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The critical behavior of the fully frustrated XY model on a triangular and square lattice is in-
vestigated by Monte Carlo simulations. From a finite-size-scaling analysis, we determine the crit-
ical exponents associated with the chirality order parameter. Contrary to previous simulations, we
find the exponents to be inconsistent with the pure Ising values. We argue that these results are
in favor of a single transition in a new universality class.

Fully frustrated XY (FFXY) models were introduced
some years ago in connection with spin glasses.! These
are defined by a nearest-neighbor Hamiltonian

H
(,'Zj)JUCOS( i j)

where J;; = £ J satisfy the “odd rule” in which the num-
ber of bonds with negative J;; in an elementary plaquette
is odd. For the triangular lattice, this constraint can be
satisfied by isotropic antiferromagnetic couplings, while
for the square lattice it can be satisfied by ferromagnetic
horizontal rows and alternating ferromagnetic and anti-
ferromagnetic columns. The Ising version of these models
has no finite-temperature phase transition, but the XY
version has a ground state with continuous U(1) and
discrete Z, symmetry and has a phase transition of an un-
known nature.

Most of the recent studies?”!7 of the phase transitions
in this system have been mainly motivated by its relevance
to Josephson-junctions arrays in a magnetic field. In fact,
the model in Eq. (1) is a particular case of a more general
class of uniformly frustrated XY models defined by

H/kT=—J X cos(6;, —6; — A;;)

)
where the directed sum around an elementary plaquette
2 A;j=2xf and f is the uniform frustration. This is iso-
morphic to an ideal superconducting array if we identify
Aj; =Qn/®d,) f{A-dl, 6; is the phase of the superconduct-
ing order parameter and @, the flux quantum. The vector
potential A must satisfy Vx A =B, the external perpendic-
ular field, which identifies f =®/®, as the number of flux
quanta per plaquette. The fully frustrated case corre-
sponds to f = 7.

In view of the continuous and discrete symmetry of the
ground state of the FFXY model, one can introduce XY
and Ising order parameters, and different scenarios are
possible: Ising and XY transitions could occur at different
temperatures giving rise to an intermediate phase; at the
same temperature, but in a decoupled fashion, or, in the
case of strongly coupled domain-wall and vortex excita-
tions, a single transition in a different universality class
could occur. There have been several numerical studies
on the FFXY model on a triangular and square lattice, but
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no definite conclusions have been reached—even regard-
ing the existence of an intermediate phase. Monte Carlo
(MC) simulations yield apparently simultaneous oc-
currences of XY and Ising transitions on the triangular®!'?
and square?!>'* lattices, but a double transition with a
XY-disordered and Ising-ordered intermediate phase has
also been suggested.>!*> The critical exponents associated
with the Ising order parameter have been found to be con-
sistent with the pure Ising values, even when a single tran-
sition is claimed. This view is usually supported by the
observation that the finite-size dependence of the specific-
heat maximum is consistent with a logarithmic behavior
within errors. Generalized versions of the FFXY models
have also been investigated. In some cases, Ising and XY
transitions occurring at different temperatures can be
identified when an appropriate parameter is changed.'?
However, the question of the double or single nature of
the transition in the original model of Eq. (1) still re-
mains.

Recently, the phase diagram of a coupled XY-Ising
model of the form (o= 1)

%= —(%[A(l+a,-oj)cos(0,~—9j)+cai0j] (2

has been studied which is expected to describe the critical
behavior of the FFXY model.'%'®1° Early studies®™® of
the model (2) have only considered the C=0 case. The
triangular and square cases can be considered to lie along
different paths in the parameter space (4,C). Depending
on the parameters, separate XY, Ising, and first-order
transitions were found. A line of continuous transitions
was found with a simultaneous loss of XY and Ising order,
and varying critical exponents. In addition, these ex-
ponents are found to be significantly different from the
pure Ising values. The parameters of the square and tri-
angular cases should lie close to the point where this single
line bifurcates into two branches, one corresponding to
pure XY transitions at low temperatures and another to
pure Ising transitions at higher temperatures. These re-
sults then imply that in order to verify the single nature of
the transition in the FFXY model, it is sufficient to study
the Ising variables. If the critical exponents are incon-
sistent with the pure Ising values, the transition cannot be
a decoupled Ising-XY or the Ising branch of a double
transition. This point of view has the advantage of not re-
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quiring the very difficult determination of the helicity
modulus jump which, in a model of this nature, does not
have an obvious interpretation.

In this work we describe the results of a calculation of
the critical exponents associated with the chiral (Ising)
order parameter from a finite-size-scaling analysis of MC
data. Using the same methods?® applied to the coupled
XY-Ising model,'® we obtain v=0.83(4) and 0.85(3),
28/v=0.28(4), and 0.31(3) for the triangular and square
lattices, respectively. These differ significantly from pure
Ising exponents, and thus favor a single-transition sce-
nario.

The MC simulations were carried out using a standard
Metropolis algorithm in system sizes 6 <L <40 and
periodic boundary conditions with small system sizes to
perform long runs and achieve good statistics. Typically
5%x10% MC steps were used in the simulations. The
chirality order parameter®® is defined as a directed sum
around each elementary plaquette p as yx, =(1/y0)2J;;
xsin(6; — 6;) where the normalization factor yo=3J V3/2
and 2J \/— for the triangular and square lattice, respective-
ly. At zero temperature, y, = % 1, analogous to an anti-
ferromagnetic Ising spin, and it is sufficient to consider the
chirality per site y of one of the sublattices.

From simulations at one temperature, we use the histo-
gram method?' to obtain information at nearby tempera-
tures. If —A,(L,J) is defined as the logarithm of the his-
togram of chirality, the real bulk free-energy barrier
AF,(L,J) between ordered phases can be obtained from
the depth of the minimum of A, as a function of ».2° At
the transition, AF,(o0,J.)= 0(1) while for T <T.,
AF,(L) increases w1th L as L' for L <& (correlation
length) and for T > T, approaches zero. This behavior
near T, is illustrated in Fig. 1. The change of behavior of
AF, near T, can be used to determine the critical temper-
ature with good precision, and we find T, =0.513(2) and
T.=0.455(2) for the triangular and square lattice, re-
spectively. However, the exponent itself can be obtained
quite easily from the slope of a log-log plot of S
=9AF,/8J ~L"" as a function of L which ylelds 1/v from
a one-parameter fit without requiring a precise determina-
tion of T, as in previous simulations. The exponent 28/v
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FIG. 1. Finite-size scaling of the free-energy barrier AF, for

the triangular lattice.
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FIG. 2. Finite-size scaling of the minimum position x> and
S =0AF,/dJ for the square and triangular FFXY models. The
symbols correspond to square and triangular cases.

can be obtained from the scaling of the location of the
minimum in A4,, which should scale as L ~#" at the criti-
cal point. This will depend on a precise location of the
critical point, and hence is subject to larger uncertainty.
In Fig. 2 we show a log-log plot of these quantities for the
square and triangular lattices. A small curvature is still
observed even for the largest system sizes, indicating that
corrections to scaling are still important. However, con-
sidering system sizes with L > 10, we obtain v=0.83(4),
2B/v=0.28(4) (triangular), and v=0.85(3), 2B/v
=0.31(3) (square). These results differ significantly
from the pure Ising exponents and seem to be consistent
with the values obtained near the bifurcation point of a
coupled XY-Ising model along the line of single transi-
tions.'®!® These values should be considered as upper
bounds to the asymptotic result, since one can still detect a
curvature in the data.

We have also made an independent estimate of the
same critical exponents using the MC renormalization-
group method.?? Using the isolated block version of this
method, we could use the same histograms. The effective
exponents are obtained by comparing at T, system sizes
L and L'=bL as 2B8/v=In(x#)/{x2))/Inb and 1/v
=1n(dU./9U.)/Inb with U, =1 —{x#)/3{¥#)>. In Fig. 3
we show the effective exponents for the triangular lattice
obtained by this procedure. The estimate obtained by the
previous method is indicated by arrows. Even though the
extrapolation Inb — oo is not well defined, the trend of the
data is in fair agreement with the estimate based on the
scaling of AF,,.

Recently, the exponents for the square FFXY model
have been evaluated'” using a MC transfer matrix and the
estimate of 2B/v agrees with our result within numerical
uncertainties, but not for v. We note, however, that v was
determined in an indirect way with several fitting parame-
ters.!” Our evaluation involves a one-parameter fit to the
data and the result is definitely inconsistent with v=1.

Most of the evidence in favor of pure Ising exponents
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malization-group method for the triangular lattice. L =6 and
L'=bL. Arrows indicate the results obtained from finite-size
scaling of AF,.

for the FFXY models relies on the finite-size behavior of
the specific-heat maximum, which is usually found to be
consistent with a logarithmic dependence on the size of
the system, implying a=0. However, it may be very
difficult to distinguish a power law from a logarithmic
divergence. To illustrate this point, in Fig. 4 we show the
specific-heat maximum for the square lattice obtained
from the data of AF, and compare the results of a log-log
and log-linear plot. We note that the data is in agreement
with the simulations of Ref. 2, in which a logarithmic be-
havior was suggested, but it is clear that at least for
L > 10 a better fit is obtained with a power-law diver-
gence, from which we obtain a/v=0.48(7), from the larg-
est system sizes. Using hyperscaling, this result is con-
sistent with our estimate of v from the finite-size scaling
of AF,. For the triangular lattice, similar results are ob-
tained with data in agreement with Ref. 3.

In conclusion, we have estimated the critical exponents
of the FFXY models on a triangular and square lattice
and found, contrary to previous simulations, that the
chirality critical exponents are inconsistent with the pure
Ising values. We argue that this result favors a single-
transition scenario. Although the exponents agree within
the estimated uncertainties, suggesting that the square
and triangular cases may belong to the same universality
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FIG. 4. Specific-heat maximum as a function of system size
for FFXY model on the square lattice in a log-linear and log-log
plot.

class, simulations in larger systems sizes and better statis-
tics may well result in different exponents. This nonuni-
versal behavior would be in complete agreement with the
prediction, based on the results for coupled XY-Ising mod-
els.'®'" Our approach allows us to obtain a very precise
estimate of the temperature exponent 1/v, independent of
the exact critical temperature. We believe this method to
be much superior to earlier ones because they rely on in-
dependent estimates of the Ising and XY transitions. The
latter is extremely difficult to obtain in a model with an
unknown critical behavior. The major impediment to
large systems and good statistics is our use of the standard
single-flip Metropolis algorithm. A modification allowing
flipping of large blocks would improve the accuracy great-
ly and should allow us to reach asymptopia, and perhaps
distinguish between exponents for the square and triangu-
lar lattices.
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