
Journal of the American Society for Information Science and Technology

(JASIST), in press, 2006

Information Policies and Open Source Software in

Developing Countries

Gilberto Camara

Image Processing Division (DPI)

National Institute for Space Research (INPE)

Av dos Astronautas, 1758

São José dos Campos SP 12227-001

Brazil

Phone: +55-12-3945-6499

Fax: +55-12-3945-6460

E-mail: gilberto@dpi.inpe.br

Frederico Fonseca

School of Information Sciences and Technology

The Pennsylvania State University

307E Info Sciences and Technology Building

University Park, PA 16802-6823

U.S.A.

Phone: (814) 865-6460

Fax: (814) 865-6426

E-mail: fredfonseca@ist.psu.edu

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

1

Information Policies and Open Source Software in

Developing Countries

Abstract

Many authors propose that open source software (OSS) is a good strategy to bring

information and communication technologies to developing countries. Nevertheless, the

use of OSS needs to be more than just adopting Linux as the standard for operating

systems. Adoption of OSS is not only a choice of software, but also a means of acquiring

knowledge. Developing countries have to use OSS as a way to gain knowledge about the

technology itself and as a way of creating technology products that fit their specific

needs. In this paper we introduce a model of OSS based on its essential characteristics to

understand how developing countries may use OSS to achieve their development goals.

We argue there are two defining properties of any open source software. The first

property is the potential for shared conceptualization and the second is the potential for

modularity. By assessing how each OSS project satisfies these two conditions, we build a

taxonomy for open source projects. This taxonomy will help the development of more

sensible policies to promote the use of open source in developing countries.

Keywords: Open Source Software, Developing countries, Information and

communication technologies, Software development, Information policies

1. INTRODUCTION

Information and communication technologies (ICTs) are at the center of recent

transformations in our society. Although the changes take place mostly in industrialized

nations, some developing countries are also becoming aware of the potential for change

that ICTs bring with themselves. There is an increasing consensus the arrival of ICTs

may be a good opportunity for developing countries to reach their development goals.

Nevertheless, there are some cases in developing countries in which ICTs are not being

effective in improving the lives of people (Mansell & Montalvo, 1998). In developing

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

2

countries, even in areas of the economy in which technology could play a fundamental

role, the rate of failure of ICTs can reach almost 50% (Ehikhamenor, 2003).

There are many suggestions of feasible strategies for implementing ICTs in

developing countries. A topic of particular interest is adopting open source software

(OSS) as a means of reducing licensing costs and of promoting indigenous technological

development by having access to the source code of these products. A recent document

on intellectual property rights and international development commissioned by the

government of the United Kingdom underpins such policies. The main recommendation

is that “developing countries and their donor partners should review policies for

procurement of computer software, to ensure that options for using low-cost and/or open-

source software products are properly considered and their costs and benefits carefully

evaluated” (Barton et al., 2002). Other reasons for adoption of OSS in developing

countries include avoiding being hostage to proprietary software (UN, 2004), advancing

knowledge more quickly (UN, 2003), and helping to set up an information economy

(Weerawarana & Weeratunga, 2004).

Open source software is thus considered to have a potential impact for knowledge

acquisition by developing nations. As Weber (2004) points out, combining free software

tools with the technical workforce available in developing countries can enable

technology transfer. He states that "the essence of open source is not the software. It is

the process by which software is created" (Weber, 2004 p.56). He expects OSS to have

far-reaching effects: "Of course information technology and open source in particular is

not a silver bullet for long–standing development issues; nothing is. But the

transformative potential of computing does create new opportunities to make progress on

development problems that have been intransigent" (Weber, 2004 p. 254).

As seen above, many authors express hopes about the potential and expected

impact of OSS in developing countries. These statements rely on external views of the

process of OSS development, where authors examine trends in adoption, case studies,

and user and developer profiles. In this paper, we take an internal view of OSS

development and focus on the essential properties of OSS. We refer to these properties in

the same vein as the classic paper by Fred Brooks, “No silver bullet – essence and

accidents of software engineering” (Brooks, 1982). Following Brooks, we try to uncover

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

3

key properties of OSS projects and to examine how these properties influence public

policies for OSS. Therefore, this paper addresses two related points:

• What are the essential properties of open source?

• Taking these properties into consideration, what are the desirable and

necessary characteristics of public policies that will promote OSS in

developing nations and help its sustainability?

In this paper, we propose policies for sustainable use of OSS in developing

countries. We consider that there are inherent properties of OSS that need to be

considered in any public policy that aims at adoption of OSS in developing nations. We

set the context in sections 2 and 3, by examining the relation between OSS and

knowledge transfer and by examining the profile of OSS practitioners in a large

developing nation (Brazil). In section 4, we develop a typology of OSS, based on

essential characteristics of software as a technology. Then, in section 5, we consider how

these properties bear on public policies for OSS adoption in developing nations. Finally,

in section 6, we present a case study of a government policy for an endogenously driven

OSS project in Brazil.

2. KNOWLEDGE AND SUSTAINABILITY IN DEVELOPING NATIONS

There is a consensus that knowledge is decisive for development (Reed, 2000).

Information, learning, and adaptation are important for sustainability of economies, as

much as increasing physical capital. Nevertheless, creating, gaining, and using scientific

and technological knowledge in developing countries is a Sisyphean task (Sagasti, 2004).

One of the needs for the sustainability of technological projects in developing countries is

that new technologies respect and preserve indigenous knowledge and techniques. These

technologies have to be well chosen if they are to serve the goals of social and human

development of these countries. Otherwise, the new knowledge will only increase the

already alarming levels of exclusion and inequality (Reed, 2000).

A key ingredient in setting up ICTs in developing countries is what Braa et al.

(2004) call sustainability. “Sustainability is the challenge to make an information system

work, in practice, over time, in a local setting. This involves shaping and adapting the

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

4

systems to a given context, cultivating local learning processes, and institutionalizing

routines of use that persist over time (Braa et al., 2004)”. We aim at understanding OSS

as a way by which developing countries gain new knowledge. If ICTs are to be successful

in developing countries, they have to be sustainable. For this to happen, the developing

country must absorb the knowledge embedded in the technology.

The spread of technology throughout the world encompasses diffusion, absorption

and reinterpretation of the new knowledge. “Spread of technology involves interaction

between the imported scientific knowledge and the traditional modes of speculative

thought” (Sagasti, 2004 p.2). We see OSS as a unique opportunity to leverage the

developmental goals of developing countries. OSS should be used to gain knowledge

about the technology itself and as a way of creating technology products that fit the

specific needs of developing countries. The duality of OSS being at the same time a

technology and a product will enable developing countries to take an active role in

bringing in ICTs. OSS should be both a way of gaining software development skills and

an instrument for social change. To fill this dual role, OSS products should fit the reality

of developing countries. These products will trigger social changes when they adequately

address the information needs of developing countries.

The success of ICTs in a country is closely related to a national ICT governmental

policy (Ehikhamenor, 2002). Government in developing countries has a leading role in

the economy and in setting up markets. Nevertheless, the role of OSS for developing

countries has to go beyond government mandated use of Linux and other popular open

software. OSS has a much more important role in supporting the development goals of

these countries. OSS can help developing countries master the technology of software

development and enable applications that leverage local knowledge. To reach these

benefits, information policies need to rely on a thorough understanding of OSS. We

analyze here some principles to guide the design and implementation of strategies to

create and gain endogenous science and technology skills in developing countries by

using OSS.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

5

3. THE MOTIVATION OF OSS TEAMS: WHAT CHANGES IN

DEVELOPING NATIONS?

Several authors have studied the motivations of OSS developers (Amabile, 1996;

Deci, Koestner, & Ryan, 1999; Feller & Fitzgerald, 2002; Frey, 1997; Ghosh, Rudiger

Glott, Kreiger, & Gregario Robles, 2002; Hertel, Niedner, & Hermann, 2003; Lerner &

Tirole, 2002; Raymond, 1999; Rossi, 2004). What emerges from these studies is that OSS

developers have different primary motivations, with an emphasis on peer recognition and

sense of identification with a community. Lakhani and Wolf (2005) found that

“enjoyment-based intrinsic motivation, namely how creative a person feels when working

on the project” is more important than what is shown in previous findings which related

motivation mainly to external factors in the form of extrinsic benefits. Linus Torvalds

thus expresses this sense of identification: “The act of making Linux available wasn’t

some agonizing decision that I took from thinking long and hard on it: it was a natural

decision within the community that I felt I wanted to be a part of.” (cited in Rossi, 2004

p.9). However, there are also a growing number of programmers which develop OSS as

part of their main job and are paid to do it (Feller & Fitzgerald, 2002). In a survey in

Europe, Ghosh et al. (2002) found that most of the OSS developers receive some

monetary reward for their work.

There are few comprehensive surveys about the motivation of OSS programmers

in developing countries. In Brazil, the Ministry for Science and Technology

commissioned a survey on OSS developers which received 3237 responses in which 1953

from developers and 1704 from users (Stefanuto & Salles-Filho, 2005). The survey found

that close to 40% of the respondents had a paid job to develop OSS, which is a similar

profile found in the European survey reported by Ghosh et al. (2002). Some of the

findings of the Brazilian survey include:

• Only 14% of the respondents are involved in OSS product development.

The others work mainly on training and customization of existing OSS

products;

• A few respondents (20%) are involved in OSS projects that address typical

government needs. The most frequent application areas for government

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

6

projects are infrastructural, such as Linux-related services (security,

network management and web servers).

• Only one-third of the developers share the software they develop, by

putting the product on a publicly accessible repository.

The study found there were four interrelated motivational factors for using OSS in

Brazil: technical, economic/financial, skill related and ideological. The motivations vary

depending on the participant. For corporate users, economic and technical reasons such as

cost reduction, greater flexibility to adapt, improved quality, greater independence of

suppliers, and greater security were the main motivating factors. Individual developers

were motivated by new skills acquisition and employability. Ideological factors, although

present, were of minor importance both for corporate and individual users. The survey

also points out the lack of adequate government policies in Brazil to promote sustainable

OSS projects. Two key findings support this view. First, only 14% of the developers

work in OSS software development, the rest being involved in adaptation of existing

products and associated tasks. In addition, only 20% of the developers are working to

fulfill typical government needs and those are mostly involved in infrastructure building.

These numbers are consistent with the lack of mature OSS products for applications in

education, public health, environment, and security (Schmidt & Schnitzer, 2002). They

indicate the lack of specific government policies for promoting OSS that addresses the

information technology needs of the public sector.

The results of the Brazilian survey support the view that OSS programmers in

Brazil share similar motivations to those in developing nations (Feller & Fitzgerald,

2002; Rossi, 2004). This is not surprising, considering that the community of

programmers is an internationalized one. Programmers follow the latest international

trends and as the Brazilian survey shows, they are not ideologically motivated. They are

responsive to professional opportunities, including paid jobs. Thus, it is much more likely

that Brazilian programmers engage in OSS projects initiated in developed nations (e.g.,

by joining a community in sourceforge) or get a paid job to adapt an OSS product for a

customer. In general, most OSS projects for government organizations are at the add-on

or small-scale. A prime example is web services that use OSS tools such as Apache,

mySQL and PhP.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

7

The main limit for developing large-scale OSS projects for the Brazilian

government and private customers has to do with the impact of legacy software. These

are mostly mainframe applications, implemented over a long period. Information

technology managers are often unwilling to allow the risk associated to modernizing

these products. Programmers associated to these systems are also reluctant to undergo a

training program to use OSS tools. Therefore, without a direct public policy for

addressing these limitations, OSS use will grow at the fringes of public and private

companies and their core applications could remain based on proprietary software.

In short, the profile of OSS developers in Brazil shows a conservative trend.

Programmers are usually linked to ongoing projects, both at individual and corporate

levels. It is much simpler for an individual to join an existing community than to create a

new one. Companies also consider less risky to base their strategies on proven OSS

products than to build new ones. This conservative approach does not address the needs

of many important IT areas for developing nations. In order to change such a scenario,

government should intervene and set up suitable public policies. However, such policies

have to consider the specific nature of OSS software. Therefore, we examine the essential

properties of OSS in the next section. Based on these essential properties, we argue for

appropriate public policies in Section 5.

4. A MODEL FOR OPEN SOURCE SOFTWARE

In this section, we introduce a model to understand OSS based on its essential

characteristics. This model will help to us discuss the boundaries of applicability of the

OSS model and respond to issues raised by Weber (2004). Based on the model, we also

suggest government policies for promoting ICTs in developing countries. Currently, there

is an assumption by some that OSS projects are inherently modular and well understood

by their developers. This view has its roots in Eric Raymond’s manifesto, “The Cathedral

and the Bazaar”, in which he states the “Linus’ law”: “Given enough eyeballs, all bugs

are shallow” (Raymond, 2001). In other words, if a large community of developers

understands the source code of the software system, bugs will be discovered at a rapid

rate. Along this line, Bollinger et al. (1999) consider that OSS projects should be

‘rigorously modular, self-contained and self-explanatory’.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

8

However, it is important to consider: are all successful OSS projects modular and

self-explanatory? Modularization and ease of understanding are difficult qualities to

achieve at the same time. Decades of experience point out that the most difficult phases

of software production are achieving a clear conceptual design (Brooks, 1982) and setting

up a feasible strategy for modular development (Parnas, 1972). The two conditions are

not easy to achieve simultaneously. As Brooks (1972) points out: “For efficiency and

conceptual integrity, one prefers a few good minds doing design and construction. Yet for

large systems one wants a way to bring considerable staff to bear, so the product can

make a timely appearance. How can these two needs be reconciled?" The open source

movement has not refuted this overall panorama of software development because proven

software engineering principles are also present in OSS (Fitzgerald, 2004). Thus, we

argue that OSS has two essential properties. The first property is the degree of shared

conceptualization¸ that constrains the potential for the software to be understood by a

large community of programmers. The second is the degree of modularity of the product

that constrains the potential for setting up a distributed development team. By assessing

how each OSS project fits these two properties, we can build a taxonomy for open source

projects. This taxonomy will help setting up information policies to promote the use of

open source in developing countries.

4.1. The first essential property: The degree of shared conceptualization

A good conceptual design is a crucial part of any successful software project.

Faulty designs are a major cause of failures in software projects (Brooks, 1982). The

design problem is even more important for OSS. Effective communication between

programmers scattered in different places needs sharing the same conceptual view. This

conceptual view is difficult to capture in written documents, and is much easier to

achieve when there is a prior common background. This explains why many successful

projects rely on existing designs. We call this ‘shared conceptualization’. The two main

conditions for shared conceptualization to happen are:

1. The post-mature perspective (G. Câmara & Onsrud, 2004): a private company

develops a software product, for which it holds the intellectual property rights. As

the product becomes popular, its functionality and conceptual model becomes

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

9

well settled, and it becomes part of the “public commons”. The popularity and

usability of the software motivates other institutions to develop a public domain

equivalent, as in the Open Office suite.

2. The standards-led perspective (G. Câmara & Onsrud, 2004): standards

consolidate a technology and allow compatible solutions from different producers

to compete in the marketplace. An example is the SQL database standard, which

has motivated products such as mySQL and PostgreSQL. Another example is the

POSIX standard for operating systems, which has served as guidance to Linux.

4.2. The second essential property: The degree of modularity

The second property affecting software development is the degree of modularity.

A modular software organization enables breaking the project into small pieces and

assigning them to different developers. The role of modularity leads to questions such as:

what are the limits for modularity in a software product? Are all software products born

equal? Are there inherent differences between an operating system, a web server, and a

database management system that limit the modularity of each product?

We argue that each different software product has an inherent potential for

modularization. All software products have a core part (a kernel) and functions that use it

(a periphery). An operating system such as Linux has a well-defined kernel for process

control and a periphery consisting of programs such as device drivers, applications,

compilers and network tools. Differently, database management systems have a kernel of

integrated functions (parser, querier, scheduler, and optimizer) and a much smaller

periphery. Each software product has a periphery to kernel ratio that constrains the

potential for modularization, since the kernel needs a tightly organized and skilled

programming team. This claim is consistent with empirical studies that strongly dismiss

the idealized conception of open source projects as based on a loose network of

developers spread worldwide. Out of more than 400 developers, the top 15 programmers

of the Apache web server contributed with 88% of added lines (Mockus, Fielding, &

Herbsleb, 2002). Fitzgerald (2004) calls these top programmers ‘code gods’ and

considers that overcoming this problem is one of the challenges of OSS. Sagers (2004)

has a more positive attitude towards this ratio (few skilled to many unskilled

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

10

programmers). He thinks that restricted access to main parts of the code improves

coordination, which in turn affects positively the success of a software project.

One of the principles of the open source movement is the need for modularity.

The analysis of the impact of modularity in OSS program team organization has received

increased attention from the OSS research community. One of these studies,

MacCormack et al. (2004) compare the modularity in the architectures of Linux and in

the two versions of Mozilla. The authors use the “dependency structure matrix” (DSM),

which expresses dependencies between parts of a complex structure (Sharman & Yassine,

2004). They report that the first public release of Mozilla had a much less modular code

than the first public release of Linux. The authors argue the lack of modularity in this

version of Mozilla prevented a large community of developers from engaging in the

project. This caused Netscape to rewrite the Mozilla kernel. MacCormack et al. (2004)

provide evidence that the modularity of the rewritten Mozilla kernel is comparable to that

of Linux. Other studies point out the increased acceptance of new Mozilla kernel by the

OSS community (Mockus et al., 2002; Reis & Fortes, 2002).

4.3. A Structural Perspective on OSS Projects

Using the essential properties described in the previous sections, we understand better the

limits of open source software as a means of producing technology. In what follows, we

present a typology of OSS that helps policy makers in setting up information policies to

promote its use. We present our model in Figure 1, where we recognize four types of

open source software projects varying from low to high potential for shared

conceptualization and from low to high potential for modularity.

The four types of OSS development are:

• High shared conceptualization, high modularity (the High-High case);

• High shared conceptualization, low modularity (the High-Low case);

• Low shared conceptualization, high modularity (the Low-High case);

• Low shared conceptualization, low modularity (the Low-Low case).

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

11

4.3.1. High shared conceptualization, high modularity

Here we find the prototypical open source projects, those that fit the Linux model.

Many of the developers will have a separate job, and do their work in their “spare” time,

or in time assigned in agreement with their employer. We call them community-led

projects. The “high-high” case usually comes up when a software project has a stable

design and when it is structurally possible to break it in many independent modules that

are suitable for large-scale team development (Narduzzo & Rossi, 2005). In many cases,

the design originates from an established standard. This is the case of Linux, where

developers had a stable design standard as a basis for the project (the POSIX standard). A

simple and efficient kernel allowed the concurrent development of drivers for external

items such as hardware devices. The close kinship of Linux to other UNIX flavors, such

as BSD, allowed the easy conversion of a whole suite of applications, such as BIND,

sendmail, and the GNU software tools (Oram & Loukides, 1995). However, there are

strong limits to large-scale modularity in most software projects. In his classic book, The

Mythical Man-Month, Frederick Brooks (1972) stated his famous law: “Adding people to

a late software project just makes it later”. His chief argument was the added costs of

communication between any new software developer and the group he joins. Therefore,

for the communication costs to be minimal, the design has to minimize communication

overhead among group members, The ideal situation is to have a careful module design,

which may be hard to achieve in practice. As Brooks states in another classic work, “No

Silver Bullet” (Brooks, 1982), software design is hard because the state space of a

medium-scale software project is much larger than the human capacity to model it. To

sum up, the “high-high” case is difficult to achieve. Indeed, it would be

counterproductive if all open source projects would fit into this category, since there

would be little innovation coming out of the open source movement. Innovation would be

limited to reverse-engineering existing designs or following accepted standards.

4.3.2. High shared conceptualization, low modularity

Here we find many projects, including databases, office automation tools, and

web servers. There is a large presence of private companies, which aim at entering the

marketplace with products similar to the commercial market leaders. Since users and

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

12

developers already know similar products, the effort in designing and using them is

reduced. Companies benefit from the reduced risk involved in reverse engineering. There

can be outside collaborators, but the main design decisions take place within the

institution and often should also address the commercial objectives of these corporations.

We call them corporation-led projects.

The “high-low” arises in two cases mentioned above: when a commercial

software has a large market share or when a software technology becomes stable enough

for standards to appear. When a single commercial product has a large part of the market,

as with personal productivity suites, switching costs will prevent a new commercial

product from capturing market share, even if sold at smaller prices. In this case, there is a

strong incentive for newcomers to license their products as open source. When there is

standard, as with the SQL language for relational database management systems, the

design effort is reduced for the developer and the switching costs are minimized for the

user. In both cases, developing an open source product may be part of a private

company’s business strategy and not a community-led effort. Examples include the

mySQL database management system, the Open Office suite and the GNOME user

interface from Ximian Corporation (Wu & Lin, 2001).

4.3.3. Low shared conceptualization, high modularity

These are projects with a high-degree of innovation (usually there is no

commercial counterpart) and that share a relatively simple software kernel. In this case,

the innovation takes place at the periphery. Given a stable kernel, programmers can add

new modules that need not be understood by all the community. These products often

originate in academic environments by researchers and graduate students. We call them

academic-led projects.

The “low-high” case occurs when a network of developers produces innovative

software collaboratively. This case arises from a combination of causes: a technical

community which has consolidated links (they may meet regularly at scientific

conferences for instance), a stable knowledge domain, and a product whose design allows

scalability. One prime example is the R suite of statistical tools (Ihaka & Gentleman,

1996). The basis for this software is the commercial product S-Plus (Chambers, 1998),

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

13

whose elegant and simple design enabled the statistical community to design the R suite

tools based on the same basic commands as S-Plus. Based on a stable, well-documented

design, the statistical community has extended the basic R functionality into a large set of

tools. Other examples on this quadrant include the GRASS GIS (Neteler & Mitasova,

2004) suite of programs.

4.3.4. Low shared conceptualization, low modularity

These projects are usually developed by small teams under a public R&D

contract. They target a niche application and address specific requirements, or aim to

demonstrate novel scientific work. They have a high mortality rate, since most of them

have the lifetime of a research grant. We call them innovation-led products.

The “low-low” case arises usually from two sources. The first source is a project

started by an individual or small group that is not able to attract the interest of the

community. A survey of the sourceforge OSS repository found a heavily skewed

distribution of the impact of OSS projects. Half of the active projects in sourceforge have

between 0 and 70 downloads and the other half have between 70 and 600,000 downloads

(Hunt & Johnson, 2002). The second source is more interesting. Many OSS projects

originate from research projects focused on innovation. The open source license is the

natural way for sharing a software prototype produced by a research institution. These

products are mostly prototypes showing the feasibility of a new design and are not

created for commercial use, often lacking end user tools such as adequate documentation.

To take them to the marketplace, their innovative features need a large investment in

issues such as documentation and reliability, which is beyond the original developers’

capacities and interests. Maintaining and supporting an open source software project

needs considerable resources, beyond the reach of most academic research groups. Thus,

usually it is difficult for a research team to carry out long-term open source projects.

Often, for a research prototype to evolve into an open-source product, some of the

original developers move from the original research team to a private company.

Alternatively, they set up a nonprofit foundation for product support and maintenance. It

is unlikely that an open source project that stays in the “low-low” will survive in the long

run. Therefore, although many open source projects may start on the “low-low” quadrant,

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

14

they must migrate to other quadrants to survive. Migration to the “high-low” quadrant

occurs often when a commercial company decides to use a market strategy based on open

source licensing, and takes over the development, as discussed above. Migration to the

“low-high” quadrant depends on other conditions. The software needs a stable and well-

documented kernel, and a core team that controls its evolution. The product also should

have enough innovation to attract a large community.

A software project, in its lifetime, may migrate between these categories. An

innovation-led product might evolve to a corporation-led one by incorporating

characteristics of market products. Such is the case of the PostgreSQL database

management system, which stems from a Berkeley research project (Stonebraker &

Rowe, 1986) with added support for the SQL standard and market needs. A corporation-

led software might evolve into a community-led one if their original developers make the

necessary investments and adjustment in intellectual property rights to make it accessible

to a larger community. This is case of the Mozilla browser and associated tools,

originally from Netscape (Godfrey & Lee, 2000). The Apache Web server is an example

of an innovation-led project that evolved to a community-led one. A team of

programmers decided to take the source code of the National Center for Supercomputing

Applications Web server, update it, and release it to the public. It was later renamed

“Apache” because of the many patches needed by the original NCSA software (Mockus

et al., 2002). One of the interesting consequences of the typology for OSS is that it

provides a way to assess the sustainability of projects. This would allow policy makers to

take a more active standpoint in supporting open source.

5. PUBLIC POLICY IMPLICATIONS OF THE STRUCTURAL MODEL FOR

OSS

5.1. How essential properties of OSS affect public policy

The preceding sections have examined the nature of open source software development

and outlined the main characteristics of its production. The implications for developing

nations are significant. Many developing nations are currently actively considering

policies to support or enforce adoption of OSS by public institutions (Dravis, 2002). The

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

15

arguments in favor of OSS adoption by public institutions include (Ghosh, Krieger, Glott,

& Robles, 2002):

• Lower cost: adoption of personal computers based on OSS for public use can

reduce early entry cost by as much as 50%;

• Independence from proprietary technology: many governments are

increasingly concerned with over-dependence of their markets on a few

foreign companies;

• Availability of efficient and low-cost software: the virtuous examples of some

products (such as Linux and Apache) have encouraged statements about the

widespread availability of OSS software for public use;

• Capacity to develop custom applications and to redistribute the improved

products. Given the “open” nature of OSS, skilled local programmers could

adapt the software to fit local needs, and thus increase the efficiency of the

services provided by the improved products.

While we consider that there is enough empirical evidence to support “lower cost”

and “independence” claims, the assumptions of “software availability” and “ease of

customization” are far more problematic and need a closer examination. Most successful

open source software tools are infrastructural products, such as operating systems,

programming languages, and Web servers. By contrast, the number of mature OSS

products that support end user applications is much smaller (Schmidt & Schnitzer, 2002).

Operating systems, compilers, and Web servers are the domain of technically qualified IT

professionals that have a good knowledge of the English language. By contrast, there is a

huge demand by developing countries for applications that address their information

needs. Addressing these information needs requires IT professionals who understand

users’ needs and know how to communicate with real users. Thus, the example of Linux

is not reproducible in all situations. In developing countries there will be plenty of

situations with a low shared conceptualization and low modularity. This is the case with

applications in education, public health, environment, and security.

The issue of social production of technology needs also to be addressed,

especially for developing nations. The naïve view of open source products considers only

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

16

the software development process, with limited regard for its use. Many open source

developers take the view that since their product is superior or equivalent to a commercial

one, potential users will automatically adopt it. In reality, the development and user

communities are different and most users have limited technical knowledge. Concerns

such as documentation, local support, training material and best-case examples dictate

user choice. In developing nations, language barriers are an added limiting factor. As a

result, the effort needed to place open source software in the hands of users worldwide

often falls outside the means of committed programmers. In short, the naïve claims in

favor of OSS adoption by developing nations often ignore that these products need a

large local investment. The investment to adapt these products for local users varies with

each product, as is discussed below.

5.2. OSS Structural Constraints and Project Sustainability

The essential properties of OSS have important consequences for information

policies in developing countries. In order to these countries benefit from OSS

development, their public policies must be different for each of the four cases (“high-

high”, “high-low”, “low-high”, “low-low”). In this discussion, we define sustainability as

the capacity of a software project to adapt and survive to major changes in its current

team and in the financial support structure.

5.2.1. Dealing with the High-High Case

This is the simplest case, since products in this range usually have a large

community of developers, which are able to endure major changes in team organization.

It is conceivable that, in the unlikely event that Linus Torvalds would resign from his role

as the chief programmer of Linux, there would be qualified replacements for the job.

Therefore, developing countries are safe to assume that adoption of “high-high” OSS is a

safe and sustainable choice. When adopting “high-high” OSS, the main concern for

developing countries is one of adaptability. Developing nations need to invest in capacity

building, documentation and user training to increase the chances of success of “high-

high” OSS adoption.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

17

5.2.2. Dealing with the High-Low Case

This case presents a large challenge to developing nations and policy makers

worldwide. Many OSS products in this category are associated with private companies.

The programmers have a full-time job as software developers for a company, which in

turn will be dependent on revenues associated with services it might provide. Two

examples are the mySQL relational DBMS and the Qt user interface toolkit, both

products of private companies. This is a case where the open source credo is not fully

applicable, since the OSS users may become as dependent on a private company as with

proprietary software. Should that company’s business strategy fail and the project be

abandoned, its users would be in trouble. If possible, developing nations should be

careful when adopting “high-low” software products whose long-term sustainability is

doubtful, especially if these products are strongly associated to private companies.

Adoption of corporation-led software should be preceded by an analysis of alternatives,

and when possible, “high-high” products should be considered preferable to “high-low”

products.

In some areas, there are few current alternatives to “high-low” software, as in the

case of the Open Office suite. In this case, it is important to address the question of

governance models associated to such products. Many authors consider that the

governance model of an OSS product is just as important as the product itself (Franck &

Jungwirth, 2002). There has been an increasing emphasis on governance models that

increase the power of stakeholders in the software control and reduce the main

developers’ capacity for independent decision. In this case, by actively taking part in as

stakeholders in such governance boards, developing nations could reduce their liabilities

when adopting “high-low” software produced by private companies.

5.2.3. Dealing with the Low-High Case

The low-high case represents a favorable condition, since the modularity of the

software design and the existence of an established community indicates that software

projects in this area will be sustainable. Since most of the developments in this area are

extensions of the kernel, the product grows without major risks. The main challenge here

for developing nations is the expertise needed in using these software products, since they

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

18

contain a fair amount of innovation. For example, to benefit from the set of applications

available in the R suite of statistical tools, users in developing nations need to be

technically skillful in advanced statistics techniques. Policy makers in the developing

world should be aware of the need for significant investments in human resources, if the

“low-high” OSS products are to make a significant impact in their nations.

5.2.4. Dealing with the Low-Low Case

The low-low case affects developing nations in two different contexts. First, users

in developing nations may be tempted to adopt products in this category, originally from

researchers in the developed world. Since “low-low” projects are unlikely to be

sustainable, their adoption entails a significant risk. Before adopting such software,

policy makers must assess the likelihood that these projects migrate to the “low-high” or

the “high-low” quadrants. If enough resources are available in a developing nation, a

team of skilled local programmers could envisage undertaking the task of creating a

stable product from a research prototype.

A second possibility is the case of projects started in developing nations. These

projects are mostly financed by government grants, associated to local research groups.

Unaware of the structural characteristics of OSS products, policy makers might naively

believe that, after a initial incentive, an OSS product will blossom by itself. Often, after a

initial one-to-three year grant, the project might die out, without attracting a large enough

community (or a commercial company) that would ensure long-term sustainability.

Policy makers in developing nations should ensure that locally developed products have

enough support and guidance to leave the “low-low” situation and migrate to a more

sustainable position.

5.3. Appropriate OSS Policies for Developing Countries

In a recent interview, Linus Torvalds stated: “I think that if the developing country is

serious about not just seeing ICT as a cost center, but as a requirement for national

development, the real advantage of open source ends up being able to build up your own

knowledge base. And that is not cheap in itself – you’ll likely pay as much for that as

you’d pay for a proprietary software solution. The difference being that with the

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

19

proprietary solution, you’ll never catch up, and you’ll have to pay forever, without ever

learning anything yourself” (cited in Weerawarana & Weeratunga, 2004 p.86).

The point Torvalds made is important for understanding the rôle that governments

must play in developing countries. First, government has a strong buying power that can

drive the market. Second, state sponsored universities are the source of qualified

engineers and their most important source of research funds is the government. Third, as

Wilson (2004) argues in his analysis of the struggle of developing countries to follow the

information revolution, political institutions and nationwide policies are as important as

technology.

The role of OSS for developing countries cannot be restricted to government

mandated use of Linux, as has been reported recently (Rossi, 2004). For instance, the

Brazilian government is recommending that its agencies have Linux installed in all new

computers from 2004 on. In Thailand, the government is aiming at having 5% of its

computers running Linux. Nevertheless, OSS has a much more important role. OSS may

help developing countries master the technology of software development and support

applications that leverage local knowledge. Therefore, development policies should

address these broader aspects of OSS.

For instance, Sagasti (2004) suggests some principles to guide implementation

and acquisition of science and technology in developing countries. He says that

“strategies and policies for establishing an endogenous science and technology base must

be fully incorporated into the design of a comprehensive development strategy for the

country” (p.85). Isolated technology projects have less chance to succeed or at least to be

sustainable in the long run. Since OSS is a technology from which tangible benefits can

be harvested early, its integration on long-range policies is more likely to happen. OSS

can be used to build products that will give a large portion of the population access to

services that it would not have otherwise. These kinds of products are likely to have a

positive impact on the public opinion making it easier for government to include support

for OSS in its developmental policies.

Another principle suggested by Sagasti (2004) is that “the cumulative process of

building endogenous science and technology capabilities requires continuous and

sustained efforts over a long time” (p.86). Is OSS sustainable as a long-range

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

20

development strategy for developing countries? For development projects to be

sustainable it is necessary to incorporate indigenous knowledge and techniques. Although

OSS has a great potential for doing this, it also needs support by having government-

funded research and training.

An analysis of the challenges facing OSS (Fitzgerald, 2004) suggests other

directions for policies in developing countries. Fitzgerald mentions the key role of project

leaders. These are individuals with leadership and programming skills. For instance,

considering Habermas’ (1971) three categories of possible knowledge: technical,

practical, and emancipatory. Emancipatory knowledge is achieved by combining the two

other types of knowledge. We argue that emancipatory knowledge will be gained by

developing countries with an adequate use of OSS. The role of leaders is fundamental.

Information policies need to address this important point providing for selection, training,

and support of leaders that will help bring together two kinds of knowledge, technical and

practical. Project leaders will embody emancipatory knowledge. Leaders will help to

spread technical knowledge and will make sure that local knowledge is embedded in the

products of software development.

There is a dual role for OSS in developing countries. Government policies need to

address both OSS as a technology and as a final product. The example of Linux as a high-

high product is not easily reproducible. In developing countries, there will be plenty of

projects with a low-low profile. This is the case with applications in education, public

health, environment, and security. Often, these applications do not have satisfactory OSS

solutions currently available. Also, there are inherent market failures and cultural issues

in open source software production, which restrict the chances of success of products

from developing nations. Therefore, if governments in developing nations aim to profit

from the potential benefits of open source, they must intervene and dedicate public funds

to support the establishment and long-term maintenance of open source software projects.

The next section presents one example of such government action.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

21

6. A CASE STUDY OF AN OPEN SOURCE GIS PROJECT IN BRAZIL

In this section, we present a case study of a government-funded project for

developing OSS in geographical information systems (GIS) in Brazil. GIS is an

application area that has a large potential impact on public policy. These systems are used

by public agencies to manage urban areas and for environmental monitoring. The

worldwide market for GIS software was estimated to be US$ 1,5 billion in 2003

(Daratech, 2003). The potential benefits of adopting open source GIS in developing

nations are substantive. Consider, for example, the case of urban cadastral systems based

on GIS technology for middle-sized cities. The typical base cost of a commercial spatial

database solution for one city is US$ 100,000. Should 10 cities adopt such solution in a

given year, there is a saving of US$ 1 million each year on licensing fees, which can

finance local development and local adaptation. There is also an extra benefit of investing

on qualified staff.

Since 2000, the Brazilian government has been funding a large-scale open source

GIS project. The project is TerraLib, an open-source library for GIS and associated

applications (Gilberto Câmara et al., 2000). TerraLib enables quick development of GIS

applications and is available at www.terralib.org. As a research tool, TerraLib aims to

enable GIS prototypes that would include recent advances in GIScience. On a practical

side, TerraLib supports custom-built applications using spatial databases. The main

driving forces behind the TerraLib are the National Institute for Space Research (INPE)

and the Catholic University of Rio de Janeiro (PUC-RIO). INPE has a mission to develop

science, technology and applications for space-related fields. PUC-RIO is home to one of

Brazil’s leading research groups in Computer Science. The TerraLib project came out of

the need to offer Brazilian users an alternative to commercial GIS software. The software

is not a clone of any commercial product, and aims to offer functionalities for spatio-

temporal data handling that are not available in any commercial or open source GIS

software. Starting in 2001, INPE and PUC-RIO invested more than 50 person-years of

programming effort in TerraLib.

It is useful to consider the TerraLib project on the light of the OSS typology

proposed in this paper and its public policy implications. The TerraLib project started as

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

22

a research initiative to provide an innovative environment for GIS applications being thus

located in the “low-low” quadrant. The research qualities of the project were sufficient to

get support from Brazilian research agencies. However, when the institutions involved

considered that the project was mature enough for a production release, they devised a

strategy to move the project to a more sustainable situation. INPE and PUC-RIO

considered two alternatives to take the TerraLib project out of the “low-low” quadrant.

The first was to move the project into the “low-high” quadrant (low shared

conceptualization, high modularity) and the other was to move the project into the “high-

low” quadrant (high shared conceptualization, low modularity).

The transition of TerraLib to the “low-high” quadrant was considered difficult

because of the nature of the geoinformation technology. A typical GIS application

consists of a core of functions that access a spatial database, and a set of customized user

interfaces that fit the user’s needs. These user interfaces are difficult to share, since each

application (e.g., an urban cadastre in a municipality) has specific requirements. In fact,

this customization of a core library of functions is a task carried out by service

companies. The kernel of these GIS application is a tightly integrated set of functions that

are best maintained by a small team of skilled programmers.

Therefore, INPE and PUC-RIO chose to transition TerraLib to the “high-low”

quadrant. The Brazilian government continues to support the core team of developers of

the kernel and has provided additional support for building a shared conceptualization of

the product. These resources have been assigned mainly for two tasks: capacity building

for commercial and public users, and direct support for service companies that use the

software. INPE and PUC-RIO have invested heavily in user documentation and direct

contact with commercial companies that could use the library for providing value-added

services to GIS market. There is evidence that this strategy is paying off. On early 2006,

more than 10 private companies in Brazil develop products using TerraLib. The latest

Brazilian GIS market survey estimates the total market to be US$ 150 million, with 200

companies and 4,000 employees (Magalhaes & Granemman, 2005). The service provider

market is estimated to be US$ 40 million. Companies offering GIS services based on

open source software form 10% of the service provider market.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

23

One of the important decisions on the TerraLib project was to decide on its open

source license. There is a strong debate on the policy governments should take on

publicly funded software. Smith (2002) and Evans (2002) argue that publicly funded

software should not be licensed using the GPL (GNU General Public License) (Hahn,

2002). They consider the limits built in the GPL prevent commercial companies from

using GPL-ed software to produce innovation and promote economic growth. On the

other hand, Lessig (2002) considers that sometimes it makes sense for the government to

license publicly funded software by the GPL. Lessig considers that government has

broader interests than those of commercial companies, and the GPL helps keeping

publicly funded software in the “public commons”. In the TerraLib case, the decision

considered the properties of the GIS market. The GIS software market is an oligopoly in

which two companies (ESRI and Intergraph) have a market share of 50% (Daratech,

2003). Therefore, there is a “lock-in” effect (Arthur, 1994) in the users’ choice of

products. INPE considered there should be a strong incentive for commercial companies

to use TerraLib to reduce the “lock-in” effects of the GIS market in Brazil. Therefore,

TerraLib was released as open source according to the LGPL (Lesser GNU Public

License). The LGPL allows private companies to build their applications on top of OSS,

and market them as proprietary software. The impact on the commercial market of

TerraLib-based products is an indicator of a decrease on the “lock-in” effect, because of a

suitable licensing policy.

7. CONCLUSIONS

This paper examined the question “How can OSS be promoted effectively in

developing countries?” We addressed this question proposing a more comprehensive

view of the use of OSS by developing countries. We saw OSS as having a dual role. First,

OSS will let developing countries learn about information technologies, about the

technology itself, and about the process of developing software. Second, developing

countries may also be able to learn more about themselves by using the technology. This

dual role points out that OSS can help to solve the problem of information needs of

developing countries. The dual nature of OSS as discussed in this paper will open the

opportunity for it to be used to explore the environment where it is going to be used. The

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

24

resulting open systems will be adapted to local conditions and will embed indigenous

knowledge. In short, OSS will let developing countries make the bridge between a

foreign technology and its application to local conditions. The open nature of OSS will

enable developing countries to master the technology. The open architecture of OSS

enables participation and will let the countries learn about the real conditions in which the

systems need to be applied. The product of the use of OSS is software that embodies

local knowledge and is adapted to local conditions.

Nevertheless, OSS will not be used adequately in developing countries if the

necessary public policies are not in place. In order to serve as a guide to the creation of

effective policies, we also developed a structural analysis of OSS. We focused on two

properties that highlight the dual nature of OSS: the degree of shared conceptualization

and degree of modularity. OSS projects succeed when many developers understand the

conceptual design and when the software architecture is well-designed to enable

collaborative work.

The analysis of the combination of different levels (high and low) of the degree of

shared conceptualization and the degree of modularity led to different perspectives for

policies in developing countries. While a “high-high” case may be a safe and sustainable

choice because of the existence of a large community of users having proven models to

support their work, a “low-low” case may lead to failure because of the reverse reasons.

The intermediate situations (“high-low” and “low-high”) represent different risks for

developing countries. The low-shared-conceptualization and high-modularity case

represents a favorable condition. New projects are extensions of established projects. The

high amount of expertise required to develop and maintain these projects requires policy

makers to provide for significant investments in human resources. The opposite case

(high-shared-conceptualization and low-modularity) is more challenging. Most OSS

products in this category are commercial products. This may lead to a dependency on

private companies. A recommended policy in these cases is an emphasis on governance

models that increase the power of stakeholders in the software and reduce the main

developers’ capacity for independent decision. These policies would reduce liabilities for

countries adopting “high-low” OSS produced by private companies.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

25

We have argued the view of OSS as a product of a team of committed individuals

is not realistic. Most products are built either by a small team of individuals or by

corporations. Large collaborative networked teams are responsible for a small number of

OSS products. Additionally, most projects aim at reverse-engineering existing designs or

at complying with standards. Given the constraints in open source software production,

such advances will not happen spontaneously and will require public intervention to fund

innovation. Open source software in developing nations needs strong and wise policies to

be successful. It is a combination of institutional vision, qualified personnel and strong

links to user community. OSS in developing countries needs to be government-funded to

be viable. In this paper we presented a view of OSS that will help the creation

government policies to use OSS technology to promote their development goals.

ACKNOWLEDGEMENTS

Gilberto Camara’s work is partially funded by CNPq (grants PQ - 300557/19996-5 and

550250/2005-0) and FAPESP (grant 04/11012-0). Frederico Fonseca’s work is supported

by the National Science Foundation under NSF ITR grant number 0219025. Gilberto

Camara would like to thank Harlan Onsrud (University of Maine, USA) for many

important discussions on intellectual property and open source software.

REFERENCES

Amabile, T. (1996). Creativity in context. Boulder, Colo.: Westview Press.

Arthur, B. (1994). Increasing Returns and Path Dependence in the Economy. Ann

Arbor, MI: The University of Michigan Press.

Barton, J., Alexander, D., Correa, C., Mashelkar, R., Samuels, G., & Thomas, S.

(2002). Integrating Intellectual Property Rights and Development Policy. London: UK

Department for International Development - Commission on Intellectual Property Rights.

Bollinger, T., Nelson, R., Self, K., & Turnbull, S. (1999). Open source methods:

peering through the clutter. IEEE Software, 16(4), 8–11.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

26

Braa, J., Monteiro, E., & Sahay, S. (2004). Networks of Action: Sustainable

Health Information Systems Across Developing Countries. MIS Quarterly, 28(3), 337-

362.

Brooks, F. (1972). The Mythical Man-Month. Reading, MA: Wesley Publishing

Company.

Brooks, F. (1982). No Silver Bullet: Essence and Accidents of Software

Engineering. IEEE Computer, 20(4), 10-19.

Câmara, G., & Onsrud, H. (2004). Open-Source Geographic Information Systems

Software: Myths and Realities. In J. M. Esanu & P. F. Uhlir (Eds.), Open Access and the

Public Domain in Digital Data and Information for Science: Proceedings of an

International Symposium (pp. 127-133): U.S. National Committee for CODATA,

National Research Council.

Câmara, G., Souza, R., Pedrosa, B., Vinhas, L., Monteiro, A. M., Paiva, J., et al.

(2000). TerraLib: Technology in Support of GIS Innovation. Paper presented at the II

Brazilian Symposium on Geoinformatics, GeoInfo2000, São Paulo.

Chambers, J. M. (1998). Programming with Data. New York, NY: Springer-

Verlag.

Daratech. (2003). GIS Markets and Opportunities 2003 Survey. Cambridge, MA:

Daratech Inc.

Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of

experiments examining the effects of extrinsic rewards on intrinsic motivation.

Psychological Bulletin, 125(6), 627-688.

Dravis, P. (2002). A Survey on Open Source Software. San Francisco, CA: The

Dravis Group.

Ehikhamenor, F. A. (2002). Socio-economic factors in the application of

information and communication technologies in Nigerian print media. Journal of the

American Society for Information Science and Technology, 53(7), 602-611.

Ehikhamenor, F. A. (2003). Information technology in Nigerian banks: the limits

of expectations. Information Technology for Development, 10(1), 13-24.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

27

Evans, D. S. (2002). Politics and Programming: Government Preferences for

Promoting

Open Source Software. In R. W. Hahn (Ed.), Government Policy toward Open

Source Software. Washington, DC: AEI-Brooking Joint Center for Regulatory Studies.

Feller, J., & Fitzgerald, B. (2002). Understanding Open Source Software

Development. New York, NY: Addison-Wesley.

Fitzgerald, B. (2004). A Critical Look at Open Source. IEEE Computer, 37(7),

92-94.

Franck, E., & Jungwirth, C. (2002). Reconciling investors and donators - The

governance structure of open source. Zurich: Working Paper No. 8, Chair of Strategic

Management and Business Policy, University of Zurich.

Frey, B. S. (1997). Not just for the money: an economic theory of personal

motivation. Cheltenham, UK; Brookfield, Vt.: Edward Elgar Pub.

Ghosh, R. A., Krieger, B., Glott, R., & Robles, G. (2002). Open Source Software

in the Public Sector: Policy within the European Union. Maastricht: International

Institute of Infonomics, University of Maastricht, The Netherlands.

Ghosh, R. A., Rudiger Glott, Kreiger, B., & Gregario Robles. (2002). The

Free/Libre and Open Source Software Survey and Study—FLOSS Final Report.

Maastricht, The Netherlands: International Institute of Infonomics, University of

Maastricht.

Godfrey, M. W., & Lee, E. H. S. (2000). Secrets from the Monster: Extracting

Mozilla's Software Architecture. Paper presented at the 2nd International Symposium on

Constructing Software Engineering Tools.

Habermas, J. (1971). Knowledge and human interests. Boston: Beacon Press.

Hahn, R. W. (2002). Government Policy toward Open Source Software: An

Overview. In R. W. Hahn (Ed.), Government Policy toward Open Source Software.

Washington: Brookings Institute.

Hertel, G., Niedner, S., & Hermann, S. (2003). Motivation of software developers

in the F/OSS projects: an Internet-based survey of contributors to the Linux kernel.

Research Policy, 327, 1159-1177.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

28

Hunt, F., & Johnson, P. (2002). On the Pareto distribution of Sourceforge

projects. Paper presented at the The Open Source Software Development Workshop,

Newcastle, UK.

Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics.

Journal of Computational and Graphical Statistics, 5(3), 299-314.

Lakhani, K., & Wolf, R. G. (2005). Why Hackers Do What They Do:

Understanding Motivation Efforts in Open Source Projects. In J. Feller, B. Fitzgerald, S.

Hissam & K. R. Lakhani (Eds.), Perspectives on Free and Open Source Software (pp. 3-

22). Cambridge, MA: MIT Press.

Lerner, J., & Tirole, J. (2002). Some simple economics of F/OSS. Journal of

Industrial Economics, 52, 197–234.

Lessig, L. (2002). Open Source Baselines: Compared to What? In R. W. Hahn

(Ed.), Government Policy toward Open Source Software. Washington, DC: AEI-

Brooking Joint Center for Regulatory Studies.

MacCormack, A., Rusnak, J., & Baldwin, C. (2004). Exploring the Structure of

Complex Software Designs: An

Empirical Study of Open Source and Proprietary Code (Harvard Business School

Working Paper No. 05-016). Harvard, MASS: Harvard University.

Magalhaes, G., & Granemman, E. (2005). A Survey of Geospatial Market in

Brazil. São Paulo: GITA Brasil.

Mansell, R., & Montalvo, W. d. (1998). Knowledge societies: information

technology for sustainable development. New York: Oxford University Press.

Mockus, A., Fielding, R., & Herbsleb, J. (2002). Two case studies of open source

software development: Apache and Mozilla. ACM Transactions on Software Engineering

and Methodology, 11(3), 309 - 346.

Narduzzo, A., & Rossi, A. (2005). The Role of Modularity in Free/Open Source

Software Development. In S. Koch (Ed.), Free/Open Source Software Development.

Hershey, PA: Idea Group.

Neteler, M., & Mitasova, H. (2004). Open source GIS: a GRASS GIS approach

(2nd ed.). Boston: Kluwer Academic Publishers.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

29

Oram, A., & Loukides, M. (1995). Programming with GNU Software. Sebastopol,

CA: O'Reilly.

Parnas, D. L. (1972). On the Criteria to be Used in Decomposing Systems into

Modules. Communications of the ACM, 15(2), 1053-1058.

Raymond, E. S. (1999). A Brief History of Hackerdom. In C. DiBona, Ockman,

S., Stone, M (Ed.), Voices from the Open Source Revolution. Sebastopol, CA: O'Reilly &

Associates.

Raymond, E. S. (2001). The cathedral and the bazaar: musings on Linux and

Open Source by an accidental revolutionary (Rev. ed.). Cambridge, Mass.: O'Reilly.

Reed, A. M. (2000). Rethinking Development as Knowledge: Implications for

Human Development. Rome: United Nations Office for Project Services.

Reis, C., & Fortes, R. (2002). An Overview of the Software Engineering Process

and Tools in the Mozilla Project. Paper presented at the Workshop on Open Source

Software Development, Newcastle UK.

Rossi, M. A. (2004). Decoding the “Free/Open Source (F/OSS) Software Puzzle”

a survey of theoretical and empirical contributions. Quaderni dell'Istituto di Economia,

424, 1-40.

Sagasti, F. R. (2004). Knowledge and innovation for development: the Sisyphus

challenge of the 21st century. Cheltenham, UK; Northhampton, MA: E. Elgar.

Sagers, G. W. (2004). The Influence of Network Governance Factors on success

in Open Source Software Development Projects. Paper presented at the 25th International

Conference in Information Systems (ICIS 2004).

Schmidt, K. M., & Schnitzer, M. (2002). Public Subsidies for Open Source? Some

Economic Policy Issues of the Software Market. Munich: Seminar for Economic Theory,

Ludwig Maximilian University.

Sharman, D., & Yassine, A. (2004). Characterizing Complex Product

Architectures. Systems Engineering Journal, 7(1).

Smith, B. L. (2002). The Future of Software: Enabling the Marketplace to Decide.

In R. W. Hahn (Ed.), Government Policy toward Open Source Software. Washington,

DC: AEI-Brooking Joint Center for Regulatory Studies.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

30

Stefanuto, G. N., & Salles-Filho, S. (2005). Impact of the free software and open

source on the software industry in Brazil. Campinas, Brazil: UNICAMP, available at

http://observatorio.softex.br/components/com_observatorio/arquivos/Softex%20ingles%2

0para%20site.pdf.

Stonebraker, M., & Rowe, L. A. (1986). The Design of POSTGRES. In ACM-

SIGMOD International Conference on the Management of Data (pp. 340-355).

Washington, D.C.

UN. (2003). E-Commerce and Development Report (No.

UNCTAD/SIDTE/ECB/2003/1). New York and Geneva: United Nations.

UN. (2004). Road Maps towards an information society in Latin America and the

Caribbean (No. LC/G.2195/Rev.1-P). Santiago, Chile: United Nations - Economic

Commission for Latin America and the Caribbean.

Weber, S. (2004). The Sucess of Open Source. Cambridge, MASS: Harvard

University Press.

Weerawarana, S., & Weeratunga, J. (2004). Open Source in Developing Countries

(No. SIDA3460en). Stockholm, Sweden: Sida 2004 - Department for Infrastructure and

Economic Cooperation.

Wilson, E. J. (2004). The information revolution and developing countries.

Cambridge, Mass.: MIT Press.

Wu, M.-W., & Lin, Y.-D. (2001). Open source software development: an

overview. IEEE Computer, 34(6), 33-38.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.14.11 v1 2006-08-03

31

