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Abstract—The goal of image segmentation is to 

separate objects from a cluttered background.  It is an 

important step on the identification of shapes contained 

in the image.  A turning function is a 1D shape signature 

and can be used as a 2D shape representation. We 

propose a way to identify and modify classes of shapes 

by operating directly on the turning function space.  In 

this work we present a formal definition of turning 
functions and a way to identify circles and lines in 

turning functions in order to find complex shape classes 

determined by user defined constraints.  

Keywords - shape analysis; object recognition, shape 
modeling; shape matching, turning function, segmentation. 

I. INTRODUCTION 

Image segmentation is the process of identification of 
contiguous pixel regions (image segments) that may 
belong to the same object on the original scene.  The 
classical approach to do this involves no prior 
knowledge about the objects [1].  Thresholding, edge 
extraction and region growing are three strategies to 
perform image segmentation.  These strategies can be 
useful as a step on the extraction of objects from images 
toward shape representation/ identification and scene 
understanding.  Shape analysis is usually performed on 
object contour data extracted from a segmented image 
and represented as a set of 2D points (or 2D vectors) in 
Euclidian space.   

To improve the segmentation process we suggested  
[2] an object-based approach that cause image segments 
to properly match the geometric behavior expected of the 
shapes of each class of objects.  We introduced the idea 
of using the turning function transform to model shapes 
and enhance segmentation capabilities.   

During the segmentation process the extraction of 
edges of each image segment result in a closed polygon. 
There are several categories of procedures to recognize 
objects in images by their contours.  The most common 
are direct approaches in which information is obtained 
directly from the 2D contour in raster or vector 
representation.  These approaches use the contour itself 
with some preprocessing to filter, regularize or simplify 
it for further matching or classification.  Some 
capabilities are enhanced in a transformed space, which 
maps from the original image space into a new space.  
The shape represented in a parametric space has a new 
geometry.  Basic tools are necessary for the 

identification and handling of ways to explore the new 
properties inherent to the transformed shape.  In a 
transformed space the same real world object have a 
diverse geometric configuration in which the extraction 
of edge information and the assignment of classes are 
done in a different way.   

Shape characterization and classification are 
discussed by [3].  General principles and models of 
image analysis are presented and discussed by [4].  
Signature functions can be used to characterize object 
contours for further shape classification and analysis [5, 
6].  The method presented in this work is based in the 
transformed space of the turning function where the 
shape classes can be modeled by rules or constraints to 
match models. 

II. FOUNDATIONS OF TURNING FUNCTION SPACE 

In this section we present the foundations of the 
turning function space and explore some of its features 
and limitations.  We define first turning function and 
then its feature space. 

A. Turning function 

An image segment resulting from a segmentation 
process is a closed shape that can be represented as a 
polygon.  Any finite two-dimensional polygon 
represented in the Euclidean plane can be converted into 
a turning function.   

 

Figure 1.  Turning function of a rectangle OBCD, where O≡E. 

Turning functions, also called turning angle functions 
[7] and ψ-s curves [8, 9], are represented on a tangent 
angle versus arc length plot and consists on a 1D 
description of the 2D shapes.  They are generated by 
traversing the boundaries and obtaining the angle 
between a reference line and the tangent of that point to 
the boundary.  Fig. 1 shows a rectangle OBCD 
represented by its turning function.  In this paper when 
we write an angle x we mean x radians. 
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B. Turning function space 

Turning functions can be represented graphically as a 
mapping from Euclidean space to a space named turning 
function space and represented by Θ.  The function is 
bijective and thus modifications in one space changes the 
other.  The transformed space is a cylindrical projection.  
Polygons are represented by a finite number of 
horizontal line segments in Θ.  The turning function θ(s) 
starts from a sample point on the contour and follows the 
curve counterclockwise [10].   

C. Related methods 

When an original image is transformed to other 
spaces certain techniques can be applied to obtain better 
results.  Separable and orthogonal transforms, Fourier 
transform, Walsh and Hadamard transform, discrete 
cosine, Gabor, Wavelet, Hotelling, Radon and Hough are 
discussed in [8] as playing an important role in several 
image processing techniques. 

Template matching can be used to detect edges in 
blobs or contours.  That technique needs the shape to be 
known a priori and it needs the shape’s estimated size 
and orientation.  Template matching approaches use only 
known object models and can use several instances of 
the same object to select one with the best matching 
score. 

Flexible shape extraction includes deformable 
templates, active contours, snakes, shape skeletonization 
and active shape models.  The main goal of these 
methods is to evolve to the target solution or adapt their 
result to the data when it is not possible to model a shape 
with sufficient accuracy [12]. 

Turning function belongs to the category of shape 
signature functions, which is a shape descriptor as are 
the Fourier descriptors.  Reference [7] use chain code 
and turning function to guide polygonal approximation 
of contours.  Our approach differs on this by proposing 
modification on the space rather than in shape. 

D. Considerations about turning functions 

A turning functions is sensitive to noise, it has a 
computational cost associated with matching and it may 
cause errors that occur in matching when the border is 
slightly changed [11].  The arc length grows locally with 
noises resulting in the whole perimeter increase.  The 
withdrawal of a speckle, for example, makes the right 
part of the function to be modified.  In this proposed 
method the goal is to simplify some operations for 
certain types of shape, particularly for simple or complex 
shapes composed of lines and arcs of circles.  Many 
remote sensing man-made urban objects have this 
property.  

III. THE PROPOSED METHOD 

A. Preparing the turning function 

A traditional preprocessing step is used to obtain the 
boundary polygon from the binary blob [13].  The 
polygon is then converted to the turning function 
representation.   

Ordinarily shape detections are performed in the 
Euclidean space, but using the turning function space 
allows the exploration of the simplicity that exists in this 
representation. One can filter polygons, but at this stage 
of the studies we performed the filtering before obtaining 
the turning function and then categorize the shape.  Each 
group of adjacent line segments of a turning function can 
be simplified by a single segment that has the same start 
and end points of the group (Fig 2).  In this example each 
five segments form a group. 

 

Figure 2.  A schematic turning function representation (upper right) 

and its left side (upper left) and after substitutions (bottom). 

Whenever we find a noisy line segment then it must 
be straightened by replacing it by the resulting vector.  
Some issues related to the segment’s minimum size and 
noise tolerance are inherent to the definition of the model 
and are being discussed briefly in this paper.  In practical 
terms we need to recognize whether it is a line segment 
or not.   

Since shapes in digital images are discrete, any curve 
will be represented as a polygonal approximation.  A 
polygon P can be defined as a set of n vertices, P = {p0, 

p1,…, pn−1}, where pi−1 is adjacent to pi mod n i ∈{1,…, n}. 

Can also de defined as a set of line segments, P = {∆s1, 

∆s2,…, ∆sn} where ∆si = si mod n −si−1, is the line segment 

joining two adjacent vertices pi−1 and pi mod n in P. Further 

for each line segment ∆si , θi ∈ [0,2π) is its slope angle. 
Furthermore if ui(s) is the indicator function (ui(s) = 1 if 

s ∈ [si−1,si) and 0 otherwise) and given that s0=0, the 
turning function can be defined by a step function θ, as 
defined in (1) . 
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In order to determine the area of a closed polygon we 
may use (1).  We can define si as the edge length from 
origin (point O, with length s0=0) to a certain ith position.  
In Fig. 1 the respective i

th positions for points B, C, D 
and E are 1,2,3 and 4.  The area is A, ∆si is the length of 
each of the n segments and θi is the cumulative deviation 
angle of the turning function. 
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B. Line segment substitution 

The operations of the Euclidean domain can be 
performed either graphically or analytically on the Θ 
space because there is no loss of information.   

To find a line segment in turning function space we 
first calculate the equivalent line segment between the 
vertices t0 and tf using (3), and then find the signed 
horizontal component sH by projecting all the sides on 
the range onto the axis. 
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Do the same for the vertical signed direction sV (4).  
A negative term means an opposite direction and in Θ is 
equivalent to add π/2 in θ. 
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The orthogonal components (3) and (4) result in a 
new component which length is sEquiv (5) and which 
angle is θEquiv (6). 
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These equations allow one segment to replace any 
sequence of line segments keeping the same start point 
and end point.  Particularly in this approach this is very 
useful because noise on the binary blob greatly alter the 
graphical representation of the turning function.  If 
instead of sH and sV, we have sA and sB that are not 
guaranteed to be orthogonal, we must use the generic 
equations (7) and (8) instead. 
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As stated, polygons in Euclidean space are 
represented by line segments in Θ, but we can find larger 
segments from the alignment of smaller segments and 
circles based on line geometry.  Tolerance parameters 
are needed in implementation.   

C. Arc detection 

Once we found all trivial linear segments we could 
search for circle arcs.  In Θ circle arcs are ladder-shaped.  

The height of each step corresponds to the accumulated 
value of the angle from the initial segment.  If the radius 
of curvature is consistent with a circle and the angle is 
below a certain threshold then the figure is a circle arc, 
otherwise the figure is a polygon.   

Fig. 3. presents circles and the turning function 
contains several stair-like sequences and, as the figure is 
relatively noiseless, we can visually recognize stair 
shapes of distinct slopes, meaning different curvatures 
and therefore, distinct circles or arcs.  We can search for 
the tangent circle radius and compare its curvature radius 
for each point.  The goal is to exploit the simplicity of 
the geometry.  

 
Figure 3.  A binary image of an object, a vectorized contour and the 

turning function. 

For a polygon with n sides, t is a position of one 
vector on the curve (t=1,2,…,n) and n is therefore the 
number of steps in the stair of the turning function, we 
first find the radius.  Next we test if the hypothesis of 
vertex t belongs to the arc.  If so, we store tstart=t, and 
rarc=rt.  To find out if the next sequence is compatible 
and the last t is part of the same arc we need to use for 
each new vector the decomposition of sH and sV and find 

the resulting vector defined by sEquiv and θEquiv.  This 
vector is the segment between t0 and tf.   

D. Circumference 

The representation of a continuous circle in turning 
function space is a sloping straight line ranging from 0 to 
2π and with the slope larger if the radius is smaller.  
Circles extracted from images have discrete number of 
vertices and therefore its turning function is a 
monotonically increasing stair-shaped function.  We can 
reconstruct shapes in original position, scale and 
rotation.  Turning functions convert circles to lines.  
Polygon exterior angle is the one formed by a side of a 
polygon and the extension of its adjacent side.  In a 
turning function space it is represented as the 
discontinuity amount between two horizontal segments.  
This interruption sometimes is represented graphically as 
a vertical line.  All points in a vertical alignment 
represent the same point.   

A shape description to be used is a prior knowledge 
about the object category.  The statements depict a class 
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of objects and all possible variations, presenting fixed or 
non fixed and positive or negative allowances of: angles, 
curvature radius, sub shapes compounds, sizes, 
quantities, regularities, symmetry and so on.   

E. Circle passing through three vertices 

For any two adjacent line segments, ai=si−si−1, and 
bi=si+1−si, with turning angle ∆θi, the radius of curvature 
is (11).  These segments can be obtained by substitution 
of other segments and refers to the ith position vertex. 
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Using exhaustive search to find all segments that 
matches similar values of radius and angle to the center 
of the inscribed circle with radius ri.  Testing one by one 
all the vectors are tested and, if we do not have an arc 
then we leave the segment as a polygonal line.   

We can find the center position of the circle obtained 
from (9) by using (10), where ∆βi is the noncumulative 
turning angle from ai segment in the direction of the 
center of the circle.  This is to be used if the process 
needs more accuracy. 









+∆=∆

i

i
ii

r

b

2
arccosθβ                (10) 

This leads us to circles and line segments and we 
need to make approximations to find a way to group the 
values, for example, with the distance to the mean of the 
value. With this and a model of constraints we can 
recognize all the shapes we need to classify, such as 
circles, parallelograms, triangles, complex shapes etc. 

IV. CLASSIFICATION 

Shape classification is the assignment of classes or 
categories to shapes according to their properties [6].  
We are interested in the classification of shapes or 
regions of those shapes accordingly to predefined 
models.  To do so we need to identify properties and 
patterns on the shapes and models.  We need to know the 
turning function behavior and basically how to find lines 
and circles to be able to find both simple and complex 
shapes as the ones in Fig. 4. 

 

Figure 4.  Example of two binary blobs. 

The classification method being proposed needs 
some models and rules to define the expected features 

each shape’s class.  Some other alternatives could 
include the learning by examples and the definition of 
parameters for flexible template matching.  To verify the 
feasibility of the method we used simple classes like 
circles and rectangles.  Complex shapes can contain sub-
shapes.  We could find lines and arcs and classify them 
accordingly, whether the noise was not too large.  It must 
be pointed that we do not want to classify the whole 
shape as belonging to one class, but also to classify the 
different subshapes which may represent extrusions, 
intrusions, shape overlaps, etc. This can be done with the 
methods presented in section III: for each known shape 
signature we can verify its occurrence on the main shape 
and try and determine the subshape parameters. 

V. CONCLUSION 

We presented a new approach to characterize shapes 
by the use of a signature-based 1D function. The main 
objective of this method is to show theoretically that it is 
feasible to work with turning functions and apply them 
to the classification of shapes and subshapes present in 
binary images.  This method uses turning function space 
to find circles and lines being represented as piecewise 
aligned lines on a turning function transformed space.   
Turning functions are sensible to noise effect.  This 
could be a negative aspect of this approach, but 
preliminary studies in this sense indicate that this same 
feature can help the identification of noises.  We are still 
on the preliminary steps of the study of turning functions 
for shape and subshape classification, but the theoretical 
foundations and preliminary results are promising. We 
intend to keep researching this approach for application 
in model-based object recognition in images 
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