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SIAM J. APPL. MATH. ? 1991 Society for Industrial and Applied Mathematics 
Vol. 51, No. 6, pp. 1782-1798, December 1991 018 

MINIMAL REPRESENTATIONS FOR TRANSLATION-INVARIANT SET 
MAPPINGS BY MATHEMATICAL MORPHOLOGY* 

GERALD JEAN FRANCIS BANONt AND JUNIOR BARRERAt 

Abstract. In his 1975 book, Matheron introduced a pair of dual representations, written in terms of 
erosions and dilations, for increasing translation invariant set mappings, using the concept of a kernel. 
Based on hit-miss topology, Maragos, in his 1985 Ph.D. thesis, has given sufficient conditions under which 
the increasing mappings have minimal representations. In this paper, a pair of dual representations for 
translation-invariant set mappings (not necessarily increasing) is presented. It is shown that under the same 
sufficient conditions such mappings have minimal representations. Actually, the representations of Matheron 
and Maragos are special cases of the proposed ones. Finally, some examples are given to illustrate the theory. 

Key words. mathematical morphology, dilation, erosion, translation-invariant mapping, lattice, closed 
interval, convex set, kernel, basis, hit-miss topology, edge extraction, shape recognition, image processing 

AMS(MOS) subject classifications. 06A23, 68U10, 93A10, 94A12, 68T10 

1. Introduction. Mathematical morphology, introduced in the 1960s by Matheron 
and Serra at "Ecole des Mines de Paris," appears to play more and more an important 
role in the field of image processing (Serra (1982); Haralick, Sternberg, and Zhuang 
(1987); Giardina and Dougherty (1988)). 

In mathematical morphology, a shape or image (binary image) is seen as a subset 
of a Euclidean space and any image processing scheme is viewed as a mapping between 
collections of subsets. The key idea of the theory is the representation of mappings 
by two elementary ones: erosions and dilations. Each erosion and dilation is character- 
ized by a subset called a structuring element that acts as a probe in the analysis of a 
given shape or image. 

A natural question that arises is: what class of mappings can be studied by 
mathematical morphology? Or, in other words, what class of mappings can be built 
by erosions and dilations? A first interesting result to this problem was given by 
Matheron. 

In his pioneering work, Matheron (1975) has shown that the set of translation- 
invariant (t.i.) set mappings, whose domain is a collection S (closed under translation) 
of subsets of a Euclidean space, is isomorphic to the set of all subcollections of Sd. In 
order to clarify this point, Matheron introduced the concept of a kernel of a t.i. set 
mapping qi, which is defined as the subcollection of subsets in i, whose transforms 
by qi contain the null element of the Euclidean space. Hence, for example, the kernel 
of an erosion by a structuring element A is the subcollection of all subsets in d 
containing A. 

By using the fact that the kernel of an increasing t.i. set mapping is a dual ideal 
(Matheron says that the kernel is U-hereditary), Matheron (1975) has shown that any 
increasing t.i. set mapping qi can be represented as the supremum of erosions by 
structuring elements in the kernel of qi. 

* Received by the editors October 31, 1988, accepted for publication (in revised form) October 17, 1990. 
This work was supported by the FAPESP ("Fundagco de Amparo a Pesquisa do Estado de Sao Paulo") 
under contract 87/2478-9 and SID INFORMATICA S/A through the ESTRA ("Estag6es de Trabalho 
Avoncadas") project. 
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SET MAPPING REPRESENTATIONS 1783 

The first objective of this paper is to extend Matheron's results to the case of 
nonnecessarily increasing mappings. The kernel of a t.i. set mapping is no longer a 
dual ideal and the proposed solution consists in using the concept of closed interval 
of subsets in d. We first identify the so-called sup-generating mappings characterized 
by a pair of structuring elements (instead of one for the case of erosion), whose kernel 
is a closed interval. Then we show that any set mapping qi can be represented as the 
supremum of sup-generating mappings, whose structuring elements are the extremities 
of the closed intervals included in the kernel of qi. 

This result is important because a sup-generating mapping appears to be the 
infimum of an erosion and the composition of an erosion and a complementation, that 
is, it shows that erosions and complementation are prototypes of any t.i. set mapping. 

As in the increasing case, it is possible to derive a dual representation in terms 
of dilations. 

Because the above representation is usually redundant, the second objective of 
this paper is to present some minimal representation results similar to the ones given 
by Maragos (1985), (1989) and Dougherty and Giardina (1986) for increasing t.i. set 
mappings, and to indicate the close relationship between these results and some of 
the switching theory related to the simplification techniques for Boolean functions. 

In ? 2, two dual representation theorems are given for a nonnecessarily increasing 
t.i. set mapping. In ? 3, the representations by a supremum and an infimum are 
specialized for the so-called inf-separable and sup-separable mappings, which are 
mappings that can be decomposed by a pair of increasing and decreasing ones. In 
particular, the inf-separable mappings are the ones that have a convex kernel. Section 
4 contains the definition of t.i. set mapping basis as well as sufficient conditions, 
expressed in terms of semicontinuity in the hit-miss topology, under which a t.i. set 
mapping has minimal representations. Finally, in ? 5, some simple examples are given 
to illustrate the theory. 

2. Representation theorems. 
2.1. Representation by a supremum. We first introduce some definitions. 
Let s be a nonempty collection of subsets of a nonempty set E, that is, i c $VP(E). 

The set T of all the mappings qi from s to @??(E) inherits the complete lattice structure 
of (,OP(E), c) by setting 

P1 <'P2 iffq1(X)c +2(X)(XEsi). 

The supremum and infimum of a subset 0 of the complete lattice (T, <) verify 

(V @)(X) = U {O(X): 0 E o} (X E S) 

and 

(A o)(x) = nf {o(x): o E o} (X E' ), 
respectively. Moreover, (T, <) is a distributive lattice. 

In this paper, we focus our attention on a subset of T that is commonly used in 
image processing, namely, the subset of translation-invariant mappings. For this pur- 
pose, E is assumed to be an Abelian group with respect to a binary operation denoted 
by +. The zero element of (E, +) is denoted by o. 

For any h E E and X c E, the set Xh = {y E E: y - x + h, x E X} is called the translate 
of X by h. In particular, XO = X. We denote by -x the opposite of any x in E. 

From now on, the domain sd is supposed to be closed under translation, that is, 
for any he E and Xe d, Xh e d. Let FD or simply F be the subset of T of all 
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1784 G. J. F. BANON AND J. BARRERA 

translation-invariant (t.i.) mappings qa from s to 34P(E), that is, the mappings such that 

qI(Xh) = (qI(X))h (X E i, h E E). 

We can verify that the partially ordered set (ID, <) is a complete sublattice of 
(T, <). An important notion related to t.i. mappings is that of a kernel, introduced by 
Matheron (1975). The kernel ((qi) of a t.i. mapping qi from 4 to OP(E) is the 
subcollection of s defined by 

Y(() = ={X E s: o E (X)}. 

We now introduce a subset of t.i. mappings from which it will be possible to 
represent any mapping in 1' by a supremum. This subset is formed by all the so-called 
sup-generating mappings * ? (A, B) defined by 

X?(A, B)={xEE: A,cXc Bx} (XeYI) 

and characterized by two subsets A and B in s and such that A ' B. 
As will be seen below, the representation by a supremum will be derived directly 

from the notion of a closed interval and a very simple lemma. 
Let (P, ) denote a partially ordered set. Given a b in P, the subset of all 

elements x E P that satisfy a _ x b is called a closed interval of P and denoted by 
[a, b]p or simply by [a, b] (Birkhoff (1967, p. 7)). The elements a and b are the 
extremities of [a, b]. 

LEMMA 2.1. Any subset S of (P, ) can be properly covered by the union of the 
closed intervals of P contained in S, that is, 

S= U{[a, b]: [a, b] cS}. 

Proof. By construction, we have 

S-U{[a, b]: [a, b] c S}. 

On the other hand, for any x E S we have [x, x] c S, but x E [x, x]; therefore 

x U{[a, b]: [a, b] cS} 

and consequently 

Sc U{[a, b]: [a, b]c S}. [1 

We are now ready to state and prove the main result of this paper. 
THEOREM 2.1 (Translation-invariant mapping representation by a supremum). 

Let qi be a t.i. mapping andY(qi) its kernel; then 

qi = V { - (? (A, B): [A, B] c %((i)}. 

In other words, 

qf(X) = U {X(? (A, B): [A, B] c((qi)} (X E d). 

Proof. Let qi be any t.i. mapping. By using Lemma 2.1, the subcollection X(ql) 
of the partially ordered collection (sd, c) can be written 

((qi) = U {[A, B]: [A, B] c X(q) 

On the other hand, we have 
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Furthermore, it is known (Matheron (1975, Chap. 8); Banon and Barrera (1990, 
Chap. 2) for a detailed proof) that the mapping ifr 4 Y(qf) is a lattice-isomorphism 
from (.I,, <) to (,O(,s), c ); therefore, the result follows by applying the corresponding 
inverse mapping to both sides of 

(qf)=U U{9( (. (A, B)): [A, B]Gc(d,)}. ? 

It is interesting to note that the sup-generating mapping (D(A, B) is actually the 
infimum (this is the reason for using the symbol 0) of an erosion and an antidilation. 
This can be seen by writing 

X?)(A, B)={xeE: A,c(X}I{XcE: BXcXC}. 

The first set on the right-hand side is the erosion of X by A and the second is the 
erosion of Xc (the complementary set of X) by BC, that is, the result of an antidilation 
of X (Serra (1987)). In terms of the Minkowski subtraction - 03 - (Hadwiger (1950); 
Sternberg (1982)), we have 

. (A, B)-(E *A)A(c (CeBC). 

In terms of the Serra hit-miss transformation - 0(A, B) (Serra (1982)), we have 

*- (A, B) = *- (A, BC). 

2.2. Representation by an infimum. Once the representation by a supremum has 
been established, the easiest way to introduce the representation by an infimum is by 
using the duality principle. 

Let s* = {X c E: XCc E d} be the collection of the complementary sets of sets in 
A. The mapping from F9q to ?S* defined by if *, where the dual mapping aR 
(from se to 341(E)) is defined by 

+f,*(X) - (f(XC))C (X E i 

is decreasing two-sided (i.e., +l < f2 if and only if 0 < q4) and bijective, in other 
words, the mapping ql * >if* is a dual lattice-isomorphism from (Ps, <) to ((D4*, <). 

Let A = {x E E: -xE A} be the symmetrical set of a set A c E. We now introduce 
a subset of t.i. mappings in P> S from which it will be possible to represent any mapping 
in kDj by an infimum. This subset is formed by all the so-called inf-generating mapping 
- (A, B) ( ?(A, B))* characterized by two subsets A and B in de and such that 
Ac B. 

By definition of dual mapping, we have 

X?(A,B)={xeF: XriAx0orXuWBx _} (XES). 

THEOREM 2.2 (Translation-invariant mapping representation by an infimum). Let 
q4 be a t.i. mappingfrom sd to PP(E) and J(f*) the kernel of its dual; then 

f= A ? (A, B): [A, B]* c 

In other words, 

f(x)-= {x e (A, B): [A, B] * c cX P4*)} (X E i). 

Proof. By Theorem 2.1, 

* = V { - (; (A, B): [A, B] W* C 7(W)b 
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By applying the inverse of the dual lattice-isomorphism i/ + f" to both sides, we have 

' = A {( ? (A, B))*: [A, B],* c -7(q*)I. 

The result then follows from the definition of - Q)(A, B). 0 
It is interesting to note that the inf-generating mapping 0 (Q (A, B) is actually the 

supremum (this is the reason for using the symbol (0) of a dilation and an anti-erosion. 
This can be seen by writing 

XO(A, B)={xcE: XrmAx 0}u{xcE: XCqBk 60}. 

Following Sternberg's definition (Matheron and Serra's definition is slightly different), 
the first set on the right-hand side is the dilation of X by A and the second one is the 
dilation of Xc by BC, that is, the result of an anti-erosion of X (Serra (1987)). In terms 
of the Minkowski addition -(H- (Minkowski (1903); Hadwiger (1950); Sternberg 
(1982)), we have 

-(D(A, B)=(GA) v (.C?BC) 

3. Increasing, decreasing, inf-separable, and sup-separable mappings. The objective 
of this section is to specialize the representation theorems of the previous section to 
the cases of increasing, decreasing, inf-separable, and sup-separable t.i. mappings. In 
the former case, we will obtain Matheron's representation theorem. 

A mapping 4, from sd to @?(E) is said to be: 
increasing if and only if for any X and Z E s, X c Z implies that +f(X) c(z); 
decreasing if and only if for any Y and Z E si, Z c Y implies that q( Y) c (z). 
Erosion and dilation are examples of increasing mappings. Anti-erosion and 

antidilation are examples of decreasing mappings. 
A mapping 4, from sd to OP(E) is said to be: 
inf-separable if and only if for any X, Y and Z e d, Xc Z c Y implies that 

(X) r) 4( Y) c tR(z); 
sup-separable if and only if for any X, Y and Z e Si, X c Z c Y implies that 

+(z) (- +,(X) u qf( Y) - 

From these definitions, any increasing and decreasing mappings are inf-separable 
and sup-separable mappings: 

X c Z c Y implies that 

+(X) n +,(Y) = +(X) c +(Z) c +(Y) = +(X) u +(Y) 

if 4 is increasing; and 

+(X) fr) 4( Y) = ,( Y) c +(Z) c +(X) = +(X) u 4( Y) 

if 4 is decreasing. 
It is already known (Matheron (1975, p. 219)) that a t.i. mapping is increasing if 

and only if its kernel .?7((4) is U-hereditary, that is, a dual ideal of (Sd, c): X E !f((4), 
Z E si, and X c Z imply that Z E Yc(q). In the same way, a t.i. mapping a/ is decreasing 
if and only if its kernel Xf(q,) is n-hereditary, that is, an ideal of (sd, c): Ye Y((4), 
Z e sd, and Z c Y imply that Z eX(). 

Before presenting an interesting kernel property for inf-separable mappings, we 
recall the definition of a convex subset. A convex subset of a partially ordered set 
(P, ) is a subset that contains the closed interval [a, b] whenever it contains a and 
b, a '-b (Birkhoff, (1967, p. 7)). 
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PROPERTY 3.1. If qa is an inf-separable t.i. mapping, then its kernel YC(if) is a convex 
subset of (d4, c). 

Proof Let X and Y E YC(q), then o E i(X) and q4(Y). Let Z E and X c z c Y; 
then by the inf-separable mapping definition, o E i(Z), that is, Z E Y(f) and [X, Y] c 
Y((i). 0 

Inf-separable and sup-separable mappings are dual concepts and are closely 
related to increasing and decreasing mappings as shown in the following corollary, 
which is a specialized version of the representation theorems of the previous section. 

COROLLARY 3.1. Let f,f be a t.i. mapping, and let Y(qi) be its kernel; then 
(1) q, =(VI{-EA: AEX ( if)}) A(V { CE c: BCB (E (f)}) if if is inf-separable, 
(2) A:' (A{ 0A A c y((B*)}) v (A { .Cfl c: Be y((q,*)}) if qj is sup-separable, 
(3) i = V{ I A: AeYC(if)}= A{ IE) A: ACE(I*)} if if is increasing, 
(4) tp=V{.cE)Bc: BE B(()}=A{.c?AC: BE Y((f*)} if qi is decreasing. 
Proof (1) The inf-separable case. By Property 3.1, Y((i) is convex; hence, the 

condition [A, B] c YC(tp) is equivalent to (A, B E Yc(4i) and A c B). On the other hand, 
- X (A, B) is the least t.i. mapping whenever A is not included in B; therefore, by using 
Theorem 2.1, 

=V I - (E) (A, B): A, B E :r+} 

The result follows by writing* (D (A, B) as the infimum of an erosion and an antidilation 
and by distributivity of the sublattice (1, <). 

(2) The sup-separable case. The result follows by using Theorem 2.2 and the 
arguments of (1) since 4i* is inf-separable. 

(3) The increasing case. The result follows from the inf-separable case if it can 
be proved that 

V {' ? C A: A EYC(4)} < V - c Bc: B EYC(4i)}. 

For any X E sd and AE e((fi), let xEXC) A or, equivalently, Ax c X and let Y = X_x; 
then Ac Y By U-hereditary of Yf((4), Ye:Y(4/), but Y = Xx implies, by erosion 
definition, that xe xc E Yc; therefore, xe U {XCE BC: BE YC(4i)}. The representation 
by an infimum follows by duality. 

(4) The decreasing case. The result follows by similar arguments. 0 
By making A = * = OP(E), part (3) of Corollary 3.1 is Matheron's representation 

theorem (Matheron (1975)). 
The terms inf-separable mapping and sup-separable mapping have been chosen 

because, as shown in parts (1) and (2) of Corollary 3.1, such mappings can be written, 
respectively, as an infimum and a supremum of two mappings: an increasing and a 
decreasing one. For inf-separable mappings the increasing part is a supremum of 
erosions, while the decreasing part is a supremum of antidilations. For the sup- 
separable mappings the increasing part is an infimum of dilations, whereas the decreas- 
ing part is an infimum of anti-erosions. 

Moreover, we can observe that the infimum (respectively, supremum) of an 
increasing and a decreasing mapping is an inf-separable (Matheron (1989)) (respec- 
tively, sup-separable) mapping. Hence, from the above, the statements: 

(1) if is inf-separable; 
(2) Y((f) is convex; 
(3) if = if I A i2 with ifl increasing and i2 decreasing, are actually equivalent. 
As well, by duality principle, the statements: 
(1) if is sup-separable; 
(2) if = if v if'2 with 4if increasing and f2 decreasing, are equivalent. 
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In particular, the sup-generating mapping ?(D (A, B) and inf-generating mapping 
- &(A, B) of the previous section are examples of, respectively, inf-separable and 
sup-separable mappings. 

4. Minimal representation theorems. 
4.1. Algebraic aspects. The representation theorems of ? 2 may lead to redundant 

representations for most t.i. mappings in the sense that a smaller family of generating 
mappings may be used. 

In the case of the representation by a supremum, for example, this can be seen 
as follows. If [A, B] ' [A', B'], then - ((A, B) < - ? (A', B'). Therefore, in the rep- 
resentation by a supremum for a mapping qi, if the above closed intervals [A, B] and 
[A', B'] are contained in YC(f), the sup-generating mapping (0 (A, B) will be 
redundant. 

In order to derive minimal representations for a t.i. mapping i from - to sYV(E), 
we now introduce two definitions. 

The set B(f) of all the maximal closed intervals contained in YC(if) is called the 
basis of q. A closed interval contained in X(() is maximal if no other closed interval 
contained in Y(qf) properly contains it. This definition of basis differs from the ones 
of Maragos (1985) and Dougherty and Giardina (1986) who have defined a similar 
notion for increasing mappings. 

The set B of closed intervals contained in 7((qf) is said to satisfy the representation 
condition for af if and only if for any closed interval contained in Yf(qf) there exists a 
closed interval in B that contains it. 

THEOREM 4.1 (Minimal representation by a supremum). Let + be a t.i. mapping, 
let ((fi) be its kernel, and let B be a set of closed intervals contained in ((qf) satisfying 
the representation condition for qf. Then 

(1) qd = V{ I C K(A, B): [A, B] E B}. 
(2) Furthermore, if B(qf), its basis, satisfies the representation condition for ql, then 

B(f) c B, V= V{? (D(A, B): [A, B] E B(f)} 

and qf is said to have a minimal representation by a supremum. 
Proof. (1) B being a set of closed intervals contained in Xf(q), we have 

V {- (D (A, B): [A, B] cB} < V - (D (A, B): [A, B] c f)} 

On the other hand, for any [A, B] c Yf(lJi) let [A', B'] be a closed interval in B 
such that [A, B] c [A', B']; then 

V{ I(D(A, B): [A, B] cX fC(i<)} < V{ ?(A', B'): [A, B] c jf)}, 

by expanding to all the closed interval belonging to B, 

< V {? (i (A', B'): [A', B'] c B}. 

That is, by antisymmetry of the partial order <, 

V{ I (. (A, B): [A, B] c XY(q)}=V{ I (. (A, B): [A, B] c B} 

and the result follows by using Theorem 2.1. 
(2) B(qf) is contained in any B satisfying the representation condition for qf since, 

otherwise, for any closed interval in B(qf) and not in B there would exist another 
closed interval in B that contains it, that is, B(qf) would not be the basis of ql. O 
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In Theorem 4.1, we use the expression "minimal representation" because if B(ql) 
is one of the sets B satisfying the representation condition, then B(ql) is the least set 
among such B that can be used to represent qi by a supremum. 

Actually, the representation Theorem 4.1 may still lead to a redundant representa- 
tion since the union of two or more closed intervals of B(qi) may contain a different 
closed interval of B(qi) that could be discarded in the representation of qf by a 
supremum. 

In the case of a finite set E of n elements, we can uniquely associate to each t.i. 
mapping qi from 3?P(E) to 3?P(E) a Boolean function f of n variables which takes the 
true value whenever the input combination corresponds to a subset X satisfying the 
condition 0 c qi(X). In the standard representation of f by a sum of minterm, each 
minterm corresponds to an element of the kernel of qi. The usual simplification 
techniques for Boolean functions of the switching theory (Hill and Peterson (1974)) 
can be applied to simplify the representation of qi by a supremum. The determination 
of the so-called prime implicants of the Boolean function f by the Quine-McCluskey 
method leads exactly to the basis of qi, since the prime implicants of f corresponds to 
the maximal closed intervals contained in Xqfr). Moreover, in a minimal sum-of- 
product expression of f obtained by selecting an optimum set of prime implicants, as 
proposed by Quine and McCluskey, the products correspond to maximal closed 
intervals contained in ((qi) which still properly cover ((qi). By using all these maximal 
closed intervals, a representation of qi by a supremum can be achieved that is identical 
or even simpler than the minimal representation given in Theorem 4.1. 

The dual form of the minimal representation by a supremum is now presented. 
THEOREM 4.2 (Minimal representation by an infimum). Let qi be a t.i. mapping, 

let y((*) be the kernel of its dual, and let B be a set of closed intervals contained in 
y((,*) satisfying the representation condition for qi*. Then 

(1) q1=A1-()('A ,B): [A, B] cB}- 
(2) Furthermore, if B(qi*), the basis of its dual, satisfies the representation condition 

for qi*, then 

B(qi*) c B, q, = A { - (Q' ('A,B): [A, B] E B(qi*)l 

and qi is said to have a minimal representation by an infimum. 
Proof The result of part (1) follows from Theorem 4.1 by applying the inverse 

of the dual lattice-isomorphism qa * as in the proof of Theorem 2.2. The result of 
part (2) follows by the same arguments of the proof of part (2) of Theorem 4.1. 0 

We now specialize the minimal representation to the cases of inf-separable, 
sup-separable, increasing, and decreasing t.i. mappings. 

COROLLARY 4.1. Let qi be a t.i. mapping. Let A(qf), and let A(qi) be the sets of 
the minimal and maximal elements of Y((f), respectively. Let A(qi*) and A (qi*) be the 
similar sets relatively to y((q*). When explicitly used in the expressions below, these sets 
are assumed to satisfy the corresponding condition among thefollowing ones: 

for any X eC(fr), there exists X'c A3(qi) such that X'c X, 
for any X c Yf( i), there exists X'c A /(i) such that X c X', 
for any X c Yf( f), there exists X'c Ai (q*) such that X'c X, 
for any X c Yf( f), there exists X'c A (qi*) such that X c X'; 

then 
(1) =(V{ -?A: A c A ()}) A (V{ -c Bc: B c A3()}) if qi is inf-separable; 
(2) f = (A{ ?A: Ac E (f*)}) v (A { *c c: Be A 1(q,*)}) if qi is sup-separable; 

(3) a =Vf{*)A:AcE( A)} =A { A: AE (*)} if qi is increasing; 
(4) f = V{ -cBc: Bc A M(I=)}= At IcEBc: Bc A ?(q*)} if qi is decreasing. 
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Proof (1) The inf-separable case. Because of Property 3.1, the condition (X e 
h(4'), Ye O@(X), and X c Y) is equivalent to [X, Y] E B(fr). The result then follows 

by using Theorem 4.1 since under the assumption on 0(qi) and 04(f), B(qi) satisfies 
the representation condition. 

(2) The sup-separable case. The result follows by using Theorem 4.2 and the 
arguments of part (1) since 41* is inf-separable. 

(3) The increasing case. The results follow by using the arguments of the proof 
of Theorems 4.1 and 4.2 and by using Corollary 3.1. Actually the results cannot be 
derived directly from Theorem 4.1 (respectively, Theorem 4.2) because the assumption 
on 0('J) (respectively, O3(4j*)) is not sufficient to guarantee that B(41) (respectively, 
B(q,*)) satisfies the representation condition for 4i (respectively, q,*). 

(4) The decreasing case. The result follows by similar arguments. [ 
In his thesis, Maragos (1985) gives a sufficient condition on an increasing t.i. 

mapping if from S (the collection of closed subsets of a topological space E) to $O(E) 
under which @(Xf) satisfies the corresponding condition given in Corollary 4.1. 

4.2. Topological aspects. In this section, we give a sufficient condition on a t.i. 
mapping if, the domain of which is the collection of closed subsets of a topological 
space, under which B(4i) satisfies the representation condition for if. Actually, this 
condition appears to be the same as for the increasing case of Maragos. 

For the moment, let E represent a given topological space which is assumed to 
be locally compact (i.e., each point in E admits a compact neighborhood), Hausdorff, 
and separable (i.e., the topology of E admits a countable base). Let 9 be the collection 
of closed subsets of E. The collection i is assumed to be topologized in the way 
proposed by Matheron (1975). Following Matheron, the selected topology on S is the 
one generated by the set of collections of the type 

SK ={Xe i: XnK=0}, 

where K is a compact subset of E, and 

JG ={XC i: X r G 0}, 

where G is an open subset of E. 
As in Serra (1982) and Maragos (1985), we call this topology the hit-miss 

topology. 
The set of the collections of the type 

(4.1a) gK 

or 

(4.1b) 9G, rn * *n G, (n _1 

or 

(4.1c) gK r, K;qG n *' (nWG1) 

is a base for the hit-miss topology. 
The open sets in this base are collections of closed sets of E that miss a compact 

set of E or that hit n open sets of E or, again, that miss a compact set of E and hit 
n open sets of E. 
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LEMMA 4.1. Let S be a subset of ;, linearly ordered (under set inclusion); then 
nSt and USt are adherent points of S in 9 (i.e., with respect to the hit-miss topology), 
that is, 

nSt and USt-r in . 

Proof. Let M = n S or U S. It is sufficient to show that for any open set S of 
the type defined by (4.1) such that M c s/, 4 r) S ? 0. In other words, for any integer 
n and any G1, - - *, Gn (open sets of E), and any K (compact set of E) such that 
M n Gi 0 0(i = 1, - - -, n) and M n K = 0, it has to be proved that there exists X cSt 
such that X r) Gi 0 0(i = 1, - - *, n) and X r K = 0. 

(1) The case of M = nt. First, for any X c S, M c- X, therefore, for any integer 
n and any open set of E, Gi(i =1, , n), such that M r) Gi 0 0, we have X r) Gi ? 0 
since 0 ? M n Gi ' X n Gi(i = 1,*, n); second, let K be any compact set of E such 
that M n K =0, that is, such that K c Mc. The set A = Mc is an open set and can be 
written as A = U A where c = { Y c E: yc c St}. The collection A is linearly ordered 
and is an open covering of K. The set K being a compact set of E, we have that there 
exists a finite subcovering of K, say A'. The collection ' being linearly ordered and 
finite, we have U A' X . Therefore, there exists Y c A (namely, Y = U X') such that 
K Yc-y A or, equivalently, there exists X c S (namely, X = YC) such that K rn X = 0. 

(2) The case of M = U S. First, for any X c S, X c- M, therefore, for any compact 
set of E, K, such that M r-K=0, we have X r-K=0, since XrKc MrK=0; 
second, for any integer n and any open set of E, Gi ( i = 1,.*. , n), such that M r) Gi ? 0, 
by closure property, (U S) r) Gi# ?0. Let xi c (USt) r- Gi; by definition of USt, there 
exists Xi c S such that xi c Xi. In other words, there exists Xi c S such that Xi rn Gi ? 0. 
Let ' be the collection of the Xi (i = 1,.* , n). The collection S' being linearly ordered 
and finite, we have U t' c S. Let X = U t', Xi X(i = 1, * * *, n), which proves that 
there exists X cS such that X r Gi G 0(i = 1, * , n). [1 

LEMMA 4.2. Let {Ai: i c NJ} and {Bi: i c NJ} be two sequences in ; such that Ai ' 
Bi(i c N), Ail4A and BiTB in i, and let X c 9 be such that A c- X c- B. Then there exists 
a sequence {Xi: i c } in .9 such that Ai c Xi c Bi(i c N) and lim Xi = X in i. 

Proof. Let Xi=(AiuX)r Bi(icN); then, for any icN, Xic , XicBi, and Aic 
Xi. This last inclusion is true since, by distributivity, Xi = (Ai rn Bi) u (X rn Bi), because 
Ai ' Bi, Xi = Ai u (X r) Bi). By Corollary 3.d of Matheron (1975, p. 7) (with Fn = X 
and F =B )B 

lim (X r-)Bi) = X r-B in i. 

By Corollary 3.a of Matheron (1975, p. 7), 

lim Ai = A in i. 

By Corollary 1 of Matheron (1975, p. 7), on continuity of the union, 

lim (Ai u (X r) Bi)) = (lim Ai) u (lim (X r) Bi)) in i. 

In other words, from the above three equalities on limits, 

lim Xi = A u (X r) B) in i. 

By assumption, A c X c B and X c i; therefore, 

A u (X rf) B) = A u X = A u X = X. 

This proves that there exists {Xi: i c NJ} in 9 such that Ai ' Xi c Bi(i c N) and lim Xi = 

X. 0 
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With respect to the inclusion, the collection 9 of closed subsets of E is a complete 
lattice and the set of the closed intervals of 9 is a complete joint-semilattice. 

LEMMA 4.3. Let W cz ;, and let C be a linearly ordered (under set inclusion) set of 
closed intervals of 9 contained in '; then 

Sup Cc6 in 3I. 

Proof Let 2 be the collection of the extremities of the closed intervals in C: 

2 = {X c: 3[X, X'] or [X', X] G C}. 

2 inherits the linearly ordered property of C; therefore, by Lemma 4.1, nF2 and 
U Sc 2 in i. It is known (Matheron (1975, Thm. 1.2.1)) that the hit-miss topology 
is separable; therefore (Dugundji (1966, Thm. 6.2, p. 218)) there exist two sequences 
{Ai, i c NJ} and {Bi, i c N} in 2 such that lim Ai= nf2 and lim Bi = U 2 in 9. These 
sequences can be chosen, respectively, decreasing and increasing and such that Ai ' 
Bi(i c N). By Corollary 3.a-b of Matheron (1975, p. 7), 

lim Ai= nF{Ai, i c N} in 

and 

lim Bi = U {Bi, i E N} in i. 

In other words, under the linearly ordered assumption, there exist two sequences 
{Ai,i cN} and {Bi,icFN} in 2 such that Aic Bi(i N), AiiJ,n and BitU2Y. Let 
X E Sup C, the infimum and supremum of 2? in 9 being, respectively, n 2 and U 2, 
we haven l c2 xc U 2. By Lemma 4.2 (with A= nf2 and B = U -), there exists a 
sequence {Xi, i c N} in Yw such that Ai ' Xi c Bi(i E N), that is, Xi G [Ai, Bi]j(i E N), and 
lim Xi = X in i; Because of the way 2 has been constructed from C, there exists a 
closed interval in C which contains [Ai, Bji; therefore, the Xi's are in (6 by definition 
of C. This means that X is an adherent point of W in SW (Dugundji (1966, Thm. 6.2, 
p. 218)), that is, X c I? in 5w. [1 

From now on, E is the d-dimensional Euclidean space Rd or its subset Zd, 

equipped, respectively, with the Euclidean topology or with the relative Euclidean 
topology, and the t.i. mappings under consideration are from i, the set of closed 
subsets of E (9 is closed under translation), to sY'(E). It can be observed that the 
Euclidean topology or the relative Euclidean topology in S satisfy all the assumptions 
made on the topological space E at the beginning of this subsection (Maragos (1985)). 

A mapping qi from F to 9 is upper semicontinuous (u.s.c.) if and only if for any 
compact subset K of E, the set Ijl( K) is open in 9 (Matheron (1975, p. 8)). 

THEOREM 4.3 (Property of the basis of an u.s.c. t.i. mapping). Let al be an u.s.c. 
t.i. mapping from F to ;; then B(qi), its basis, satisfies the representation condition for if. 

Proof (the logic of this proof is similar to that of the proof of Theorem 5.7 in 
Maragos (1985)). Let [A, B] be a closed interval contained in X(4(); it is always possible 
to construct a linearly- ordered set L of closed intervals contained in K(qf) such that 
[A, B] E L. By Lemma 2.1 of Maragos (1985), there exists a maximal linearly ordered 
set M of closed intervals contained in g((,f,) such that L ' M. Therefore, there exists 
a closed interval [A', B'], namely, [A', B'] = Sup M, which contains [A, B]: 

[A, B] c Sup L c Sup M = [A', B']. 

By Proposition 8.2.1 of Matheron (1975),Y gY(if) is closed in i, that is, l(qi) = X(q). 
By using Lemma 4.3 (with 16 = YC(qi) and C = M), [A', B']' X(qf). Furthermore, M 
being a maximal set of closed intervals contained in gK(qi), we have [A', B'] E B(4r)5 
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because otherwise there would exist another closed interval contained in YC(qf) that 
contains [A', B']. In other words, there would exist a linearly ordered set of closed 
intervals contained in YC(fi) that properly contains M and M would not be 
maximal. [1 

In terms of minimal representation, Theorem 4.3 leads to the following result. 
Let W be the collection of open subsets of E. 
COROLLARY 4.2. (1) If qi is an u.s.c. t.i. mapping from ; to ;, then q has a minimal 

representation by a supremum. 
(2) If af is a t.i. mapping from ' to W, which has an u.s.c. dual qf* from 9 to i, 

then qf has a minimal representation by an infimum. 
Proof. (1) The result in part (1) follows by using Theorems 4.1 and 4.3. 
(2) If qf* is u.s.c. then, by Theorem 4.3, B(q/*) satisfies the representation condition 

for *. Hence the result in part (2) follows by using Theorem 4.2. [1 
When E = Zd is equipped with the relative Euclidean topology, then 9 = W = GP(E) 

and parts (1) and (2) of Corollary 4.2 may be relative to the same t.i. mapping. 
Before ending this section, let us say some words about the representation by a 

supremum for the sup-generating mapping - .0 (A, B). By using Corollary 4 of Matheron 
(1975, p. 7), any closed interval [A, B] of 9 is closed in i. Since ,7( ?D (A, B)) = [A, B], 
by Proposition 8.2.1 of Matheron (1975), the sup-generating mapping ? (A, B) is 
u.s.c. Therefore, by Theorem 4.3. its basis satisfies the representation condition for 
0 (D (A, B). Actually, its basis is the singleton {[A, B]}. In the next section more examples 

are presented. 

5. Examples. We now give some simple examples to illustrate the theory. In this 
section, E is the d-dimensional Euclidean space RWd or its subset Zd, equipped, if 
necessary, respectively, with the Euclidean topology or with the relative Euclidean 
topology. Finally, 9 and W are, respectively, the collections of closed and open subsets 
of E. 

5.1. Complementary mapping. In this section we will study the representation by 
a supremum for the mapping -c which associate the complementary set Xc to a set X 
in 4 ?P(E). -c is an example of decreasing t.i. mapping. 

The kernel of -c is 

YC( .C)-{X E d: O 0 X}. 

If E - {o}l c , then the collection 03( C) of maximal elements of Y( - C) is the 
singleton {E - {o}}. This collection satisfies the condition of Corollary 4.1 which leads 
to the formula 

*c =Ce{o} 

If 0 and E -{o} c 4, then Y( -C) is simply the closed interval [0, (E -{o})] and 
B( -C), the basis of -c, is the singleton {[0, E - {o}]}. This basis satisfies the representation 
condition for -c and Theorem 4.1 leads to the formula 

*C= =3(0,E-{o}). 

If E = Wd and s = i, then E - {o} is an open set, that is, it does not belong to 
the domain of -c and the above simplifications do not occur. In this case, there is no 
maximal closed interval contained in YC(-C) (Banon and Barrera, (1990)), B(-C) is 
empty and it does not satisfy the representation condition for -c. The mapping -c has 
no minimal representation by a supremum. The only simplification that works comes 
from the decreasing property, and by using it, Corollary 3.1 leads to the formula 

C =V{-COB:ocBcW}. 
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If E = Zd and s = i, then s = s?P(E), 0 and E - {o} c X, and the above analysis, 
leading to a minimal representation, holds. By Corollary 4 of Matheron (1975, p. 7), 

( c)={X cE : Xc E-{o}} 

is closed in 9 and, by Property 8.2.1 of Matheron (1975), .C is u.s.c. from . to i. 
Therefore, by Corollary 4.2, we have a confirmation that *c has a minimal representation 
by a supremum. 

5.2. Edge extraction. In this section we study the representation by a supremum 
for an inf-separable mapping, which is useful in extracting the edges of an image. 

Let Dc 2?(E) (D with more than one element). The edge extraction mapping we 
consider is given by 

+ (- D) r- ( -C D); 

in other words, 

+f(X)-=(XEDD) -(X e D) (X G 4). 

By construction, /, is an inf-separable mapping and its kernel is 

gf(q) = {XX E Si: X r D 0 and XCl D 0}. 

Figure 5.1 shows two sets A and B that belong to Y((fr). 
If d = 2?(E), then the collections Oh (4) and h(qf) of Corollary 4.1 are 

R(q)= I{X c s: X = {x} andx Dx , 

, (qr) =-{Xc s1: X ={x}C and xeD. 

These collections satisfy the conditions of Corollary 4.1, which leads to the formula 

(. ?D) Q c (C D) = (V {G - {x}: x E D}) A (V {C E {x}x: G D}). 

If E =Zd and = 9, then s1 = 07(E) and + is continuous, as the intersection of 
two continuous mappings, that is, f is, in particular, u.s.c. from 9 to i. Therefore, 
by Corollary 4.2 we have a confirmation that the above edge extraction mapping f 
has a minimal representation by a supremum. 

B E 

D 
FIG. 5.1. Example of two sets A and B belonging to the kernel .(( *G(D) r ( -CG D)) of an edge detection 

mapping characterized by D. A and Bc must hit D. 
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5.3. Representation by an infimum for a sup-generating mapping. In this section 
we study the representation by an infimum for the sup-generating mapping 

)=*(A,B) (Ac B) of ?2.1. 
Let 4 be the domain of qf. The dual mapping of qf is the inf-generating mapping 

r* = *? (A, B) of ? 2.2 and its kernel is 

X(qf*) ={Xe4*: XrnA$0orXuB$ E}. 

Figure 5.2 shows the extremities U and V of two types of closed intervals contained 
in X(ql*). 

V U E U v 

A EBc 

(a) (b) 

FiG. 5.2. Example of extremities U and V of two types of closed intervals [U, V] contained in the kernel 
%((* ?(9 (A, B))*) of the dual of a sup-generating mapping characterized by A and B. (a) U must hit A, or (b) 
V must not contain BC. 

If - = OP(E), then i* = i, X(q*) is nonempty whenever A $ 0 or B $ E and 
the basis of ql* is the set of closed intervals of type [{x}, E] with x E A or [0, {x}C] 
with x e BC. This basis satisfies the representation condition for ql*, hence, Theorem 
4.2 leads to the formula 

*-(?(A, B) = (A{ I(({x}, E): xe A}) A (A{ I(0, {x}C): xe BC}) 

or simply 

* (Z) (A, B) = (A I {x}: X E A}) A (A{ cE{x}: x E Bc) 

If E =7Zd and ds = X, then ds = = OP (E) and qlr* is continuous as the union of 
continuous mappings, that is, ql* is, in particular, u.s.c. from 9 to 9. Therefore, by 
Corollary 4.2 we have a confirmation that the sup-generating mapping ? (i(A, B) has 
a minimal representation by an infimum. 

Of course, the above formula can be derived in another way, by using the fact 
that - (i(A, B) is inf-separable and by applying Corollary 4.1 to its increasing and 
decreasing parts, that is, to *OA and CeBc. 

5.4. Shape recognition. As a last example, we study the representation by a 
supremum of the so-called window transformation, introduced by Crimmins and Brown 
(1985) in the field of automatic shape recognition. 

Let We OP(E); a mapping ql from d to OP(E) is called a window transformation 
with respect to the window W, if and only if there exists a subcollection 2 c- P'( W) 
such that 

if(X)={xeE: WnX_-e 2} (XeS). 
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The mapping qi "recognizes" in particular all the shapes in 4 which are in ! by 
producing a point marker. The mapping qi is t.i. and its kernel is 

X(qi)={Xc d: W rXc &}. 

Figure 5.3(a) shows one typical element of YC(/) when W is a rectangular and ! 
contains a triangle. 

It is known (Crimmins and Brown (1985); Maragos (1985) that if can be written 
in the following way (using our notation): 

(5.1) '=V{? (D(U, (W- U)c): Uc c}. 

In what follows, in the nontrivial case for which X n 2 has more than one element 
and under some circumstances given below, it is shown that (5.1) is exactly the minimal 
representation by a supremum for if. 

For the moment, let us assume that the above collection 2 satisfies the following 
assumption. 

Assumption 5.1. For any U1 and U2 c 2, comparable (U1 c U2) and distinct 
(U1# U2), there exists XESI such that U(cXn Wc U2 and Xrn W ?2x. E 

Under this assumption, the extremities A and B of a closed interval [A, B] 
contained in Yf(4) satisfy A n W = B rn W. 

If ( W- U)C c e for any U c n 2, then the maximal closed intervals contained 
in /((f') are of type [U, ( W- U)c] with U c n4 r- $. Figures 5.3(b) and 5.3(c) show 
the extremities of a typical maximal closed interval contained in XY(O). The basis of 
i, the set of these maximal closed interval, satisfies the representation condition for 
, hence, by using Theorem 4.1 and by noting that (D( U (W - U)c) is the least t.i. 

mapping whenever U E S - X, we observe that (5.1) is exactly the minimal representa- 
tion by a supremum for f. 

If 2 c i, 9 finite, 4 = 9 and the window W is an open subset of E, it can be 
shown that if is an u.s.c. mapping from . to 9 (Banon and Barrera (1990)). Therefore, 

X 

E 

u (a )( W- U )( 

II 

E _ _ 

W 

(b) (c) 

FIG. 5.3. Example of kernel elements of a window transformation with respect to the window W and the 
collection 2 containing at least a triangle U. (a) shows a particular element X (X n W= U), (b) and (c) show 
the extremities of the maximal closed interval [ U, ( W - U)C] contained in the kernel and relative to the triangle U. 
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by Corollary 4.1 we have a confirmation that a' has a minimal representation by a 
supremum. 

If 9 does not satisfy Assumption 5.1, then the minimal representation by a 
supremum may be even simpler than (5.1). In the increasing case, Example 5.9 of 
Maragos (1985) illustrates this point. In the not necessarily increasing case, the 
K-tolerance matching is another illustrative example. 

Let K and We OP(E), K = K; a mapping 4' from s to OP(E) is called K- tolerance 
matching (Haralick (1988)), if and only if there exists a subcollection 5c '?P( W) such 
that 4' is a window transformation from sd to OP (E) with respect to W and the 
subcollection ST defined by 

9 ={X e OP(E): TeKG Xc (TG K)r Wand Te }. 

The mapping 4' "recognizes" in particular, all the shapes in s that are similar to the 
ones in U within K-tolerant limits. 

As a window transformation, 4' can be represented as in (5.1). On the other hand, 
2 may not satisfy Assumption 5.1 and a simpler representation may be suspected. 

Under an assumption similar to that above, it can be shown that the K-tolerance 
matching 4' can be represented in the following minimal form: 

(5.2) 4 = V{I? (D(TEK, (W-(TEDK))c): Tc $} 

(Banon and Barrera (1990)). The representation in (5.2) is simpler than in (5.1) (Jc ( ). 
Actually, in the general case, the minimal representation by a supremum for a K- 
tolerance matching may even be simpler than (5.2). 

6. Conclusion. In this paper, a pair of representations for translation-invariant 
mappings has been introduced. In ? 2, the representation by a supremum has been 
obtained as an isomorphic property of the decomposition of any subset of a poset as 
the union of its closed intervals. The representation by an infimum has been obtained 
by using the duality principle. In ? 3, the simplification of the representations for 
inf-separable and (respectively, sup-separable) mappings have shown that such map- 
pings can be written as the infimum (respectively, supremum) of an increasing and a 
decreasing mapping. For inf-separable mappings, this property follows by observing 
that their kernel are convex. In ? 4, it has been proved that any upper semicontinuous 
mapping has a minimal representation by a supremum, that is, the maximal sup- 
generating mappings used in the represention of 4' are sufficient to represent 4' by a 
supremum in a minimal way. It is important to note that the upper semicontinuous 
condition can be applied only for mappings whose domain is the collection of closed 
subsets of E, but that other mappings may have a minimal representation by a 
supremum. In ? 5, some examples of inf-separable mappings and general mappings 
have been presented. In the case of the window transformations of Crimmins and 
Brown, the minimal representation by a supremum has given some insight on previously 
known results. 

Finally, three topics for future research can be outlined: the proposed representa- 
tions are well adapted to be implemented on simple highly parallel architectures, which 
should lead to efficient image processing; in practice, exact representations may not 
be necessary; in such a case, it should be possible to construct approximated representa- 
tions for a mapping from subsets of its basis; the results derived here, for set mappings, 
should be extended to function mappings, offering a new tool for digital signal 
processing. 
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