) of each node s ∈ πt

leads to a root node R(t) and P (R(t)) = nil.

tP(t)

R(t)

A.X. Falcão, ISMM 2007 – p.10/49



Optimum paths

A path πt is trivial when πt = 〈t〉 (i.e.,
P (t) = nil).
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Optimum paths

A path πt is trivial when πt = 〈t〉 (i.e.,
P (t) = nil).

A path function f(πt) assigns a value to any
path πt.

A path πt is optimum if f(πt) ≤ f(τt) for any
other τt, irrespective to its root.

The dual definition f(πt) ≥ f(τt) is also valid.
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The IFT

From an initial path-value map V0(t) = f(〈t〉)
where all nodes are trivial paths.
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The IFT

From an initial path-value map V0(t) = f(〈t〉)
where all nodes are trivial paths.

The IFT minimizes (maximizes) a final
path-value map V (t) = min∀πt

{f(πt)} for
every node t.

The result is an optimum-path forest P — an
acyclic graph where all paths are optimum
according to f .
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The IFT computation

The first roots are identified as the global
minima (maxima) of V0.
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The IFT computation

The first roots are identified as the global
minima (maxima) of V0.

They may conquer their adjacent nodes by
offering them better paths.

The process continues from the adjacent
nodes in a non-decreasing (non-increasing)
order of path value.

if f(πs · 〈s, t〉) < f(πt) then πt ← πs · 〈s, t〉.
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A simple example

An image-graph where arc weights w(s, t)
indicate the dissimilarity between adjacent nodes
and we wish to compute V such that the roots of
P belong to a seed set S = {(3, 3), (5, 1)}.
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its path function

We need to define a path-initialization rule and a
path-extension rule. Path function f1 is then
minimized.

f1(〈t〉) =

{

0 if t ∈ S
+∞ otherwise

f1(πs · 〈s, t〉) = max{f1(πs), w(s, t)}
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Path propagation
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Path propagation
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Path propagation

after 12 iterations.
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Path propagation

after 20 iterations.
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Path propagation
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Path propagation
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Path propagation

after 25 iterations.
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Information propagation

The IFT requires a priority queue Q for path
propagation (modified Dijkstra’s algorithm).
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Information propagation

The IFT requires a priority queue Q for path
propagation (modified Dijkstra’s algorithm).

A root s is an optimum trivial path 〈s〉, such
that P (s) = nil when s is removed from Q.

It can propagate other informations to each
node: a root label [13, 23], its propagation
order [10], a graph-cut measure [9], etc.

The operators result from a local processing
of one or more of these informations.
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Its correctness

For every node t, there must exist at least one
optimum path πt which is either trivial or has the
form πs · 〈s, t〉 where:

1. f(πs) ≤ f(πt).

2. πs is optimum.

3. For any optimum path τs, f(τs · 〈s, t〉) = f(πt).

These conditions are applied to only optimum

paths.
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Euclidean distance transform (EDT)

The EDT of a pixel set S uses Euclidean
adjacency A and minimizes path function f2 [19].

f2(〈t〉) =

{

0 if t ∈ S
+∞ otherwise

f2(πs · 〈s, t〉) = ‖t−R(s)‖

where R(s) is the root of s.

A.X. Falcão, ISMM 2007 – p.19/49



EDT with Label Propagation

A consecutive integer number can be assigned to

each contour pixel in S and propagated to the rest

of the image.
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Multiscale skeletons

A difference image is obtained from the labeled

image. Increasing thresholds create more simpli-

fied one-pixel-wide and connected skeletons.
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Skeletons of multiples contours

The method is easily extended to incorporate the

SKIZ in the case of multiple contours.
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Shape saliences

Skeleton saliences are detected from the aper-

ture angles of their influence zones within a small

dilation radius, leading to contour saliences [7].
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Watershed from regional minima

We want to propagate a distinct label for each
minimum. This can be done by forcing a single
root in each minimum.
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its path function

The minimization of path function f3 forces a
single root per minimum.

f3(〈t〉) =

{

I(t) if t ∈ R
I(t) + 1 otherwise

f3(πs · 〈s, t〉) = max{f3(πs), I(t)}

where I(t) is the image value of t andR is the root

set identified on-the-fly by: if P (s) = nil when s is

removed from Q then s ∈ R. Note that V(t)=I(t).
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Superior reconstruction

The minimization of path function f4 computes in
V the superior reconstruction of a mask image
Î = (I, I) from a marker image Ĥ = (I, H) [3].

f4(〈t〉) =

{

I(t) if t ∈ R
H(t) otherwise

f4(πs · 〈s, t〉) = max{f4(πs), I(t)}

where I(t) < H(t) for all t ∈ I. We are forcing

one root in R for each minimum of V .
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Watershed from gray-scale marker

Simultaneously, the IFT with f4 computes the
watershed from the minima of V in a label
map [3, 4].

Image Ĥ is the closing with di = 2.5 on gradient

Î, plus 1 (di = 3.5 for the IFT).
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Extension to the feature space

The graph nodes may be images, shapes,
regions or other type of samples of a dataset.
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Extension to the feature space

The graph nodes may be images, shapes,
regions or other type of samples of a dataset.

Each node s is represented by a feature
vector ~v(s) of n dimensions.

The similarity between adjacent nodes is
given by a distance function d(s, t) (e.g.,
d(s, t) = ‖~v(t)− ~v(s)‖).
A pair (~v, d) defines a descriptor for the data
distribution in the feature (metric) space.
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Adjacency relation for data clustering

The adjacency relation Ak interprets the dataset
as a k-nn graph.

Ak : (s, t) ∈ Ak (or t ∈ Ak(s)) if t is k nearest
neighbor of s in the feature space.

The best value of k is obtained by minimizing a

graph-cut measure on the data clustering results

for increasing values of k [11].
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The k-nn graph

The graph is weighted on the arcs (s, t) ∈ Ak by
d(s, t) and on the nodes by a probability density
function (pdf) ρ.

ρ(s) =
1√

2πσ2|Ak(s)|
∑

∀t∈Ak(s)

exp

(−d2(s, t)

2σ2

)

where σ =
df

3 and df = max∀(s,t)∈Ak
{d(s, t)}.
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An example of PDF

Data samples of connected clusters in a 2D
feature space and their pdf.

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

The pdf varies from blue to red. The influence

zones of its maxima define clusters (the mean-

shift approach).
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The mean-shift approach

The mean-shift algorithm computes the influence
zones by following, for each sample s, the
direction of the gradient of the pdf towards the
steepest maximum around s. It is more robust to
maximize f5 with the IFT algorithm.

f5(〈t〉) =

{

ρ(t) if t ∈ R
ρ(t)− δ otherwise

f5(πs · 〈s, t〉) = min{f5(πs), ρ(t)}
δ = min

∀(s,t)∈Ak|ρ(t) 6=ρ(s)
|ρ(t)− ρ(s)|.
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the result is

the dual of the IFT with f3 on ρ (watershed from
regional minima).

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

The dual of the IFT with f4 on ρ (watershed from

gray-scale marker) can do better, by reducing the

number of irrelevant clusters in real applications.
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Data clustering by IFT

We then use path function f6 for data clustering.

f6(〈t〉) =

{

ρ(t) if t ∈ R
H(t) otherwise

f6(πs · 〈s, t〉) = min{f6(πs), ρ(t)}

where ρ(t) > H(t) and H(t) can be the result of

some anti-extensive operation on ρ, minus δ. We

may scale ρ in [1,K] and set δ = 1.
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Application to image segmentation

The feature vectors ~v(s) can be created by a
sequence of ASF by reconstruction for
increasing values of di, and d(s, t) may be
‖~v(t)− ~v(s)‖.
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Application to image segmentation

The feature vectors ~v(s) can be created by a
sequence of ASF by reconstruction for
increasing values of di, and d(s, t) may be
‖~v(t)− ~v(s)‖.
The best k-nn graph is usually impractical
when the image pixels are the nodes of the
graph.

However, we can reduce the image scale and
use its best k-nn graph to find a good df for
pdf computation.
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The pdf computation for images

The adjacency relation A and ρ(s) are defined by

A : (s, t) ∈ A if d(s, t) ≤ df and ‖t− s‖ ≤ di,

ρ(s) =
1√

2πσ2|A(s)|
∑

∀t∈A(s)

exp

(−d2(s, t)

2σ2

)

where σ =
df

3 and di = 5.0 is usually fine.
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A few results

Most image objects can be either correctly
segmented or divided into a few regions.
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A few results

Most image objects can be either correctly
segmented or divided into a few regions.

An anti-extensive operation on ρ (e.g.,
volume/area opening in the graph) is required
in most cases to eliminate the influence
zones of irrelevant maxima.

A.X. Falcão, ISMM 2007 – p.37/49



Running dog
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Resting cow/bull
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Dreaming house
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Colored peppers
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Car plate
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MR wrist
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Connected cells
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CT knee
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MR brain
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Some on-going works

The IFT architecture [2].
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The partition IFT [14].

Shape models to guide image segmentation
by IFT.
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Some on-going works

The IFT architecture [2].

The partition IFT [14].

Shape models to guide image segmentation
by IFT.

Supervised pattern classification based on
IFT and pdf.
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Some open problems

How many ways one can combine object
models with IFT operators for more effective
image segmentation?
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Some open problems

How many ways one can combine object
models with IFT operators for more effective
image segmentation?

Can we do image compression using the IFT?

How to devise new image operators using
sequences of differential IFTs [13]?

Can we develop super resolution techniques
using the IFT-classifiers?
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