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ABSTRACT 

This work is committed to provide methodological guidelines for the simulation of 
urban land use dynamics. Modeling experiments of urban land use change were 
conducted for two medium-sized cities (Bauru and Piracicaba) located in the inland of 
São Paulo State over time series of approximately thirty-five years. Land use transitions 
were estimated using two different empirical probabilistic methods – the `weights of 
evidence´ approach, based on Bayes´ theory, and logistic regression. The thereof 
derived land use change probabilities drove a cellular automata model, built upon basis 
of stochastic land use allocation algorithms. Socioeconomic and infrastructural factors 
demonstrated to be the drivers of local land use change, whose logic is explained in 
light of economic theories of urban development and growth. The simulation outputs 
were statistically validated according to a multiple resolution fitting procedure. After the 
accomplishment of simulations for successive time periods along the whole time series, 
forecast simulations were carried out for stationary and non-stationary scenarios of 
transition trends. The former were assessed through the Markov chain, while the latter 
were obtained from linear regression models relating rates of land use change to 
demographic data and economic performance indicators. Both types of forecast 
scenarios were built for the short- and medium-term, respectively 2004 and 2007. And 
finally, a due attention was drawn to possible extensions of this work throughout. 
 

 

 



 



MODELAGEM DA DINÂMICA ESPACIAL COMO UMA FERRAMENTA 
AUXILIAR AO PLANEJAMENTO: SIMULAÇÃO DE MUDANÇAS DE USO 

DA TERRA EM ÁREAS URBANAS PARA AS CIDADES DE                       
BAURU E PIRACICABA (SP), BRASIL 

 
 
 
 
 
 
 
 
 

RESUMO 

Este trabalho propõe-se a fornecer diretrizes metodológicas para a simulação de 
dinâmicas de uso do solo urbano. Experimentos de modelagem de mudanças de uso da 
terra foram realizados para duas cidades de médio-porte (Bauru e Piracicaba) 
localizadas no interior do Estado de São Paulo, ao longo de séries multitemporais de 
aproximadamente trinta e cinco anos. As transições de uso do solo foram estimadas 
através de dois diferentes métodos probabilísticos empíricos – `pesos de evidência´, 
baseado no teorema da probabilidade condicional de Bayes, e regressão logística. As 
probabilidades de mudança de uso do solo obtidas a partir daí alimentaram um modelo 
de autômatos celulares, construído com base em algoritmos de transição estocásticos. 
Aspectos sócio-econômicos e de infra-estrutura demonstraram ser variáveis forçantes de 
mudanças de uso do solo em nível local, cuja lógica pode ser explicada à luz das teorias 
econômicas de crescimento e desenvolvimento urbano. Os resultados das simulações 
foram validados espacialmente em função de um procedimento estatístico de ajuste por 
múltiplas resoluções. Após a conclusão das simulações para sucessivos ciclos de tempo 
ao longo das séries multitemporais, foram realizadas simulações de prognóstico de 
cenários estacionários e não-estacionários de tendências de transição. Os primeiros 
foram determinados através do modelo Markoviano, ao passo que os cenários não-
estacionários foram obtidos a partir de modelos de regressão linear, relacionando taxas 
de transição do uso do solo a dados demográficos e indicadores de desempenho 
econômico. Ambos os tipos de cenários de prognóstico foram conjecturados para o 
curto e médio prazo, respectivamente 2004 e 2007. E por fim, devida atenção foi 
dispensada a possíveis aplicações e extensões deste trabalho. 
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CHAPTER 1  

INTRODUCTION 

1.1 Overview of the Research Topic 

In the two last centuries, particularly in the latest decades, humankind has witnessed a 

drastic shift of population from rural to urban areas. According to a World Bank report, 

the proportion of the world population living in urban areas rose from 33.6% in 1960 to 

46.6% in 1999, and this rate is expected to reach up to 75.8% in the newly industrialized 

(NICs) and developed countries (Easterly and Sewadeh, 2000). It is estimated that 55% 

of the global population will be urban dwellers by 2015 (United Nations, 1996). 

One of the earliest and most important drivers for these changes in the urban 

environment in the developed world since the XIX and beginning of the XX century is 

the Industrial Revolution, which actually started to take place in the second half of the 

XVIII century. A population surplus, enhanced by continuous drops in mortality rates, 

in association with migratory flows of expatriated rural workers caused serious impacts 

on towns at that time. This population shift was accompanied by a growth of goods and 

services in urban areas, which was supported by gains in productivity in agricultural and 

industrial production, made possible by the rapid technological changes and economic 

development. Just to mention a few examples, the population of Manchester shifted 

from 12,000 in 1760 to over 400,000 inhabitants by the middle of the XIX century. 

London, which had already one million inhabitants by the end of the XVIII century, 

sheltered two and half million people around 1851 (Benevolo, 1983). 

Similar processes of industrialization and rapid urbanization were experienced in the 

developing world in the XX century. In Latin America, Brazil and Argentina entered the 

era of large-scale industrial production from the 1950s onwards, whereas countries such 

as South Korea, Indonesia and Malaysia went through a transformation of moving from 

a basically rural into an industrial economy mainly in the late 1970s and 1980s. 



 42

Between 1950 and 1995, the urban population in Asia, Africa, Latin America and the 

Caribbean grew more than fivefold from 346 million to 1.8 billion. Although Asia and 

Africa still have more rural than urban dwellers (TABLE 1.1), they both have very large 

urban populations in terms of absolute figures. United Nations projections suggest that 

urban populations are growing so much faster than rural populations that 80 per cent of 

the growth in the world´s population between 1990 and 2010 will be in urban areas and 

virtually all this growth will be in Africa, Asia and Latin America (United Nations, 

1998). 

TABLE 1.1 – Trends and projections in urban populations by region, 1950 – 2010. 

 

                                                  Percentage of Population Living in Urban Areas  

Region 1950 1965 1980 1995 2010* 

Africa 14.6 20.7 27.3 34.9 43.6 

Asia 17.4 22.4 26.7 34.7 43.6 

Latin America and 
the Caribbean 

             
41.4 

            
53.4 

            
64.9 

            
73.4 

             
78.6 

Rest of the world 55.3 64.1 70.5 74.2 78.0 

  * This is projected according to censuses held around 1990. Rest of the world includes all countries in 
    Europe, North America and Oceania. 

  SOURCE: United Nations (1998, p. 25). 

Two aspects of this rapid growth in urban population have been the increase in the 

number of large cities and the historically unprecedented size of the largest cities. Two 

centuries ago, there were only two `million-cities´ worldwide (i.e. cities with one 

million or more inhabitants) – London and Beijing. By 1950 there were 80 and by 1990 

there were 293 `million-cities´. A large (and increasing) proportion of these million-

cities are in Africa, Asia and Latin America, and many have populations that grew more 

than tenfold between 1950 and 1990 (Hardoy et al. 2001). 
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In Brazil, urban growth and development was for a very long time concentrated in 

coastal State capitals. Some of them were defined as metropolitan areas in the 1970s in 

face of their high demographic density. Given their strategic location and the fact that 

they were well supplied with technical infrastructure and social equipments, they could 

keep strong ties with their surrounding regions, organizing and centralizing the 

economic relationships within their catchment areas. 

The development strategies adopted in Brazil as well as in many other Latin American 

countries were oriented towards foreign markets and aimed at economic efficiency and 

increasing competitivity. This brought about the rising of external economies of 

agglomeration1, leading to the above-mentioned sharply concentrated pattern of spatial 

development (Fernandes et al. 1977).  

Nevertheless, this multi-centralized development framework of `economies of 

agglomeration´ had a number of serious drawbacks. After an initial period of good 

economic performance, metropolitan areas started to behave as “diseconomies of 

agglomeration”, in face of problems including: increasing real estate prices; imminent 

collapse of the transportation, telecommunication and/or water supply systems; greater 

time and costs spent in displacement trips inside the metropolitan areas; higher wages; 

environmental problems; and criminality. 

Policies to overcome these regional imbalances and the adverse effects of the 

concentrated spatial development have been established by the Brazilian federal 

government since the late 1950s and 1960s, which resulted in the creation of the 

Manaus tax free zone in the Amazonas State (1957); the foundation of the new federal 

capital, Brasília (1960); the creation of regional development institutions like the 

Agency for the Northeastern Region Development (SUDENE) in 1959, the Agency for 

the Amazon Region Development (SUDAM) in 1956, etc.; and in actions promoting the  

    

                                                 
1 The term `economies of agglomeration´ is used in urban economics to describe the benefits that firms obtain when 
locating near each other. It is related to the idea of economies of scale and network effects, in that the more related 
firms that are clustered together, the lower the cost of production and the greater the market they can sell into 
(Wikipedia, 2003). 
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decentralization of the industrial development in the São Paulo metropolitan area, 

amongst other initiatives. 

Of all these actions, the II National Development Plan (II PND), launched in 1974, was 

a most ambitious plan to relocate part of the industries situated in the São Paulo 

metropolitan area to other regions in Brazil. This plan included the creation of industrial 

development funds and of policies to foster export and agribusiness activities as well as 

to decentralize the production of basic industrial inputs. Its goals have been partially 

achieved, since part of the intended industrial relocation actually took place in the 

inland of São Paulo State. This region offered good infrastructure conditions, successful 

agricultural enterprises and an urban network already established since the expansion of 

export coffee plantations during the XIX century (Fundação Seade, 1992). 

Two of the medium-sized cities located in the inland of São Paulo State that inherited 

part of the metropolis industrial development are the very foci of the present PhD 

research: Bauru and Piracicaba. In both cases, the challenges for studying them lie on 

the fact that they underwent urbanization booms and show a great diversity concerning 

their economic specialization profiles throughout the latest decades. 

The importance in drawing special attention and conducting in-depth research on urban 

areas can be ascribed to the fact that not only they are bound to shelter the greatest part 

of the world´s population, as previously exposed, but also and chiefly to the fact that 

they control the world´s economy in the present era of globalization, managing the 

flows of financial resources, man-made and natural assets, human capital, information, 

technical and scientific knowledge and decision power. On a due and prudent command 

of their institutional and financial framework as well as on a skilful running of its 

physical structure will the success or failure of the majority of mankind´s undertakings 

depend.  

This is exactly the concern of local strategic planning, which strives for a better 

understanding of dynamic changes that occur in the physical sphere of urban areas, and 

also for developing tools and skills to foresee probable events that might take place in 

the urban environment in a near future. 
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Traditional planning has always endeavored to rationalize and clarify territorial changes 

in cities and anticipate possible transformations in the urban scene as well. In the same 

way, quantitative methods have for long been employed in urban issues, struggling to 

understand processes of urban change. Von Thünen´s theory of concentric rings, 

Weber´s classical triangular model of industrial location, Christaller´s model of central 

places, and Lösch´s theory of economic regions all date back from the last decades of 

the XIX century and beginning of the XX century, respectively 1826, 1909, 1933, and 

1940 (Merlin, 1973). 

With the advent of personal computers and the Quantitative Revolution in social 

sciences and related fields in the late 1950s and early 1960s, computerized urban 

models came into play. Initially, these models were cross-sectional in time and, with a 

few exceptions, largely sectorial, in the sense that different aspects of urban life 

(transportation, residential demand, retail location, etc.) were handled by different 

models. Clark´s model of residential location (Clark, 1951), Lowry´s model of 

transportation for the Pittsburgh area (Lowry, 1964), and Lakshmanan and Hansen´s 

retail location model (Lakshmanan and Hansen, 1965) are worthy of mention. 

The following generation of models attempted to model temporal dynamics and to 

provide a more integrative approach (Crecine, 1964; Batty, 1971, 1976; Allen et al. 

1981; Wilson, 1981; Wegener et al. 1986). The refinements introduced by these models 

included: (a) addition of the time dimension in the quantitative analyses; (b) 

employment of sophisticated mathematical and theoretical tools (e.g. differential 

equations, Catastrophe and Bifurcation Theory, etc.); (c) analysis of the spatial 

interactions among different activities in a city.  Although the improvements introduced, 

these models remained fairly non-spatial, especially in the sense that their results could 

not be spatially visualized. 

Effective advances in the spatial representation of urban models occurred only by the 

end of the 1980s, when cellular automata (CA) models started to be widely applied. 

Cellular automata are simple – usually grid-based – formal systems, in which dynamic 

change is represented grid-cell by grid-cell, as a simple mapping from the current state 
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of a cell and its neighbors into the next state which the cell will change. A CA model of 

a city focuses on dynamics and can be used to investigate urban processes of change 

(Couclelis, 1985; Batty and Xie, 1996; Xie, 1996). 

According to Batty et al. (1997), CA were somehow implicit in the wave of computer 

models designed for land use – transportation planning already in the early 1960s. 

Chapin and his colleagues at North Carolina in their modeling of the land development 

process articulated cell-space models where changes in state were predicted as a 

function of a variety of factors affecting each cell, some of which embodied 

neighborhood effects (Chapin and Weiss, 1968); while Lathrop and Hamburg (1965) 

proposed similar cell-based simulations for the development of western New York 

State. 

“Strict CA models came into the urban field from another source – from theoretical 

quantitative geography. These were largely due to Waldo Tobler who during  the 1970s 

worked at the University of Michigan where Arthur Burks and his Logic of Computers 

group were keeping the field alive. Tobler (1970) himself first proposed cell-space 

models for the development of Detroit but in 1974 formally began to explore the way in 

which strict CA might be applied to geographical systems, culminating in his paper 

“Cellular geography” (Tobler, 1979). At Santa Barbara, in the 1980s, Couclelis 

influenced by Tobler continued these speculations, until the late 1980s when 

applications really began to take off as computer graphics, fractal, chaos, complexity all 

generated conditions which have led to the currently seen advances” (Batty et al. 1997). 

The 1990s experienced successive improvements in urban CA models, which started to 

incorporate environmental, socioeconomic and political dimensions, and were finally 

successful in articulating analysis factors of spatial micro and macroscale (Phipps and 

Langlois, 1997; White and Engelen, 1997; White et al. 1998).  

There are now some twenty or more applications of CA to cities (Batty, 2000), such as 

intra-migration and social segregation (Portugali et al. 1997), retail location 

optimization (Benati, 1997), traffic network expansion (Batty and Xie, 1997), urban 
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growth (Clarke et al. 1997; Clarke and Gaydos, 1998), urban land use change (Phipps 

and Langlois, 1997; White and Engelen, 1997; White et al. 1998), etc. 

It is worthy remarking that spatial dynamic models in a general way represent an 

immediate challenge for the coming generation of Geographical Information Systems 

(GIS). According to Burrough (1998), methods of open systems modeling of which CA 

is one of the best examples and which meet many of the general requirements for 

simulating dynamic processes quickly and efficiently, are rarely implemented in GIS. In 

Openshaw´s opinion, “…GIS remains surprisingly narrowly focused, …, it is largely 

devoid of much of the modeling and the simulation relevant to the modern world…” 

(Openshaw, 2000). All these opinions find support in the work of Câmara et al. (2003), 

for whom the current computational paradigms of knowledge representation are 

essentially static and unable to appropriately model the temporal dimension and the 

dynamic context-based relationships amongst entities and their attributes. 

This PhD research is inserted in this context, and by carrying out simulations of land use 

change applied to two real cities, it seeks to provide evidence to the needs of the 

Geographical Information Science (GISc) community in conceiving techniques and 

abstractions capable of properly representing dynamic environmental phenomena.  

1.2 General Research Goals 

The general goals of this research are the following: 

• To perform experiments of urban land use change for two cities – Bauru and 

Piracicaba, located in the western inland area of São Paulo State, Brazil – using 

a cellular automata model, driven by parameters obtained through two empirical 

statistical methods (weights of evidence and logistic regression), as well as by 

spatial information extracted from Landsat 5 – Thematic Mapper (TM – 5) 

satellite images; digital land use, occupation density, technical and social 

infrastructure2 maps; and digital aerial photos.   

                                                 
2 Technical infrastructure can be understood as the underlying or hard framework of a city, consisting of traffic and 
transport systems, energy supply systems, water supply and sewerage, telecommunications, etc. Social infrastructure, 
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• To identify, by means of a multi-temporal analysis of land use change 

processes observed in the two cities, the role of the biophysical and 

socioeconomic variables shaping urban form. The aim is to understand the 

dynamic interaction amongst these factors, and hence to elaborate possible 

future scenarios of land use arrangements in the short- and medium-terms for 

these cities.  

• To collaborate, through the land use change modeling experiments and the 

thereof derived investigations and findings, to provide insights and answers to 

the needs of GISc in developing techniques and abstractions capable to suitably 

represent dynamic events of the real world. 

1.3 Specific Research Goals 

Concerning specific research goals, this PhD research should be proper to: 

• Serve as a guidebook for the accomplishment of land use change simulations 

of cities either in Brazil or worldwide. 

• Subsidize, in a general way, the decision-making processes of local and 

regional administrators related to urban and environmental planning in the cities 

of Bauru and Piracicaba as well as those related to regional planning working for 

the administrative regions of Bauru and Campinas, which respectively comprise 

the municipalities of Bauru and Piracicaba. 

• Supply guiding information for specific sectorial plans at the intra-urban scale, 

such as: 

- industrial location plans (subdivided according the field of production); 

- residential settlements plans; 

                                                                                                                                               
on its turn, constitutes the soft framework necessary for the functioning of a city, like educational and health care 
equipments, commercial and services activities, sports facilities, religious and public institutions, leisure areas, etc. 
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- social equipments location plans (schools, health care facilities, kindergarten, 

etc.); 

- plans for the implementation of technical infrastructure (bus routes and stops, 

roads paving, extension of water supply and sewerage pipes, construction of landfills, 

expansion of the energy supply network, etc.). 

1.4 Research Hypotheses 

In face of what was exposed in the previous sections, this PhD research postulates the 

following hypotheses: 

a) Is it possible to run models of urban land use change in a cellular automata 

environment that simulate the patterns and processes of spatial transformations 

of land use in distinct medium-sized São Paulo inland cities that were subjected 

to urbanization booms? 

b) In case the first hypothesis is deemed affirmative, can these models be driven 

by spatial information obtained from digital maps, remote sensing (RS) images 

and digital aerial photos? Is it possible that the spatial variables identified in 

these cartographic products provide indication of how and where changes in the 

urban land uses are taking place, and therewith, allow the elaboration of maps 

showing the areas most susceptible to undergo changes? 

c) If this late hypothesis can be confirmed, what would be such variables? How to 

select them? In which way can they be combined for the generation of the 

above-mentioned maps? 

d) Moreover, what would be proper statistical methods to weight the different 

variables according to their contribution for rendering certain areas more or less 

prone to changes? What would be the comparative effectiveness of these 

methods in detecting land use transitions? 
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e) Finally, can all the information obtained in the previous stages be used for 

conceiving forecast scenarios of land use change? What statistical methods 

would be suitable for estimating future land use change rates? Would regression 

analysis models relating past rates of transition and socioeconomic indicators be 

appropriate for this end? 

The answers to these queries are presented at the end of Chapter 6, when the whole 

process of digital spatial data pre-processing, selection and weighting of variables, 

parameterization and calibration of the models, and simulations running will be 

concluded, validated and evaluated. 

1.5 Detailed Outline of the Thesis 

After an introductory overview on the thesis topics and the statement of the objective 

and specific goals of this research in Chapter 1, the theoretical foundations on urban 

models are approached in Chapter 2.  

Firstly, an anthology of definitions on urban areas and related concepts is presented, 

followed by a brief historical perspective on urban models in the second part of the 

Chapter, showing the progressive advances achieved in the latest decades, particular 

with respect to their spatial representation.  

Since spatial dynamic models are the central theme of this thesis, the third part of 

Chapter 2 is dedicated to considerations on how space and time is approached in the 

present work. The third part of Chapter 2 still contains a special section on Cellular 

Automata, for it best represents systems of dynamic modeling, and also a conclusive 

section justifying the usage of a CA model for the urban land use simulations carried 

out in this research.  

Chapter 3 introduces the two case study cities adopted for the modeling experiments - 

Bauru and Piracicaba - regarding their location, historical background and 

socioeconomic particularities. Their recent economic specialization profile will be 

understood in view of the development process of São Paulo State and Brazil since early 



 51

colonial times. This Chapter attempts to clarify the reasons lying behind their high 

urbanization growth rates as well as their current status of regional and industrial 

development poles in São Paulo State. 

Chapter 4 is committed to present both the spatial and non-spatial data that drive the 

urban land use simulation experiments. The first section introduces the spatial data, like 

maps of land use, aerial photos and satellite images, mentioning their characteristics 

such as source, scale, type of information, level of detailing and date of acquisition, 

whereas the non-spatial data, which are those concerning demographic information and 

economic indicators records and exclusively used for the simulation of land use change 

forecasts, are presented in the second section. A concluding section describes pre-

processing operations undertaken in the geographical database. 

Particular attention is drawn to methodological aspects in Chapter 5, which consists of 

two sections introducing the empirical statistical methods employed for the 

parameterization of the simulation models (weights of evidence and logistic regression), 

and of a conclusive section, designed to present the dynamic simulation software used 

in the modeling experiments. 

Chapter 6 reports the results obtained for the different time periods of simulation, 

including the short-term (2004) and medium-term (2007) forecasts time horizons. 

Special attention is paid to justify the sets of variables selected to explain the respective 

land use transitions in each of the simulation periods in light of economic theories of 

urban growth and development. 

Finally, an attempt is made in the concluding Chapter 7 to draw together the whole 

range of topics, findings and questions raised by all of the foregoing material. 

Recommendations as to the future paths of this research work are added to this 

discussion. 
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CHAPTER 2  

THEORETICAL FOUNDATIONS ON URBAN MODELS 

2.1 The Modeling Object 

Once the present work deals with the precise topic of urban land use change modeling, 

it is essential to initially draw a due attention to the definition of this research object. 

2.1.1 Definitions of Urban Settlements 

The mankind, gregarious since its remote times, always lived in groups or communities. 

Human beings are social animals who for reasons such as mutual support (breeding, 

feeding, protection) and territoriality are inclined to form communities (ORB, 2002). 

Since their origins on Earth about 500,000 years ago and for a very long time henceforth 

(which corresponds to the Pleistocene epoch), they lived collecting their food and 

searching for shelter in the natural environment without modifying it in a deep and 

permanent way. 

Around 10,000 years ago, after the glaciers thaw completion - the last deep environment 

transformation marking the transition from the Pleistocene to the Holocene – the 

inhabitants of the temperate zone learned how to produce their own food, cultivating 

plants and raising cattle, organizing the first stable settlements – the villages – located 

near to their work places. This is the Neolithic period, which for many peoples extended 

until the European colonization (for the Maoris in New Zealand, it lasted until the XIX 

century). 

Approximately 5,000 years ago, on the flood plains of the Middle East, some villages 

turned into cities; the food providers were persuaded or forced to generate a surplus in 

order to sustain a class of specialized labor force: craftsmen, traders, warriors and 

priests. Since they were in a more favorable condition living in cities, they could keep 

an ascendance over the countryside. This social organization demanded the invention of 
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writing; and this is the very point in time where civilization and the written history 

begins in opposition to the prehistory. Henceforward, all the successive historical events 

will depend on the amount and distribution of this food surplus (Benevolo, 1983). 

Researchers in this field distinguished within the aforementioned period a) the Brass 

Age, in which the metals used for tools and weapons were rare and expensive, being 

reserved to a restricted leading class, which absorbed all the available food surplus but 

at the same time also limited the population and production growth; and b) the Iron Age, 

which started around 1,200 B.C. with the diffusion of alphabetic writing, stamped coins 

and more accessible metallic tools, enlarging hence the leading class and allowing an 

increase in population. The Greco-Roman civilization developed under these precepts 

on a very large area – the Mediterranean Basin – but enslaved and impoverished the 

food providers, being in this way condemned to an economic collapse, what indeed 

happened from the IV A.D. century onwards. 

Other historical events – the feudal and bourgeois civilizations – made way for the 

following historical transition: the usage of scientific methods directly in the production, 

what characterizes the industrial civilization. The ever-increasing and unlimited surplus 

was not necessarily reserved to a leading minority, but is distributed for the greater part 

of the population, and theoretically for the whole of it, which have no more economic 

hindrances to grow. In this new situation, the city (seat of the dominant classes) still 

opposes itself to the countryside (seat of the subordinate classes), but this dichotomy 

was not inevitable and could be overcome. And from this very daring possibility was 

born the modern city (Benevolo, 1983). 

Regarding the central topic of this section, it is important to note that the term urban 

settlements encompasses a set of related concepts: urban centers, towns, cities. 

According to Hardoy et al. (2001), there is no general agreement among governments as 

to how define `a town´, an `urban center´ and a `city´. In virtually all nations, urban 

centers include all settlements with 20,000 or more inhabitants, but governments differ 

in what smaller settlements they include as urban centers – from those that include all 
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settlements with a few hundred inhabitants as urban to those that only include 

settlements with 20,000 or more inhabitants. 

Most governments define urban centers in one of four ways: through size thresholds (for 

instance all settlements with 2,000 or more inhabitants are urban); through size 

thresholds combined with other criteria (for instance for density or for proportion of the 

economically active population in non-agricultural activities); through administrative or 

political status (for instance all settlements designed as national, provincial or district 

capitals are urban centers); or through lists of settlements named in the census being 

`the urban centers´. 

The term `city´ and `urban center´ are often used interchangeably, and there is no 

consensus as to the definition of a city and how it might differ from the definition of an 

urban center. But few people would consider that settlements with 1,000 or 2,000 

inhabitants are cities. There are thousands of settlements in Africa, Asia and Latin 

America that have only a few thousand inhabitants and are considered by their 

governments as urban, which lack the economic, administrative or political status that 

would normally be considered as criteria for classification as a city. In countries with 

long urban histories, there may be many historic `cities´ which achieved city status 

many decades or centuries ago because of their importance at that time (for instance by 

being political capitals or religious centers or key trading centers) and are still 

considered as cities, even though they are relatively small within their national urban 

system. The term `town´ implies a small urban center and might be taken to include all 

urban centers that were not cities, but again, there is no consensus on this (Hardoy et al. 

2001).  

These are official definitions, usually employed by some international and 

governmental institutions. Regarding researchers proceeding from the urbanistic and 

related fields, cities may however assume broader and more divergent 

conceptualizations. Merlin (1973), in the light of the historic materialism, defines the 

city as a place for the association of individuals and their activities, so as to enable more 

efficient production means. For Serra (1991), also a materialist theoretician, cities are 
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agglomerations whose supreme role is the surplus control. According to the ecological 

theory, the city is regarded as a man-made ecosystem, with its own energy periods and 

eco-cultural species (Odum, 1963; Watt, 1973). Mc Loughlin (1972), guiding himself 

through the Systems Approach, sees the city as a cybernetic machine or a complex 

system of activities and flows hierarchically arranged in special subsystems. For the 

contemporary theory of strategic planning and management, the city is a mega-

organization, i.e. a wide set of multidimensional collective action (Fischer, 1996). 

2.1.2 The Modeling Object in the Present Work 

In Brazil, there is no official definition or classification of cities regarding their size in 

terms of population figures. The metropolitan areas in São Paulo State, for instance, are 

defined with no mention to population amount as “…the cluster of neighboring 

municipalities that assumes a remarkable national prominence, in view of its high 

demographic density, an outstanding conurbation pattern and a high degree of 

socioeconomic integration, diversity and specialization of its urban and regional 

functions so as to demand an integrated planning strategy and a permanent collective 

action of its public entities” (São Paulo, 1989). 

The Brazilian Federal Constitution obliges every city with a minimum population of 

20,000 inhabitants to have its own master plan (Brasil, 1988), what makes it implicit 

that urban settlements with less population than this threshold may also be 

acknowledged as cities. In the Amazon region, for instance, new municipalities are 

created to improve local administration, and their seat cities not rarely contain a 

population of just a few thousand inhabitants. According to some official cartographic 

studies, urban settlements containing between 5,000 and 20,000 inhabitants are regarded 

as “rural cities”, and any human settlement with less than 5,000 inhabitants is 

considered either a hamlet or a village. 

Any official regulation for the Brazilian cities size in function of their population would 

have to be continuously revised, given the rapid urbanization processes underwent by 

most cities. A city regarded as big in the first decades of last century, could be 
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considered as medium in the 1940s or 1950s and even as small in the beginning of this 

century. 

Some population thresholds are however extra-officially adopted in some urban studies. 

Considering the current Brazilian urban network patterns, it is sensible to classify urban 

settlements with political-administrative autonomy sheltering more than 20,000 and less 

than 100,000 inhabitants as small cities; more than 100,000 and less than 500,000 

inhabitants, as medium-sized cities; more than 500,000 and less than 1,000,000 

inhabitants as relatively big cities; and those containing more than 1,000,000 inhabitants 

as big cities, which can eventually become seats of metropolitan areas. Some 

international definitions also employ the term “mega-cities” for those cities sheltering 

over 10,000,000 inhabitants. 

Urban settlements of small size and detached from main urban agglomerations are 

regarded as urban districts and are politically subordinated to a municipality, which is 

the smallest political-administrative division in Brazil. 

The modeling object in the present work concerns two medium-sized cities located in 

the western inland of São Paulo State: Bauru and Piracicaba, which contained an urban 

population respectively of 310,442 and 317,374 inhabitants in the year 2000 (IBGE, 

2000). Only their main urban agglomerations and immediate non-urban surroundings 

are considered in the simulations, what implies that urban districts located farther than 

10 km from the official urban boundaries were excluded from the modeling 

experiments. 

2.2 A Brief Historical Perspective on Models of Urban Land Use Change 

2.2.1 Introduction 

Before introducing a short historical background on models of urban land use change, it 

becomes necessary to explain the terms herewith related. Various are the definitions for 

the terms land, land use and land use change, and they vary with the purpose of the 

application and the context of their use (Briassoulis, 2000).  
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Wolman (1987) cites Stewart´s (1968) definition of land in the scope of natural 

sciences: “the term land is used in a comprehensive, integrating sense … to refer to a 

wide array of natural resource attributes in a profile from the atmosphere above the 

surface down to some meters below the land surface. The main natural resource 

attributes are climate, land form, soil, vegetation, fauna and water.” 

In a more economical approach, Hoover and Giarratani (1984) state that land “first and 

foremost denotes space … The qualities of land include, in addition, such attributes as 

the topographic, structural, agricultural and mineral properties of the site; the climate; 

the availability of clean air and water; and finally, a host of immediate environmental 

characteristics such as quiet, privacy, aesthetic appearance, and so on.”  

Land use, on its turn, denotes the human employment of land (Turner and Meyer, 1994). 

Skole (1994) states that “land use itself is the human employment of a land-cover type, 

the means by which human activity appropriates the results of net primary production 

(NPP) as determined by a complex of socioeconomic factors.” Finally, FAO/IIASA 

(1993) states that “land use concerns the function or purpose for which the land is used 

by the local human population and can be defined as the human activities which are 

directly related to land, making use of its resources or having an impact on them.” 

According to Briassoulis (2000), land use change “… means quantitative changes in the 

areal extent (increases or decreases) of a given type of land use…”. For Jones and Clark 

(1997), it may involve either a) conversion of one type of use into another or b) 

modification of a certain type of land use, such as changes from high-income to low-

income residential areas (the buildings remaining physically and quantitatively 

unaltered), etc.  

All these differences in definition reveal how different disciplines theorize on and 

model land use change (Briassoulis, 2000). 

As to the particular term “model”, it can be understood as the representation of a 

system, which can be achieved through different languages: mathematical, logical, 

physical, iconic, graphical, etc., and according to one or more theories (Novaes, 1981). 
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A system is a set of parts, presenting interdependence among its constituent components 

and attributes (Chadwick, 1973). A theory, on its turn, can be defined as a set of 

connected statements which, through logical constructs, supplies an explanation of a 

process, behavior, or other phenomenon of interest as it exists in reality (Chapin and 

Kaiser, 1979; Johnston et al. 1994). 

According to Batty (1976), Popper´s concept of science as “a process of conjecture, 

then refutation of problems, followed by tentative solutions, error-elimination and the 

redefinition of problems (Popper, 1972)” is reflected in the development of urban 

theories and models. 

In a general way, models can be basically classified according to the following 

typologies (Echenique, 1968; Novaes, 1981): 

- descriptive model: it aims at solely understanding the functioning of a system; 

- explorative model: it is a descriptive model that involves the parametric 

analyses of several states, by means of variations in the systems elements and 

their relations, with no external interference upon it. These kind of models are 

meant for answering “what if” questions; 

- predictive model: it is an explorative model that involves the time variable, 

comprising the projection of some basic elements; 

- operational model: it renders available the interference of the modeler, who 

can introduce exogenous factors in the system components and relations in a 

way to modify its behavior3. 

More detailed categorization of specifically land use and urban land use change models 

are proposed by several other authors. Merlin (1973), for instance, divides urban models 

into three categories - urban development, transportation, and urban resources - 

subdividing each of these three categories according to their goals and methods. 

                                                 
3 A branch of operational models would be the prescriptive or normative models, which attempt to change the system 
under analysis in some optimal way. 
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Explanatory, descriptive, and stochastic models are placed in the first category; models 

dealing with economic choice of transport means and geographical displacements 

(including gravitational models) are found in the second category; and finally, 

geographical investigation (including central place models), econometric and statistical 

models are approached in the category of urban resources models. 

Perraton and Baxter (1974) and Novaes (1981) classify urban and regional models 

generically into empirical models, microeconomic or behaviorist models, 

macroeconomic or social physics models, and dynamic simulation models.  

The most extensively detailed categorization of generic land use change models is 

presented by Briassoulis (2000). According to her, models can be classified in view of 

their functional and methodological aspects into statistical and econometric; spatial 

interaction models; optimization models (which include linear, dynamic, goal, 

hierarchical and non-linear programming as well as utility maximization models and 

multi-objective/multi-criteria decision making models); integrated models (comprising 

gravity, simulation integrated and input-output integrated models); natural sciences-

based models; GIS-based models and Markov chain-based models. 

The classification of urban (and regional) land use change models herein proposed 

focuses on basic conceptual and operational aspects of such models, like their ability in 

apprehending and dealing with the spatio-temporal representation of events, and will 

observe a chronological path regarding their creation. 

2.2.2 Non-Dynamic Models of Urban Land Use Change 

Theoretical and mathematical models have for long been created for purposes of urban 

studies, aiming at clarifying processes of urban and regional change. One of the oldest 

contributions in this sense is Von Thünen´s theory of concentric rings, dated back to 

1826 (Merlin, 1973). Von Thünen was actually concerned with agricultural location, but 

the urban use was decisive to his problem. He conceived a very simple economic model 

consisting of one city and its concentric surrounding regions. According to his rent-

locational model, within a certain distance from the center, a particular crop will outbid 
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the others; in a second area, another crop will outbid the others, and so on. In this case, 

the most intensive use of land will be near the center, and the rent or land values will 

decrease outwards (Perraton and Baxter, 1974). 

Another similar approach in economic theory is a model of industrial location proposed 

by Weber in 1909. He was committed to explain the location of a firm in a featureless 

plain. The final location will be at the point where the costs for transporting the raw 

material to the firm and for delivering the finished product to the market are minimum 

(Merlin, 1973; Perraton and Baxter, 1974). This has been called the classical Weber 

triangle (FIGURE 2.1). 

               

 

                                                         

                   

 

FIGURE 2.1 – Weber´s classical triangle for industrial location. 

                                             SOURCE: Perraton and Baxter (1974, p. 36). 

Another related achievement based on economic theory is Christaller´s model of central 

places of 1933 (Merlin, 1973). According to him, cities are central places hierarchically 

organized, whose fundamental role is the provision of goods and services. His basic 

idea was that every point in space should be less than one hour away (about 4 km) from 

a central place. This pretext has led him, by means of equilateral triangles, to organize 

the regional space in a regular hexagonal structure (FIGURE 2.2), which reflects the 

range of influence of each place, i.e. the extent of its catchment area.  

Lösch developed Christaller´s idea further and conceived his theory of economic 

regions in 1940. Whereas Christaller was concerned with the location of  settlement and 
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FIGURE 2.2 – Hexagonal system of Christaller´s central place theory. 

                        SOURCE: Merlin (1973, p.152). 

villages, Lösch´s theory considers retail or service location. According to it, the centers 

can be classified into hierarchical groups according to the type of service and size of the 

market area. If the population is distributed homogeneously throughout the considered 

area, there is an increase in the demand for a particular good near the center because of 

costs decreases to it; the demand curve drops away with distance from the center. Since 

this is a circular market area, the free entry of business in a perfect competition, 

produces a trade area of nested hexagons (FIGURE 2.3), because it comes to be the 

closest to the ideal of circle (Perraton and Baxter, 1974). 

 

 

 

 

FIGURE 2.3 – Hexagonal nests of Lösch´s economic regions theory. 

                                        SOURCE: Merlin (1973, p.135). 

In the sequence of these simple economic-oriented accomplishments in urban modeling, 

a new generation of computerized urban models came into play in the late 1950s and 
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early 1960s, immediately following the advances in computational facilities at that time 

and the advent of the Quantitative Revolution (a scientific revolution committed to 

introduce both rigor and quality into disciplines such as sociology, political science and 

urban studies). 

The pioneer developments in urban modeling arose almost exclusively in North 

America, where the increasing car ownership during the 1940s and early 1950s led to 

the realization that cities with their traditional physical form could simply not cope with 

the new mobility needs. The first transportation studies involved forecasts of future trip 

generation and its spatial distribution and to meet these needs, trip generation was 

modeled using linear regression analysis, and distribution was modeled using the 

`gravity model´, so called because of its analogy with Newton´s Law of Gravitation. 

These initial studies yet neglected many important questions concerning land use, but 

the then increasing academic and professional awareness towards the interrelationship 

between traffic and land use enabled the construction of land use models already by 

1960 (Batty, 1976). 

Parallel to these developments in transport planning, two important research projects 

concerning urban and location economics also had a meaningful impact on further 

modeling achievements of that time. The first of them is the more theoretically oriented 

economic model of residential location proposed by Alonso (1960), who took Von 

Thünen´s work a stage further by setting the whole model within the microeconomic 

theory of consumer behavior based on utility maximization, where the consumer defines 

his/her place of living in function of trade-offs between housing and transport costs. The 

second project of impact is the intra-urban location model designed by Wingo (1961), 

also based on Von Thünen´s work, which integrated detailed transport costs and 

explained population density. Relatively short before, Clark (1951) in a similar 

residential location model also gave an extension to Von Thünen´s theory, describing 

the distribution of residential densities from the center of a town as an exponential 

which decays with distance (Equation 2.1). 

                                                                                 .                                                  (2.1) )exp( jj ßdAD −=
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where, Dj is the residential density at place j; A is a constant; dj is the distance to the 

town center and ß is a parameter. 

Some examples worthy of mention among these first modeling achievements are the 

Greensborough model (Chapin and Weiss, 1962) and the Baltimore and Connecticut 

models (Lakshmanan, 1964, 1968), all of them based on linear statistical techniques and 

employing a somewhat inductive approach to modeling with a little `a priori´ theory. On 

the other hand, inductive non-linear models have also been constructed, such as the 

Delaware Valley (Penn-Jersey) Activities Allocation model (Seidman, 1969). 

Many models, however, were built around the gravity model, suggesting a more 

deductive approach in which specific mechanisms at work in the urban system were 

simulated. The Pittsburgh model (Lowry, 1964) and its successors are good examples of 

the gravity modeling approach, which was responsible for producing the most 

successful urban models during this time (Batty, 1976). 

The Lowry model organizes the urban space-economy into activities (population, 

service employment and basic employment) on the one hand, and land uses (residential, 

service and industrial) on the other. It then allocates these activities to zones of the 

urban region. Population is allocated in proportion to the population potential of each 

zone, and service employment in proportion to the employment or market potential of 

each zone.  

Having located the various activities in accordance with predetermined constraints, the 

model also tests the predicted distribution of population against the distribution used to 

compute potentials to find out whether the two distributions are coincident. This is 

necessary to secure consistency between these distributions because the model uses 

distributions of population and employment to calculate the potentials which indirectly 

affect the predicted location of these same variables. This is done by feeding back into 

the model predicted population and employment and reiterating the whole allocation 

procedure until the distributions input to the model are coincident with the outputs. A 

diagrammatic interpretation of these sequential operations is seen in FIGURE 2.4. 
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FIGURE 2.4 – Generalized flow chart of the Lowry model. 

                                                SOURCE: Batty (1976, p. 61). 

Many are the drawbacks of these early models, and incisive critics have been directed to 

them, particularly in questions related to their size. Some of the models were so 

ambitious regarding their scope, data required and computer time and capacity needed, 
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that several were either abandoned or drastically reduced. Another problem concerns the 

fact that some models, although based on fairly well defined formal structures had to 

rely upon relatively sparse theory, thus often appearing arbitrary and mechanistic in 

structure. A third critic relates to the failure of many modelers in acknowledging 

inherent contextual limitations of the modeling object, in view of the complex set of 

variables intervening on urban systems, which cannot be analyzed simultaneously but 

just one at a time. And finally, most of these early models could only describe the urban 

structure at one cross-section in time, or at best, compare these static structures 

incorporating some long-term and often imputed equilibrium, what rendered them mere 

simulations of the static observable structure of cities (Batty, 1976). 

2.2.3 Early Dynamic Models of Urban Land Use Change4 

In an effort to overcome the shortcomings of the first generation urban models, a new 

bunch of modeling accomplishments commits itself, amongst other things, to work on a 

dynamic basis. Not all of these new models were fully dynamic, so it is important here 

to draw attention to some basic definitions in terms of dynamic modeling. 

According to Wegener et al. (1986), a model is called dynamic as opposed to static, if it 

has an explicit time dimension, if its inputs and outputs vary over time, and if its states 

depend on its earlier states. A rudimentary form of dynamic model is a comparative 

statics one, which attempts to represent the static structure of urban systems at one 

cross-section in time without recourse to any explanation of the changes in structure 

over time which constitute system behavior5 (Batty, 1976).  

A sequence of comparative statics models is called a recursive model, in which the end 

state of one time period serves as the initial state of the subsequent one (Wegener et al. 

                                                 
4 This section is fundamentally structured on the work of Batty (1976), for his book consists in the best literary 
revision on urban models of the early generations, presenting a broad overview of representatives belonging to this 
class of modeling endeavors in a concise and objective way. 
5 According to the Systems Approach (Bertalanffy, 1951), the system structure cannot be interpreted without 
knowledge of system behavior and vice-versa. The Systems Approach postulates the idea of systems being described 
in terms of structure and behavior, in terms of input and output, and the notion of purposeful control of such systems 
in terms of negative and positive feedbacks. 
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1986). Batty (1976) makes a further distinction, stating that a model is called quasi-

dynamic, if it contains static parts in a dynamic framework. 

Perraton and Baxter (1974) present a comparative statics model analyzing the 

repercussions of alternative arrangements of transportation networks, land development 

regulations and public service facilities on the distribution of population. The work of 

Butler (1969) is a good example of a recursive model, where residential redistribution is 

approached by breaking down this process into two sub-models - which households 

move and where - with the new residential distribution being used to assess which 

families move in the next time period. 

Quasi-dynamic models are usually built upon the spatial interaction location model as 

conceived by Lowry (1964). In this case, the spatial interaction model is generalized by 

incorporating zonal or network capacity or supply constraints in a multi-activity 

framework by means of constrained non-linear optimization. Good examples of this 

category of models are Boyce (1977), Coelho and Williams (1978), Leonardi (1981), 

etc.  

Among the first dynamic models of linear type is the one proposed by Czamanski 

(1965), who has applied a simple time-oriented economic base model to the Baltimore 

region. This is a four-equation second-order model which can be stated as 

 

                 )1()1( 11 −+=+ tEbatP , (2.2) 

              )()1( 22 tPbatS +=+ , (2.3) 

                 )1()1( 33 ++=+ tXbatEb , (2.4) 

                 )1()1()1()1( 1 +++++=+ tStEtEtE b , (2.5) 

 

where P is population; S is service employment; Eb is derived basic employment; X is 

exogenous basic employment and E1 is locationally-oriented basic employment which 
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includes X; a1, a2, a3 and b1, b2, b3 are parameters to be estimated; the time notation is 

self evident. The model provides a simple approach to generating urban activities 

although there is no spatial dimension. 

Another example of dynamic modeling is the EMPIRIC model, which is based on a 

system of first-order linear difference equations referring to different zones and 

activities. This model was designed by Hill (1965) for the Boston Regional Planning 

Project and underwent successive revisions that resulted in several versions. In contrast 

to Czamanski´s model, the EMPIRIC model is spatially based and recognizes the 

simultaneous nature of urban interrelationships, adopting for this end formal solution 

methods, such as those based on two-stage least squares. The time interval adopted is 

ten years, and consequently the emphasis upon dynamics is implicit rather than explicit. 

A basic problem with these aforementioned linear models concerns the fact that they do 

not attempt to distinguish the mover pool (the bunch of activities that are relocating in 

the city) from the stayers. Furthermore, there is a rather inductive bias in that the 

emphasis upon explanation is completely statistical, and being so, there are few guiding 

principles in the choice of time interval.  

Defining the length of time interval is of great importance in dynamic modeling. For 

Forrester (1969), the simulation period should be short enough not to influence the 

behavior of the model, in particular, it should not be used to introduce implicit lags. 

Batty (1976) citing Broadbent (1969) states that the time interval should be small 

enough to detect the time-varying phenomena of interest; if the time interval is too 

large, then the dynamic model will become trivial and thus decomposable into a series 

of comparative static models, one for each time period.  

Forrester (1969) suggests that the period length should be half or less of the shortest 

delay6 present in the system. For him, delays are essential for understanding complex 

                                                 
6 Delay is the time taken between the introduction of a certain stimulus and the manifestation of its impacts on the 
system under consideration. 
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systems, and this in line with the assertion of Bifurcation Theory7 that already small 

changes in the constellation of system variables can lead to significantly different paths 

of system behavior. Following this rule, most dynamic urban models with period 

lengths of five or more years are grossly inadequate to capture the dynamics of urban 

change (Wegener et al. 1986). 

The Time-Oriented Metropolitan Model (TOMM), developed by Crecine (1964) for the 

Pittsburgh Community Renewal Program, attempted to turn an initial simple static 

model based upon the original Pittsburgh model (Lowry, 1964) into a more complex 

dynamic model by specific consideration of system behavior. An important distinction 

was made in the model between new locators and relocators (mover pool). TOMM has 

been improved in several ways since its first attempt. In its second version, a time 

interval of two years was used and a more realistic formulation of the measure of 

locational attraction, incorporating site rent, amenity and transport cost, was provided 

(Crecine, 1968). In its third version, questions of dynamics and mover behavior have 

been approached. 

Even though this model presents some meaningful advances, there is no consistency 

between mobile activities and their relationship through the economic base. Although 

TOMM is organized around the concept of a mover pool, new locators and relocators 

are not separated out, thus the equilibrium properties of the model are difficult to trace 

(Batty, 1976). 

A set of techniques designed for simulating industrial processes in firms, called 

collectively Systems Dynamics, has been employed in the modeling of hypothetical 

urban systems and world systems, adopting intervals of five years or more over a 250-

year period (Forrester, 1969, 1971). This technique has its foundations in ideas from 

control engineering; the concept of system structure and behavior is conceived in terms 

of levels of stocks which are progressively altered through time by rates of change 

which are affected by positive and negative feedbacks within the system of interest. 

                                                 
7 The Bifurcation Theory is commonly mentioned in association with the Catastrophe Theory, for their 
interrelationships. The latter is basically concerned with processes undergoing sudden changes and consequently 
presenting a discontinuous behavior (Bak et al. 1989). 
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Many of these models are based on the notion that a system is fundamentally 

constrained by some fixed limit on resources, which affect the growth of the system 

through time. Typically, such a system grows explosively or exponentially at first and 

then as its resource limit is neared, the growth is damped and an equilibrium condition 

is eventually reached, usually with some oscillation around the steady state (FIGURE 

2.5). 

 

 

 

 

 

 

 

 
FIGURE 2.5 – Dynamic behavior curves in fixed resource systems: Forrester´s urban 

     dynamics model and Paelinck´s urban econometric model. 

     SOURCE: Batty (1976, p. 305). 

Forrester´s models are not spatial and do not recognize that the structure of activities in 

a city can be explained in terms of spatial interaction (Batty, 1971). They also 

completely disregard the incorporation of well-demonstrated and accepted urban theory, 

and many of their hypotheses are either unproven or untestable (Batty, 1976). 

Nevertheless, these models have been applied to two real situations. The first is the case 

of Harris County, Texas (Porter and Henley, 1972), which is not of much interest. The 

second case, which revealed to be a very promising experiment, concerns the Venice 

subregion (Costa and Piasentin, 1971). Venice was divided into three zones – Centro 
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Urbano, Estuario and Terra Ferma – and their model simulates the growth in population, 

employment and housing from 1951 to 1971. The appropriateness of this application 

lies in the fact that Venice subregion is highly constrained in spatial terms and thus 

quite unsuitable for activity allocation models. 

Another class of dynamic urban models has been devised following the work of 

economists such as Paelinck (FIGURE 2.5), based on the specification of urban 

dynamics in terms of difference equations relating macroeconomic phenomena 

(Paelinck, 1970; Blokland et al. 1972). One of the features of models like these whose 

spatial component is implicit rather than explicit, regards the fact that many more 

hypotheses are needed for validation than in their spatial counterparts. Although these 

models tend to be richer in detail, they are frequently more difficult to calibrate to any 

real situation. On the other hand, their hypotheses are usually grounded on well 

established economic theories, and the estimation of their parameters is a quite well 

developed area in Econometrics, making them easier to apply to real situations than the 

Systems Dynamics models (Batty, 1976). 

Batty (1971) developed a dynamic model, applied to the region of Reading, UK, that 

was mathematically formulated as a system of differential equations relating population, 

service employment and basic employment together through time by the economic base 

hypotheses, and through space by the gravity models which simulate the flows between 

the various activities. One of the main underlying assumptions is that the city is always 

in disequilibrium for at any instant in time there are still repercussions in the model 

which have not worked themselves out.  

This model has been further detailed (Batty, 1976), differentiating locators from 

relocators. The spatial interactions derived in the model are oriented around the location 

of activities, divided into three major types: residential population, services and basic 

employment. Services are subdivided into consumer and producer-oriented groups and 

basic employment is broken down into employment dependent on existing employment, 

and unique locators, whose location cannot be forecast by the model. 
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As Batty (1976) explains, the unique locators provide the external stimuli to the model 

for although the total level of basic employment is exogenous, the other category of 

basic employment is distributed spatially using a linear model. Both population and 

service employment are allocated using production and attraction-constrained gravity 

models of the type derived by Wilson (1970). These models endeavor to simulate, 

though very coarsely, an equilibrium between demand and supply of activities while in 

the case of the residential location model, a further submodel has been designed to deal 

with the supply of residential land and floorspace. FIGURE 2.6 illustrates a schematic 

form for the model and the main relationships between the sectors. 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2.6 – Structure of activities and land uses in the model of urban dynamics 

                         for Reading, UK. 

                                SOURCE: Batty (1976, p. 315). 
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Another way to arrive at fully dynamic urban models is to interpret the convergence to 

equilibrium of static models as an adjustment process over time. This permits the 

investigation of the time path of an urban system as a sequence of equilibrium-seeking 

steps which may or may not arrive at equilibrium depending on exogenous influences. 

Beaumont et al. (1981) proposed a model in this sense, whose basic idea is very simple: 

it starts from the production-constrained shopping-trip model of the Lakshmanan-

Hansen (1965) type and interprets its column sums, depending on their sign, as 

unsatisfied demand or excess supply and uses this information to drive the growth or 

decline of retail facilities (Equation 2.6). 

 

                                                                                                 , (2.6) 

 

where the Wj = retail facilities in retail zones j; e1 = shopping expenditures of population 

Pi of zones i in j; k = the costs of supplying retail services in j; ε is an elasticity 

parameter determining the speed of the adjustment process; and ß1 = the parameter of 

the deterrence function. In the absence of external stimuli, the model produces logistic 

growth of shopping centers up to a spatial equilibrium, but due to its non-linearities it 

displays a variety of bifurcations for different combinations of its parameters α, ß1, and 

ε, and for different initial distributions of Pi and Wj. 

Another dynamic model envisaged to produce bifurcations is that of the Brussels group 

(Allen et al. 1981). Their model approaches the issue of dynamics in urban systems 

from a different direction. It is based on the concept of self-organization through 

random perturbations found on the molecular or genetic level in physical or biological 

systems. Allen and his team developed this set of ideas further in what they named 

“general dynamic model of the spatial evolution of urban systems”, which lied upon 

sophisticated concepts like open and adaptive systems, chaos and complexity (Allen et 

al. 1986). 
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The Brussels model is more elaborate than the previous one as it has four industrial 

sectors and, instead of housing, two population groups. The way for predicting growth 

and decline of retail facilities Wj in retail zones j is given below (Equation 2.7): 

 

                                                                                             ,              (2.7) 

 

where Aj is the attractiveness of zone j, and the remaining notations have the same 

meaning as in Equation 2.6. 

The two models have different formulations of attractiveness. They also differ in the 

way they produce bifurcations. While in the first case bifurcations are systematically 

explored by parametric variations, in the Brussels model they are generated by random 

disturbances, although the dynamic behavior produced by the two models are very 

similar. 

As in the precedent examples, these two models received several critics, but an 

important one concerns the fact that, like all spatial interaction models, they predict a 

slow process (establishing retail facilities) from a fast process (shopping trips). Wegener 

et al. (1986), the authors of these critics, proposed instead a dynamic urban model 

observing different time scales of urban change, i.e. a model being multilevel in its 

temporal dimension. 

Wegener and his team classify urban change processes into three levels according to 

their speed of occurrence. Slow processes of change (Level 1) regard the construction of 

transport infrastructure, public industrial plants and public housing. These investments 

tend to be durable and involve the longest time lags between planning and completion. 

Medium-speed processes (Level 2) refer to economic, social and technological changes 

(aging, death, formation of new households, change of job, etc.), since these changes are 

visible only on a medium-term scale, while fast processes (Level 3) concern mobility, 

for they are the most volatile occurrences of urban change. 
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This multi-level temporal model comprises three modules (choice, transition and 

exogenous modules), and each of the categorized urban changes are assigned to one of 

these modules. Public investments are always included in the exogenous module; aging, 

death, retirement and alike processes, for being non-choice changes, are added to the 

transition module; and the remaining changes, to the choice module. These modules are 

linked by a file system and driven by a scheduler.  

The model structure consists of a temporal framework of nested simulation periods of 

different lengths as multiples of a very short incremental period, a month or a quarter. If 

a process module is activated by the scheduler, it is told the number of incremental units 

of time it is supposed to remain active. The process module takes this information to 

calculate the number of microevents to be processed during that time interval. If the 

number is large, the process module can increase its sampling factor or resolution and 

thus save computer time. Given the model´s detailed approach of the temporal 

dimension and microeconomic behavior, it was not fully implemented, presenting 

though most of its components operational. This model has been applied for the 

simulation of long-term change processes in the urban region of Dortmund, Germany 

(Wegener et al. 1986). 

And to conclude this section, it can be finally stated that even though considerable 

refinements were introduced in this early generation of dynamic models in terms of 

coping with the complex and sometimes recursive spatial interactions among different 

activities in a city, of adding the (multi-level) time dimension in the quantitative 

analyses and employing sophisticated mathematical and theoretical tools - e.g. 

differential equations, Catastrophe and Bifurcation theory, etc. -, these models remained 

fairly non-spatial, especially in the sense that their results could not be spatially 

visualized. 



 76

2.3 Spatial Dynamic Models of Urban Land Use Change 

2.3.1 Space and Time in the Present Work 

Considering that the “purpose of any model is to simplify reality” (Batty, 1976, p. 353), 

discretization will be the tone of this work regarding both its space and temporal 

dimensions. Following this premise, space will be taken as an artifact represented by a 

regular two-dimensional grid framework, consisting of homogeneous square units – the 

cells – forming the so-called cellular space. Time, on its turn, will be considered upon 

an absolute point of view as an independent one-dimensional entity, and in the 

particular case of this research, will be regarded as made of successive discrete lag 

units, where each unit may account for a set of years in some cases and in others may be 

yearly defined. 

It is important at this point to clarify that the adoption of a metric (Euclidian) space will 

not restrict the possibility of coping with non-contiguous spatial interactions. As it will 

be further demonstrated in Chapters 5 and 6, the empirical statistical methods employed 

to parameterize the land use change simulation models will be based in certain cases on 

ranges of distance to given physical variables, and in some situations, the farther the 

range, the greater its influential contribution for a certain type of land use transition. 

Even in the cases where computational implementations are based on theoretical 

proximal models of space, it becomes evident that the adopted spatial framework lies 

within the realm of Euclidian spaces. Examples to illustrate this are the graph-CA based 

models (O´Sullivan, 2000, 2001a, 2001b), where graphs (inter-connected linear 

structures) operate over a cellular automata model to redefine functional relations as 

being those not exclusively derived from spatial contiguity, and the geo-algebra model 

(Couclelis, 1997; Takeyama, 1997; Takeyama and Couclelis, 1997), in which by means 

of several raster operations, executed within a CA environment, taking into account 

connectivity matrices, relational and metarelational maps, non-local influences are 

assessed and incorporated into the dynamics of the urban system at issue.  
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It is essential to highlight here the decisive role that the formulation of space as being a 

cellular entity represented to the endeavors in the field of urban simulation. In fact, this 

conception drastically impacted the whole scenario of dynamic modeling in the most 

diverse branches of scientific knowledge. 

2.3.2 Cellular Automata and the Advent of Spatially Explicit Models of Land Use 

Change 

2.3.2.1 Cellular Automata: Definition and Properties 

According to what was exposed in the section on brief historical perspectives of models 

of urban land use change, namely Sections 2.2.1 through to 2.2.3, the urban models 

developed from the 1950s until the mid 1980s, in a fairly general sense, did not take the 

spatial dimension into account. When this happened, the urban space was decoupled 

into units (usually zones defined according to trip generation, census districts or other 

alike criteria), but the output of such models could not be spatially visualized. In fact, 

effective advances in the spatial representation of urban models occurred only by the 

end of the 1980s, when cellular automata (CA) models started to be largely applied. 

Stephen Wolfram, one of the most renowned theoreticians on cellular automata defines 

them as:  

“… mathematical idealizations of physical systems in which space and time are 

discrete, and physical quantities take on a finite set of discrete values. A cellular 

automaton consists of a regular uniform lattice (or `array´), usually infinite in 

extent, with a discrete variable at each site (`cell´). The state of a cellular 

automaton is completely specified by the values of the variables at each site. A 

cellular automaton evolves in discrete time steps, with the value of the variable 

at one site being affected by the values of variables at sites in its `neighborhood´ 

on the previous time step. The neighborhood of a site is typically taken to be the 

site itself and all immediately adjacent sites. The variables at each site are 

updated simultaneously (`synchronously´), based on the values of the variables 
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in their neighborhood at the preceding time step, and according to a definite set 

of `local rules´ (Wolfram, 1983, p. 603)”. 

Cellular automata (CA) models have found applications in diverse fields, ranging from 

statistical and theoretical physics to land use and land cover change, traffic engineering 

and control, diseases spread, behavioral biology, amongst others. Wolfram´s (1983) 

paper refers to near 50 other papers concerned with possible applications of cellular 

automata. 

John Conway´s Game of Life (Gardner, 1970), or `Life´ as it became later known, 

immortalized the concept of CA. In Life CA, the cellular space is composed of a regular 

2-D square lattice, where its cell´s neighborhood consists of its eight immediate 

neighbors in the lattice, that is, four orthogonal neighbors and four diagonal neighbors8. 

Any cell can be alive (`on´) or dead (`off´), and there are only two simple rules for cells 

becoming alive or dying. A cell which is not alive becomes alive if there are exactly 

three live cells immediately adjacent to it. A cell remains alive if there are two or three 

live cells adjacent to it, otherwise it dies. This means that a cell may die from isolation 

(less than two live cells adjacent to it) or overcrowding (more than three live cells in its 

adjacencies). Albeit the simplicity of the rules, this game can afford the generation of 

countless patterns of dynamic behavior. 

In fact, the Life CA has been demonstrated to be rich enough to support universal 

computation (Berlekamp et al. 1982). It is thus evident, that even in the simplest CA, 

complex global patterns can emerge directly from the application of local rules, and it is 

this very property of emergent complexity that makes CA so fascinating and their usage 

so appealing. 

Another very interesting property of Life was the possibility of presenting certain 

configurations that would be self-perpetuating. A very well-known example of such a 

configuration in Life is the `glider´. A glider is made of five live cells, organized as 

shown in FIGURE 2.7, at time step t = 0. The sequence of four time steps results in the 

                                                 
8 This eight-cell neighborhood may be referred to as the `Moore´ neighborhood.  A neighborhood of the four 
orthogonally adjacent cells only is the `von Neumann´ neighborhood. 
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changes shown, at the end of which the configuration has moved one cell up and to the 

right. As O´Sullivan (2000) states, an interesting aspect of a glider is that its behavior 

can be described without any knowledge of the underlying rules. 

 

 

 

FIGURE 2.7 – The Game of Life `glider´ configuration – an example of emergence. 

                `Live´ cells are in black. 

                             SOURCE: O´Sullivan (2000, p. 58).  

Despite the fact that CA can cope with emergence as seen in complex phenomena, they 

own a great flexibility for dealing with the most diverse dynamic processes, and reveal 

an amazing operational simplicity amongst other advantages, they are in principle 

limited as a result of constraints imposed by most of their theoretical assumptions. 

In response to this, Couclelis (1997) proposes a set of improvements to be incorporated 

to cellular automata models, which represent a technical possibility to relax any or all of 

the assumptions of standard CA (FIGURE 2.8). She devised these proposals mainly as a 

way to meet the demands or urban and regional modeling. 

According to her opinion, space no longer needs to be homogeneous either in its 

properties or its structure; neighborhoods need not be uniform across the space, and 

transition functions need not be universal (that is, equally applicable at every point). For 

her, distance-decay effects could be built into CÁ neighborhoods, the transition rules 

could be probabilistic rather than deterministic, and variable time steps could be used to 

fit some external schedule.  

 

 

       t = 1            t = 2                t = 3                    t = 4                        t = 5 
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FIGURE 2.8 – Common generalizations of cellular automata (CA). 

                                          SOURCE: Couclelis (1997, p. 168).  

Some theoreticians of CA would argue that in this case the cellular automaton paradigm 

no longer holds, especially due to relaxations in the notion of local neighborhood as 

well as transition rules, and that these adapted models should be preferably called cell-

space models (Albin, 1975; Batty, 2000). 

2.3.2.2 Spatially Explicit or Spatial Dynamic Models of Urban Land Use Change 

According to what was already stated in Section 1.1, CA were somehow implicit in the 

early generation of computer models in the 1960s, with the experiments of Chapin and 

Weiss (1968) and of Lathrop and Hamburg (1965), carried out for North Carolina and 

western New York State respectively. In the 1970s, Tobler (1970), influenced by the 

theoretical quantitative geography, first proposed cell-space models for the development 

of Detroit. Shortly after, in 1974, he formally began to explore the way in which strict 

CA might be applied to geographical systems, what resulted in his famous paper 

Rδ
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“Cellular geography” (Tobler, 1979). Finally, in the late 1980s, CA started to be widely 

applied to urban and regional issues, also impelled by the parallel development in 

computer graphics and in theoretical branches of complexity, chaos, fractals and alike 

(Batty et al. 1997). 

The 1990s experienced successive improvements in urban CA models, which started to 

incorporate environmental, socioeconomic and political dimensions, and were finally 

successful in articulating analysis factors of spatial micro and macroscale (Phipps and 

Langlois, 1997; White and Engelen, 1997; White et al. 1998).  

Cellular automata can be regarded as a category of spatially explicit (or more generally, 

spatial dynamic) models. The term “spatially explicit” is not new but it is still recently 

employed to characterize models which attempt to describe and predict the evolution of 

environmental attributes in sub-units of area with distinct location and configuration 

(Baker, 1989). Briassoulis (2000) further subdivides these models into fully spatially 

explicit (geo-referenced) and incompletely spatially explicit (non-geo-referenced). 

CA models may regard both theoretical and practical applications, where the formers 

concern abstract exercises, and the latter ones, experiments dealing with real case 

studies. There are now some twenty or more applications of CA to cities (Batty, 2000), 

including a vast repertoire at both thematic and methodological levels. 

The first CA models applied to urban studies were not rarely based on very simple 

methodological procedures, such as the usage of neighborhood coherence constraints 

(Phipps, 1989) or Boolean rules (Couclelis, 1985) for the transition functions. Further 

on, successive refinements started to be incorporated into these models, like the 

adoption of dynamic transition rules (Deadman et al. 1993), which could change as 

conditions and policies within the township under study changed. 

Other examples in this direction are the work of Wu (1996), who conceived transition 

rules to capture uncoordinated land development process based on heuristics and fuzzy 

sets theory, and the work of Ward et al. (1999), in which transition rules are modified in 
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accordance with the outcomes of the optimization of economic, social and 

environmental target thresholds associated with sustainable urban development. 

Further improvements concern the embodiment of theoretical microeconomic 

approaches into CA, which led to the development of agent-based or multi-agent-based 

(MAS) systems. Just to cite a few examples in this sense, the work of Semboloni 

(1997), describing the patterns of major cities and surrounding towns according to four 

actors represented by different categories of population and activities, the works of 

Sanders et al. (1997) and Torrens (2003) as well as the works of Batty et al. (1998) and 

Schelhorn et al. (1999) on pedestrian flow in what is called `microscopic´ or `atomic´9 

models are to be mentioned. 

CA transition functions have also been enhanced by the incorporation of decision 

support tools, including AHP or analytical hierarchy process-based techniques, what has 

been strongly enabled by the linkages between CA and GIS (Engelen et al. 1997; Wu, 

1998). Besides supporting CA internal operations (Clarke and Gaydos, 1998; Batty et 

al. 1999; Li and Yeh, 2000), GIS have been as well useful in implementing cellular 

automata devices based on proximal models of space (Takeyama and Couclelis, 1997) 

and in articulating spatial analysis factors of micro and macroscale (Phipps and 

Langlois, 1997; White and Engelen, 1997; White and Engelen, 2000).  

An illustrative example of CA models integrating analysis factors of spatial micro and 

macroscales is the work of White et al. (1998), in which demand for residential land use 

is estimated through a social subsystem that takes into account interregional migration 

flows, and where demand for economic activities (industrial, commercial, services) is 

obtained by means of regionalized subsystems that evaluate the performance of 

different economic sectors, providing parallel data on employment opportunities, which 

will be again used to reckon residential demand. This model is envisaged to meet the 

diverse land use demands also considering the environmental carrying capacity of 

concerned  sites (natural  subsystem)  as  well  as the constraints imposed at the micro or  

                                                 
9 `Microscopic´ or `atomic´ models are those concerning objects represented at entity-level resolutions: pedestrian, 
households, vehicles, houses, etc. (Benenson and Torrens, 2003). 
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local level by functional, physical, institutional and infra-structural aspects (FIGURE 

2.9). 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.9 – A CA model integrating spatial micro and macroscales. 

                                      SOURCE: White et al. (1997, p. 237).  

Phipps and Langlois (1997) also succeeded in estimating the impacts of analysis factors 

from the macro or national level, like planning policies restraining foreign migration, at 

the local level. Their data model conceives a `Global Systems Dynamics (GSD)´ 

module, which receives an input reflecting the spatial pattern macrostate at each time 

unit, and whose output also at each time unit alters a Markovian spatial transition 

probability matrix (STPM). This model has not been implemented with the aid of GIS, 

but through parallel computing (FIGURE 2.10). 

Theoretical advances in the field of complex systems have been also added to cellular 

automata through the seminal work of Wolfram (1984). Research papers dealing with 
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fields related to the theme of complexity, like chaos10, fractals11 and self-organized 

criticality (SOC)12 started to be produced after Wolfram´s work and are still recurrent in 

the CA scientific community (Couclelis, 1988; Batty and Longley, 1991; White and 

Engelen, 1993; Batty and Longley, 1994; Portugali et al. 1997; Portugali et al. 1999; 

Sobreira and Gomes, 2001; Batty, 2003). 

 

 

 

 

 

 

FIGURE 2.10 – A CA model incorporating macroscale variables. 

                                             SOURCE: Phipps and Langlois (1997, p. 196).  

Leading theoretical progresses in the broader discipline of artificial intelligence (AI), 

such as expert systems, artificial neural networks and evolutionary computation, have 

been lately included in the scope of CA simulations. Moore (2000), citing Weiss and 

Kulikowski (1984), defines expert systems as “computer systems that advise on or help 

solve real-world problems requiring an expert´s interpretation using a computer model 

of expert human reasoning reaching the same conclusion the human expert would reach 

if faced with a comparable problem.” Neural networks, on their turn, attempt to simulate 

human reasoning (Moore, 2000) offering fault-tolerant solutions. According to Fischer 

and Abrahart (2000), these mechanisms are able to learn from and make decisions based 

                                                 
10 Chaos is formally defined as the study of complex non-linear dynamic systems, provided that the term complex 
involves a multitude of intervening variables and their interrelationships in a given phenomenon (Thompson, 1997). 
11 Fractals are object of any kind whose spatial form is nowhere smooth, hence termed `irregular´, and whose 
irregularity repeats itself geometrically across many scales. Fractals can be called the geometry of chaos (Batty and 
Longley, 1994). 
12 Self-organized criticality (SOC) refers to systems where its individual components follow their own local dynamics 
to a critical state where the emergent dynamics are global and communication flows freely throughout the entire 
system. Complexity is the consequence of self-organized criticality (Bak et al. 1989). 
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on incomplete, noisy and fuzzy information. And finally, evolutionary computing 

methods are an extremely flexible and intelligent search procedure which mimic the 

known mechanisms of natural evolution (Diplock, 2000). 

As stated in Almeida et al. (2003), methods recently embedded in CA models like those 

employing contemporary pattern-fitting tools such as neural nets (Wu, 1998; Xia and 

Yeh, 2000) and evolutionary learning (Papini et al. 1998) are revealing to be amongst 

the most promising for the coming generation of urban CA modeling achievements. 

2.3.2.3 Theory-Driven x Data-Driven CA Models of Urban Land Use Change 

There is no consensus amongst researchers, specifically in the field of urban and general 

land use modeling, as to where the fine line between theory and models starts and ends, 

and even whether there is indeed this boundary line at all. For Batty (1976), “urban 

modelling is not just a reflection of urban theory formulated elsewhere; it is now an 

essential part of theory in the fields of urban economics, geography and planning.” This 

assertion was stated around the mid 1970s, when urban models were basically 

concentrated around econometric approaches, activities allocation and gravitational 

theories. 

It is interesting to notice the shift in opinion in the course of the current decade, where 

the impacts of massive advances in computational tools, mainly grounded on logic and 

algorithmic routines, are pronouncedly felt. Torrens and O´Sullivan (2001) report that 

“one of the drawbacks of urban CA models is that in some cases they have done 

relatively little to inform theory. Claims are made that models explore various 

hypothetical ideas about the city, but the reported results are often more concerned with 

the fine details of model construction, at the expense of the theories that they set out to 

explore. Research in urban CA modeling is just that: research in modeling, and not 

research on urban dynamics and theory.” 

Following an alike thought, Briassoulis (2000), who is concerned with general land use 

and cover change (LUCC) models, states that “although the use of theory in model 

building seems indispensable, of the several theories of land use change proposed, a 
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relatively small number has been used to support and guide operational model building.  

Some theories and models have been conceived simultaneously; hence, the use of the 

terms `theory´ and `model´ interchangeably…but the majority of theories are still 

without modelling (not necessarily mathematical) counterparts and the reverse is also 

true. Several models are devoid of theoretical foundations.” 

The reasons for this gap in the relationship between theories and models are twofold 

(Briassoulis, 2000): a) the first regards the differing epistemological13 positions adopted 

by theory and model builders, where models usually move in the positivist14 tradition 

while theories cover a much broader spectrum of epistemologies; and b) a second 

reason concerns the fact that reality is highly complex, what leads to a dichotomy in the 

field of modeling: either the reduction and simplification of this real world results in a 

very crude representation of reality, or models endowed with a very complicated 

structure end up by being impossible to handle within the bounds of reasonable time and 

other resources to provide answers to practical problems. 

This `theory x modeling´ hiatus finds exemplifying cases throughout the whole 

historical horizon of urban modeling: since the early generation of ambitious transport 

models in the mid 1960s (see Section 2.2.2, p. 49) that were abandoned or drastically 

pruned, until the relatively recent microeconomic approaches that attempt to be deeply 

acquainted with individual behavior (Wegener et al. 1986; Wegener, 2000), and thence 

render a fully computational implementation of its postulations nearly impossible. In 

summary, efforts to apprehend a given real context with an excessively great level of 

detailing have proved to be partially or totally impracticable from an operational point 

of view. 

Theory-driven models can be understood as those whose bunch of assumptions, 

premises and derived equations (when existent) defining the system behavior is set `a 

priori´. Data-driven models, on the other hand, rely on the available data to draw 

conclusions on the system `a posteriori´, employing statistical empirical methods or 

                                                 
13 Epistemology refers to the critical study of principles, hypotheses and results of established sciences, aiming at 
determining the logical foundations, value and objective scope of each one of them (Ferreira, 1986). 
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even simple deterministic rules. Theory-driven CA models of urban land use change 

may deal with both abstract/hypothetical cities and real cities, whereas data-driven 

models are strictly concerned with real urban areas. 

Couclelis (1985), Portugali et al. (1997) and Semboloni (1997), just to mention a few 

examples, all work with theory-driven CA models for hypothetical cities. Batty and Xie 

(1997) also deal with abstract theory-driven CA models, but upon a more stochastic 

approach. Papini et al. (1998), on their turn, work with a theory-driven CA model, but 

applied to a real urban environment: the Rome metropolitan area. The work of Clarke et 

al. (1997), on the other hand, is a good example of a data-driven CA model, in which 

deterministic transition rules are established upon the observation of their study object, 

the San Francisco Bay area, and calibration is also executed taking into account the 

changing behavior of this real case study throughout the considered simulation time 

span. 

The split between theory-driven and data-driven CA models should be carefully 

regarded, for it presents more blurry boundaries than strictly rigid delimitations. Some 

CA models could be called as hybrid ones, since their internal framework reconciles 

both theory and empiricism. The model proposed by White et al. (1998) exemplifies this 

situation, for it defines accessibility on the basis of gravitational theory, and estimates 

the suitability of a certain cell for changing its original land use into a new one through 

a probabilistic equation, empirically built according to a set of conditional factors. 

The CA models to be presented in the following chapters could be considered hybrid as 

well. Although such models estimate their parameters directly from the data, there is 

indeed a robust theoretical body underlying the empirical statistical methods employed, 

concerning sets and probability theory, the Bayes´ theorem, weights of evidence, 

multivariate linear and log-linear regression, etc. And also for the phenomena 

themselves being studied in this research - urban land use change – a whole set of 

economically-oriented theoretical arguments is adopted to explain them, taking into 

                                                                                                                                               
14 Positivism regards a set of doctrines, which impose a scientific orientation in the philosophical thought, ascribing 
to science each and every progress in knowledge (Ferreira, 1986). 
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account notions of user´s utility maximization and optimization of locational 

advantages. 

In fact, choosing between a theory-driven or data-driven approach, or even adopting a 

hybrid solution, will always rely upon the modeler´s sensible judgment, which will 

consider the particular profile of the study object as well as the specific purpose(s) 

envisaged by the modeling experiment. This ought to be done in order to avoid basic 

methodological problems in modeling identified by Harris (1975) already in the mid 

1970s. For him, a great amount of urban models did not originate in the need to solve 

specific, practical urban problems, but instead, new approaches seemed to derive from 

the expansion, or refinement, of existing frameworks in the field. 

And finally, the following recommendation raised by Oppenheim (1986) shall be left 

here as a guiding commandment for each and every model builder: “…modelling 

consists of developing a representation for a given situation and not of identifying a 

situation which fits a given model.” 

2.3.3 Why Using Cellular Automata for Urban Modeling 

Cellular automata (CA) models have become popular largely because they are tractable, 

present an amazing operational simplicity, generate a dynamics which can replicate 

traditional processes of change through diffusion, but contain enough complexity to 

simulate unexpected and surprising change as observable in emergent phenomena. CA 

models are flexible in the sense that they provide a framework which is not 

overburdened with theoretical assumptions, and which is applicable to space 

represented as a raster or a grid. These models can thus be directly connected to raster 

data surfaces commonly used in GIS (Almeida et al. 2003). 

CA are also regarded as flexible models because they can deal with the most diverse 

dynamics processes of the real world and can be coupled with a wide range of theories 

in the field of complexity: chaos, emergence, fractals, self-organized criticality, etc., as 

well as in the field of AI, like expert systems, artificial neural networks, evolutionary 

learning. 
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Considering all this, it is sensible to state that this kind of model representation is still 

one of the best techniques currently available to cope with the needs and interests of the 

queries raised by the present research investigation.  

2.4 Conclusions 

Chapter 2 was envisaged to provide an overview of both historical perspectives and 

current state of dynamic urban models. Although models in general have continuously 

been the target of severe criticism, mainly in view of their reductionism and constraints 

to fully capture the reality inherent complexity (Briassoulis, 2000), it can be argued that 

they ought to exist, for they offer an incomparable way of abstracting patterns, order 

and main dynamic trends of real world processes. 

As stated in Batty (1976), “… pattern and order does exist and is fairly easy to identify 

at least on a superficial level in urban and regional systems. As to whether or not an 

individual agrees with the description of such patterns statistically is a matter of 

opinion, and ultimately of faith in the fundamental ideas.” 

Actually, urban models should be conceived, handled, applied and interpreted in a wise 

and critical way, so that modelers, practitioners, public and private decision-makers as 

well as citizens as a whole could take the best of what they can offer and sensibly 

acknowledge their limits. Again, all these ideas are very well synthesized by Batty 

(1976), who says that “there is a need for a more liberal perspective on the state of the 

art by all involved in urban modelling, thus fostering the view that models are aids to 

imagination in a wider process of design, problem-solving and decision-making in 

society at large.” 
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CHAPTER 3 

STUDY AREA 

3.1 Location 

The two case study cities, Bauru and Piracicaba, adopted as modeling objects of the 

present research are located in the western inland of the southeastern State of São Paulo, 

Brazil, within the Tietê river watershed. Bauru is located in the central portion of the 

State, and belongs to the Tietê lower midstream sub-basin, whereas Piracicaba is found 

eastwards of Bauru and belongs to the upper midstream stretch of the Tietê basin 

(FIGURE 3.1). 

 

  

 

 

 

    

 

     

 

 
 

FIGURE 3.1 – Location of the case study cities: Bauru and Piracicaba, inland of SP. 

                            SOURCE: CESP (1998);  SEADE (1999); INPE (1999, 2000).  
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Bauru is delimited by the following geographic coordinates: 

 

         w  49°  09’  28”             s  22°  25’  03”        Projection System: UTM 

         w  48°  55’  43”             s  22°  15’  02”                  Datum:  Córrego Alegre. 

 

And Piracicaba, on its turn, by the geographic coordinates given below: 

 

         w  47°  43’  30”             s  22°  47’  59”        Projection System: UTM 

         w  47°  32’  48”             s  22°  39’  06”                  Datum:  Córrego Alegre. 

 

3.2 Historical Background of the Urbanization Process 

A historical background of the urbanization process concerning the two research objects 

will not solely focus on these cities, but it will rather encompass the urbanization history 

of the Tietê river watershed and the inland of São Paulo State as a whole, for the 

understanding of their urban formation process cannot be detached from the historical 

context of the macroarea within which they are located. 

3.2.1 The Mining Cycle (1580 – 1730) 

The human occupation throughout the Tietê river valley dates back to the time Brazil 

was still a colony of Portugal. Between 1580 and 1640, the Piratininga village, as São 

Paulo city was known at that time, sheltered the departure point of many exploring 

expeditions (“Bandeiras”) along the Tietê river, which were in search of gold, precious 

stones and the conquest of new lands. Their members sought as well for Indians to be 

domesticated and enslaved, what brought about the extermination of several tribes in the 

inland of São Paulo State (Nóbrega, 1981). 

According to Ohtake (1991), the mining cycle along the Tietê river actually started in 

1640 and lasted until 1730, period during which the river acquired importance also as a 

transport route towards huge gold deposits recently discovered in the States of Goiás 

and Mato Grosso, central west of Brazil. Around 1720, the river passed through a new 
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period of expeditions, the so-called “Monções”, which lasted beyond the mining cycle. 

Such expeditions, in contrast to the “Bandeiras”, owned a commercial and colonizing 

character and had as its departure port the village of Araraitaguaba, current town of 

Porto Feliz. 

In face of the great number of expeditions, villages and small settlements were founded 

along the Tietê river margins for the travellers´ provision. The Tietê has also worked as 

an induction vector of urban centers during the XVII and XVIII centuries (Ohtake, 

1991). 

3.2.2 The Sugar Cane Cycle (1730 – 1822) 

By the year 1775, São Paulo State witnessed a late sugar cane apogee and of secondary 

importance in the colonial economic scenario. Beside the subsistence tillages and 

settlements spread throughout the Tietê river margins, large sugar-mill farms started to 

settle down from the first half of the XVIII century onwards, concomitantly with the 

decline of the mining cycle. The sugar cane culture found in the Tietê midstream valleys 

ideal conditions for its development, such as fertile soils, navigable stretches of the 

Tietê river for the sugar cane transport, the commercial activities brought with the 

“Monções”, the local socioeconomic conditions, and last but not least, governmental 

measures fostering exports and, consequently, the usage of the Santos port, on the 

Atlantic coast. In a very short time, the sugar cane farming had become the leading 

economic force of the São Paulo Captaincy (a political-administrative land division 

adopted during colonial times), what resulted in the emergence of important towns in 

this region (Ohtake, 1991). 

3.2.3 The Coffee Cycle (1822 – 1920) 

With the decline of the sugar cane culture by the time of the Empire demise (1822), the 

coffee ascends in the national scenario, becoming already in the first half of the XIX 

century the main Brazilian export product, and making São Paulo State early around 

1890 the world leader in coffee production. Mostly covered by the red soil, which is 

highly suitable for the coffee culture, the Tietê river valley rendered favorable a quick 
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and concentrated occupation of the western portion of the State. Many of its cities 

developed in such a way that they became, as it is the case of “Itu”, political centers of 

major importance, which even sheltered some political movements that culminated with 

the Empire ruin and the institution of the Republican regime in 1889 (Ohtake, 1991). 

Thus, the configuration of the current urban system in the inland of São Paulo State 

goes back to the time of the coffee cycle. The fast and intensive incorporation of lands 

to this culture, having as its fronts the railway lines, made way for the basic structure of 

the present urban network in this region (FIGURE 3.2). At the same time, some of the 

main cities of this network, mostly located either at the edge or crossing of railway 

tracks, started to play the role of regional centers, providing logistical support for the 

occupation process in the pioneer zones (Fundação Seade, 1992). 

 

  

  

 

 

  

 

FIGURE 3.2 – Current transport matrix in São Paulo State and urban network 

                         (municipal division) throughout the Tietê river watershed.  

                                     SOURCE: CITP and CEPAM (1994).  
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Paulo State rose from 1.4 million inhabitants in 1890 to 4.6 million in 1920 and 6.4 

million in 1934. The occupation of the State inland meant not only the conquest of lands 

for the coffee farming but also the diversification of the agricultural activities in São 

Paulo (Fundação Seade, 1992). 

3.2.4 The Industrialization Process and Economic Dynamics of the XX Century 

3.2.4.1 Years 1920 –1929 

The industrial activity, impelled by the coffee culture, tended to concentrate in the State 

capital, which already in the 1920s presented particular features that resembled a big 

city, sheltering the mass of urban workers employed either in the industrial sector or in 

the services activities. Agribusiness activities were mainly settled in the State inland, 

although some important industrial plants, notably textile, were also present in this 

region. 

In the economic history of São Paulo State, the 1920s represent a transition stage. The 

coffee culture led to a surplus crisis that had to cope with the shrinking international 

demand from 1929 onwards. The industrial activities also passed through a similar 

process, experiencing a surplus crisis, especially in the cotton-textile sector. This 

transition culminated with a rupture represented by the world crisis of 1929 and the 

ensuing revolutionary movement of October 1930 (Fundação Seade, 1992). 

3.2.4.2 Years 1930 – 1955 

Recovery policies were implemented by the Brazilian national government during the 

years following the “world crack of 1929”, engendering the transition to a new 

accumulation standard: between 1930 and 1955, under the hegemony of the industrial 

capital, the industrialization process started to move forward, although with a restrained 

pattern, given that some sectors of the key industry were still incipient and would 

present a late development. From the 1950s on, the agricultural activities in São Paulo 

State underwent successive modernization processes (chemical fertilizers, pesticides, 

agricultural machinery), which in association with the gradual replacement of 
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permanent crops by annual crops and cattle raising in certain areas concurred for the 

rural migration towards the cities. Also from the 1950s on, inter-regional migration 

flows towards São Paulo started to become more intensive, which represented an 

important component for the urbanization process in the State at that time. 

As explained by Fundação Seade (1992), these were the very processes that sustained 

urbanization during this period. The closer linkages between agriculture and industry as 

well as a greater diversity in their productive scope meaningfully impacted the tertiary 

sector in the urban areas, requiring as a counterpart the enlargement of the commercial 

and support services circuit. In the same way, the growth in population, mainly caused 

by migration displacements, increased the demand for personal and social services. 

3.2.4.3 Years 1956 – 1969 

By the mid and late 1950s, the intensity of the national economy growth, and the 

simultaneous advances in its productive structure, increasingly demanded the 

implementation of new economic branches and sectors. Already from the mid 1950s on, 

some sectors of the key industry gained a greater importance, and Brazil once again in 

face of the strong ties between its agriculture and industry, enhanced its presence in the 

international market of agricultural and agribusiness goods, strengthening technological 

progresses in the agricultural sector, incorporating new cultures and altering the 

relationships of the labor force engaged in primary activities (Fundação Seade, 1992). 

These transformations in the primary and secondary productive sectors were reflected in 

the cities by an increasingly complex social structure. Typically urban activities as well 

as new ways of commerce, consistent with the new paradigms of mass consumption and 

changes in the individual habits, were greatly favored. At the national scale, these 

changes were markedly felt in São Paulo State, chiefly in the metropolitan area, but 

progressively, also in the remaining inland urban network. 
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3.2.4.4 Years 1970 – 1979 

After the completion of the key industry initial development (1956 – 1962), the 

Brazilian economy entered in a new period of high growth rates regarding both income 

and production. This has allowed further advances in the industrialization process, what 

has also occurred through the expansion of transnational corporations (TNCs) branches 

dedicated to the production of lasting goods. In face of the inability of these 

corporations to promote a self-sustained growth and of the world oil crisis in 1973, 

associated with the fact that the Brazilian development strategy was dependent on 

external loans, Brazil ended up by sinking in a profound economic crisis. 

Incautiously disregarding the new international scenario, the Brazilian government 

elaborated the II National Development Plan (II PND), launched in 1974, fostering the 

expansion of the capital goods industry and investments in the energy sector and 

infrastructure, widening thence its foreign debit, which has even worsened around 1978 

– 1979, after the second world oil crisis. At this stage, the Brazilian economy definitely 

entered in an unprecedented crisis, which would last for the following ten years. In 

summary, the 1970s represented an immeasurable effort towards modernizing and 

strengthening the material bases of the national capitalism. Nevertheless, this decade 

witnessed an aggravation of the historical poverty and inequalities in the Brazilian 

society (Fundação Seade, 1992). 

During this period, the endeavors of the II PND in relocating part of the ongoing 

industrial development in the São Paulo metropolitan area to other regions in Brazil 

were only partly successful. It was in São Paulo State that the national industrialization 

process reached its summit: its industrial structure was diversified as a result of the 

greater importance obtained by the lasting and capital goods industry; its agriculture 

was export-oriented and increasingly linked to the industrial sector; its commercial and 

services activities were differentiated by the remarking growth of their most dynamic 

sectors; its cities acquired giant dimensions, and the State absorbed almost three million 

immigrants. 
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3.2.4.5 Years 1980 – 1989 

The 1980s were known as the “lost decade” and started with one of the most severe 

crisis in the urban history of Brazil. The economic recession, the increasing 

unemployment rates and the social crisis had their greatest impacts exactly in São Paulo 

State. The share of the industrial activities in the State gross domestic product (GDP) 

dropped from near 51% in 1980 to 43% in 1988. The industrial retraction, however, 

does not account for the whole set of internal transformations experienced by the 

national industry (especially amongst the export-oriented sectors) during the crisis, like 

productive and administrative rationalization as well as “reengineering” for increased 

gains in productivity and greater competitivity. Yet some top-edge sectors, established 

in the preceding decade, had an extremely favorable performance, such as the 

processing agribusiness sector, the aeronautics and armament industries as well as the 

informatics, microelectronics and telecommunications industries. 

Albeit the reduction in the subsidized financing, the agriculture in São Paulo State grew 

on average 2.1% between 1980 and 1988, smoothing the crisis effects. This is greatly 

due to the “Proálcool”15 program and to the enlargement of export cultures, particularly 

the orange, favored by its growing participation in the international market of 

concentrated juice. In this way, the most capitalized agricultural sectors, mainly those 

meant for export, assured high profits, requiring hence the growth of complementary 

tertiary activities, with clear repercussions in the densification of the State urban 

network (Fundação Seade, 1992). 

3.2.4.6 Years 1990 – 1999 

This decade represented a landmark concerning the evolution of entrepreneurial 

adjustment strategies initiated in the 1980s. With the release of the “Plano Collor” in 

1990 - a national economic development plan based on liberalization, deregulation and 

privatization - conceived by  President Fernando Collor  for  his  four-year  mandate, the 

                                                 
15 “Proálcool” is a Brazilian national program, designed to fund the production (planting, processing and refining) of 
sugar cane alcohol for vehicles fuelling purposes. 
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enterprises were generally forced to adopt severe defensive operational and 

organizational adjustments, favoring the better schooled and qualified employees 

(Fundação Seade, 1995).  

In face of the globalization motto at the international level, and opening of markets and 

recession at the national level, the unemployment problem has worsened above all in 

São Paulo State, where the still ongoing process of agriculture modernization associated 

with the relocation of some important industries to other States ended up by stressing 

the social and urban problems of the previous decades. This economic recession 

together with a decline in the population growth rates16 produced a marked relenting in 

the urbanization rhythm of São Paulo metropolis and cities in the State inland. Such 

phenomenon sharply contrasts with the accelerated urbanization phenomena of the 

preceding decades. 

3.3 Spatial Configuration of the Urban Network in the Macroarea of São Paulo 

State Inland  

A meaningful proportion of the industrial development held during the 1970s occurred 

in the inland of São Paulo State, as an indirect result of federal initiatives. According to 

what was already stated in Section 1.1, the II PND included the creation of industrial 

development funds and of policies to foster export and agribusiness activities as well as 

to decentralize the production of basic industrial inputs. Its goals have been partially 

achieved, given that greater part of the intend industrial relocation took place in the 

inland of São Paulo State, for it presented good infrastructure conditions, successful 

agricultural enterprises and an incomparable urban network, established since the 

expansion of export coffee plantations during the XIX century (Fundação Seade, 1992). 

In this sense, the inland of the State did not only receive more industries and more 

progress from São Paulo metropolis,  but  also  a  representative  share  of  its urban and  

                                                 
16 According to Fundação Seade (1992), the population growth rate of São Paulo State declined from 2.7% in the 
1980s to 1.9% in the 1990s. 
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social problems. The 1970s were marked by a chaotic and booming urbanization, above 

all in the metropolitan area, but also to a certain extent in main Brazilian cities and in 

cities of São Paulo State inland. Former medium-sized cities experienced drastic 

inequalities that characterize social life in mass consumption societies with late 

development: on the one hand, an increasingly complex and diverse social and material 

framework, and on the other hand, signs of social exclusion (slums and unequipped 

peripheral squatter settlements) that were no more exclusive of big cities (Fundação 

Seade, 1992). 

The 1980s witnessed the sequence of the industrial relocation from São Paulo 

metropolis towards other areas in the country, especially the inner regions of this State. 

In the inland of São Paulo, the industries promoted an economic growth above the 

national average, what was followed by a good agricultural and agribusiness 

performance, leading to a more positive employment scenario, both in the industry and 

services sector. If the 1970s were characterized by the introduction of industrial 

development in São Paulo inland, the 1980s, on their turn, witnessed a truly inward 

advance of services. The implementation of big supermarkets; sophisticated franchising 

shops and malls; foreign banks; consultancy companies; marketing agencies; 

international standard hotels and TV broadcasting stations are typical phenomena of the 

1980s in the main State inland cities. 

Therefore, the 1980s concurred to sharpen the distinct economic behaviors of the 

metropolis and the inland, which were already observable by the end of the 1970s. In 

São Paulo metropolis, the small economic growth can be imputed to a poor performance 

of the tertiary sector, whereas in the State inland, the relocation of the industrial 

development and the consequent inward advance of services assured a comparatively 

improved economic efficiency. This conjecture can be better explained by the 

comparative evolution of urban areas between the metropolis and the inland (TABLE 

3.1),  accomplished through the usage of Landsat Multispectral Scanner Sensor (MSS) 

and Thematic Mapper sensor (TM) images series (Fundação Seade, 1992). 
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TABLE 3.1 – Comparative increment evolution of urban areas between São Paulo 
            metropolis and main cities of the State inland – 1974 – 1989.  

 

                                                                                              AREA INCREMENT (THOUSAND HA) BY TIME PERIOD 

URBAN AREAS 1974 – 1980 1980 – 1984 1984 - 1989 

São Paulo metropolis 46.9 21.0 18.4 

Main cities of São Paulo State inland 27.0 29.4 18.1 

SOURCE: Adapted from FUNDAÇÃO SEADE (1992, p. 58). 

With spatial particularities and distinct rhythms, the urbanization process of the latest 

decades assigned a very peculiar urban growth pattern to the State of São Paulo as a 

whole. During these years, the construction of high-rise buildings (FIGURE 3.3) and the 

increase in peripheral low-income settlements are detectable in most of its main cities, 

cases of conurbation are more and more frequent, and `metropolization´17 in São Paulo 

State was no more an exclusive phenomenon of São Paulo capital: new metropolitan 

areas were established in São Paulo State, such as Santos in 1996, and Campinas in 

2000 (EMPLASA, 2000).  

The construction of high-rise buildings, with the derived densification of certain 

residential areas, can be ascribed to a set of factors, like the increase in the demand for 

housing, the search for personal external economies (resulted from the clustering of 

infrastructure and services in certain urban areas), speculations in the real estate market, 

the rising difficulties for mobility inside cities, the growing urban violence, etc.  

The emergence of peripheral low-income settlements, on its turn, might also be 

explained by some of the aforementioned set of factors, but it is still enhanced by the 

ever-increasing urban densification process, which tends to valorize more central areas 

to the detriment of those presenting low-density of occupation, and also by the local 
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governments, which build social housing in relatively distant plots, thus permissively 

contributing for the implementation of low-income settlements in even farther and 

strictly peripheral areas, totally deprived of infrastructure facilities (Fundação Seade, 

1992).  

 

 

 

 

 

 

 

FIGURE 3.3 – Piracicaba skyline with high-rise buildings in the background. 

                                  SOURCE: CIAGRI-USP (2003).  

In conclusion, in nearly all main cities of São Paulo State inland, the economic growth 

of the 1950s through 1980s allowed a fast and pronounced expansion of their urban 

areas. Those which historically had a well established urban framework and more 

diversified services became, already by the late 1950s and early 1960s, regional 

development poles (see FIGURE 3.1), organizing the urban network within their 

catchment areas and the web of socioeconomic relationships of smaller towns in their 

surroundings.  

In the doorway of the XXI century, new economic possibilities arise for the western 

inland of São Paulo State. The accomplishment of the Tietê-Paraná waterway will 

ensure a greater economic dynamism amongst South American countries, mainly 

regarding the transport of grains. The drop of customs barriers enabled by the unified 

South American market (`Mercosul´), associated with cheaper freight transport means, 

                                                                                                                                               
17 Other southeastern States of Brazil, like Minas Gerais, Paraná and Santa Catarina, also witnessed the foundation of 
metropolitan areas in cities of their inland (EMPLASA, 2000). 



 103

may bring about drastic changes in the agricultural profile of the State, especially within 

the waterway catchment area (CITP and CEPAM, 1994), what will certainly strengthen 

the inland developmental trend observed in the latest decades. 

3.4 Selected Cities for Analysis: Geographical Characteristics and Socioeconomic 

Peculiarities 

3.4.1 Bauru 

3.4.1.1 Geographical Characteristics 

Bauru is located in the Tietê lower midstream watershed, western inland of São Paulo 

State, and approximately 345 km away from the State capital – São Paulo city. This 

municipality comprises a population of 316,064 inhabitants, out of which 310,442 

inhabitants live in urban areas (IBGE, 2000). The city of Bauru lies upon a 

geomorphological unit called `Peripheric Depression´, which dates back to the High 

Cretaceous Period, and is predominantly covered by `cerrado´ (bushy savannah). The 

city presents highland tropical climate, with mean temperatures ranging from 17° C to 

29° C throughout the year, and average rainfall of 1,310 mm/year (DAEE, 1990). 

3.4.1.2 Socioeconomic Peculiarities 

Bauru is regarded as the biggest crossing point among railways, waterway and 

highways in Latin America. The city itself was born as a crossing point between 

railways during the inward advance of the coffee culture in the XIX century.  Four 

major interregional roads pass through the city, connecting it to the State capital, to the 

farthest western regions of São Paulo State as well as to the States of Mato Grosso do 

Sul and Paraná.  

The railway transport, through its south branch, connects the city to the markets of 

Argentina and Uruguay. Towards the west, it is possible to reach Paraguay and Bolivia, 

the north of Argentina, and through Chile, the Pacific Ocean. In the eastwards direction, 

the railways lead to the seaports of Santos and Paranaguá in the Atlantic coast, and also 

to metallurgical raw material zones, such as Volta Redonda, in the State of Rio de 
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Janeiro, and Cubatão, in São Paulo State. The municipality of Bauru is located only 25 

km away from the freight intermodal terminal of the Tietê-Paraná waterway, situated in 

the neighboring municipality of Pederneiras. Along this waterway, it will be possible to 

reach fluvial ports in Uruguay and Argentina. 

Bauru currently shelters a State airport, which offers regular flights to main cities of São 

Paulo State, like São Paulo, Campinas, Guarulhos and São José do Rio Preto. A second 

bigger airport is being presently built, and it will operate standard flights to the whole 

country and to South American countries as well, what will be crucial to the economic 

development in the region. 

A gas pipeline extending from Bolivia towards the Brazilian Atlantic coast passes 

through the city of Bauru, supplying its population with natural gas. This route also 

supports optic fiber pipes, which connect Bauru to the State capital. 

The city also shelters a very diversified industrial park, with an outstanding 

performance of the agribusiness sector. Around thirty companies settled in this 

municipality export products like notebooks, machinery, automobile batteries, 

processed bovine meat, powder juice, noodles, leather articles, and plastic utilities. 

Regarding commercial facilities, the city is well supplied with several department 

stores, one hypermarket and a mall. A second mall is currently under construction. In 

terms of services, the city offers around forty bank agencies, international standard 

hotels, several TV broadcasting stations and internet providers. The city counts on a 

great number of health care facilities, some of which are top-ranking, like highly-

specialized and university-based hospitals. There are as well plenty of tourism and 

leisure opportunities in the city, like the botanic garden, the Bauru aero club, the tree 

farm, and many other country clubs. And finally, Bauru is also known to be an 

educational city, sheltering two State universities campii (University of São Paulo – 

USP and State University of São Paulo – UNESP), two private universities and three 

private colleges (Fundação Seade, 2000a). 
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In order to present such a highly diversified urban framework, it is deducible that the 

city underwent a drastically fast urbanization process. Bauru together with the greater 

part of the inland western cities are those State cities which most grew in comparative 

terms during the 1980s, reproducing to a smaller extent the pattern of Latin American 

big cities, with high-rise buildings in central areas (FIGURE 3.4), non-occupied areas 

within the main urban agglomeration, resulted from speculative actions, and peripheral 

low-income settlements (Fundação Seade, 1992). 

 

 

 

 

 

 

FIGURE 3.4 – Bauru aerial view with high-rise buildings. 

                                                 SOURCE: ITE-FCEB (1998).  

The urbanization boom process is reported in Bauru master´s plan (SEPLAN – Bauru, 

1997), where through a comparison of the urban evolution during the latest century, it 

has been assessed that its urban area grew over 300% in 50 years (FIGURE 3.5).  

As already stated in Section 3.3, the industrial development in the State inland during 

the 1970s indirectly strengthened the tertiary activities, especially during the subsequent 

decades. Bauru is a typical case where the commercial and services activities are 

preponderant in relation to the industrial sector, what can be identifiable by the sectorial 

shares of the municipal GDP (FIGURE 3.6). 
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* The red color corresponds to the effectively occupied areas, and the blue, to legalized settlements.  

FIGURE 3.5 – Evolution of Bauru urban area in the latest century. 

                                          SOURCE: SEPLAN - BAURU (1997).  

 

 

 

 

 

 

              FIGURE 3.6 – Sectorial GDPs for the city of Bauru in the latest four decades. 

                                       SOURCE: Adapted from IPEA (2001);  SEADE (2002).  
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3.4.2 Piracicaba 

3.4.2.1 Geographical Characteristics 

Piracicaba is located in the Tietê upper midstream watershed, western inland of São 

Paulo State, and approximately 152 km away from the State capital – São Paulo city. 

This municipality comprises a population of 329,158 inhabitants, out of which 317,374 

inhabitants live in its seat city (IBGE, 2000). Piracicaba lies upon the `Peripheric 

Depression´, which dates back to the Pre-Cambrian Period. This geomorphological unit 

is partially covered by `cerrado´ (bushy savannah) and partially by the Atlantic rain 

forest. The city presents highland tropical climate, with mean temperatures ranging 

from 12° C to 22° C throughout the year, and average rainfall of 1,405 mm/year, with 

rains distributed into two seasons (DAEE, 1990). 

3.4.2.2 Socioeconomic Peculiarities 

Piracicaba is amongst the one hundred best Brazilian cities for entrepreneurial 

investments according to a ranking established by a renowned economic magazine – 

Exame - in 2001 (Fundação Seade, 2000b). 

The city is served by two main roads: the first connects the city to two parallel highways 

that link the State capital to the metropolis of Campinas, and the other one, connects 

Piracicaba to a highway leading to the western regions of the State. 

The city contains a local airport which allows the operation of medium-sized aircrafts 

during day and night. Nevertheless, the international airport of Viracopos, located in 

Campinas, is only 85 km away from the city. 

Piracicaba will also benefit from the Tietê-Paraná waterway, with the construction of a 

dam and a canal lock in the neighboring municipality of Santa Maria da Serra, what will 

render the Piracicaba river navigable until Artemis, a district belonging to the 

municipality of Piracicaba. The construction of a railway terminal to be integrated to the 

Artemis waterway terminal is also envisaged. 
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The gas pipeline that extends from Bolivia towards the Brazilian Atlantic coast also 

passes through the city of Piracicaba, supplying its population and industries with 

natural gas.  

Piracicaba has distinguished itself as an important sugar cane producer pole in São 

Paulo State, and gathers huge sugar cane and alcohol agribusiness complexes. The city 

also shelters a very diversified industrial park, with big-sized and high technology 

plants, and whose outstanding sectors are metallurgy, food processing, paper and 

textiles. Concerning commercial facilities, the city is well supplied with three 

commercial zones, several great supermarkets, a big-sized mall and three minor ones. In 

terms of services, the city offers tens of bank agencies, international standard hotels, 

five TV broadcasting stations and several internet providers. The city counts on a great 

number of health care facilities, with four hospitals and several health care centers.  

A very strong economic sector in Piracicaba is tourism, since this fluvial city offers a 

greened and pleasant landscape (FIGURE 3.7); a set of remarkable historic and 

architectural assets, like museums, old mills, buildings and churches; an astronomic 

observatory; and beautiful leisure areas. Piracicaba is also distinguishable for being one 

of the first Brazilian cities to implement the local Agenda 21, a chart of environmental 

guidelines for sustainable development, created as a collective compromise of member-

countries that attended the Earth Summit Conference – ECO 92, in Rio de Janeiro. 

 

 

 

 

 

 

FIGURE 3.7 – View of Piracicaba city and its green areas. 



 109

Likewise Bauru, Piracicaba is also known to be an educational city, comprising 

excellence research centers and universities, being a national reference in the fields of 

agronomy and biotechnology. The city contains two public research centers (one 

dedicated to the study of nuclear energy in agriculture, and the other, to technologies 

supporting sugar cane by-products), besides a campus of the USP agronomy school, two 

public colleges, a private university and a private college (Fundação Seade, 2000b). 

But in contrast with the economic profile of Bauru, the industrial sector in Piracicaba, 

chiefly driven by the sugar cane and alcohol agribusiness complexes, is prevalent over 

the commercial and services activities, as shown in the bar graphic of sectorial GDP 

values (FIGURE 3.8). 

 

 

 

 

 

 

 

 

FIGURE 3.8 – Sectorial GDPs for the city of Piracicaba in the latest four decades. 

                              SOURCE: Adapted from IPEA (2001);  SEADE (2002).  

3.5 Conclusions 

The two cities adopted for the modeling experiments of the current PhD research 

present similarities regarding their historical background, for they were born along the 

Tietê river valley as a result of the human inward occupation with the first fluvial 
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exploring expeditions and mining activities in the XVII and XVIII centuries. The two of 

them grew in importance with the apogee of the coffee economy in the XIX and 

beginning of the XX century, and the concomitant arrival of railways and more 

diversified and sophisticated commercial and services activities. In the same way, these 

two cities have a renowned tradition in agribusiness and both of them inherited part of 

the metropolis industrial development from the 1970s onwards as a result of federal 

initiatives. And finally, Bauru and Piracicaba are regional development poles of São 

Paulo State, with a very sophisticated and complex urban framework, and a high level 

of educational infrastructure. 

Nevertheless, these two cities differ in their urban structure and landscape. Bauru, 

which was born as a crossing point of railways, is still marked in its urban tissue by the 

transport system: the city is organized around four interregional roads and the railway 

track, which still passes through the city center.  

Although the railway also reaches the center of Piracicaba, and the roads also play a 

certain role in structuring its urban area, the city lays a great emphasis on the river, 

which is a landmark for the social life of its inhabitants. The main central commercial 

zone borders the green areas established along the Piracicaba river margins, as do the 

huge areas dedicated for universities and colleges campii in the northern and 

northeastern portions of the city. 

Another divergent aspect between these two cities concerns their economic vocation. 

While Bauru is typically distinguished by the remarkable presence of tertiary activities, 

the industrial sector is overwhelming in the local economy of Piracicaba.  

In summary, in both cases the challenges for studying these cities lie on the fact that 

they underwent urbanization booms and show a great diversity concerning their 

economic specialization profiles throughout the latest decades. 
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CHAPTER 4 

BUILDING THE GEOGRAPHIC DATABASE 

4.1 Spatial Input Data: Cartographic, Aerophotogrammetric and Remote Sensing 

Data 

As stated previously, the central topic of the current research focus on modeling of 

urban land use change. In fact, a variety of spatial data (city maps, satellite images, 

conventional and digital aerial photos) provide information on urban features like extent 

and shape of urban areas, urban greening, urban traffic network, etc. But to specifically 

depict information on urban land use with a high degree of precision and reliability, it is 

crucial to count on urban land use maps, commonly supplied by planning departments 

of local governments. 

This work has been essentially based on this sort of information to generate the digital 

urban land use maps that fed the simulation model. And due to this reason, the starting 

and end dates of the consecutive simulation periods were defined in function of the 

existent land use maps for the two cities under study. For instance, the planning 

secretariat of the local government of Bauru issued four land use maps in the latest four 

decades: in 1967, 1979, 1988 and 2000. In this way, the time series adopted for the 

Bauru simulation experiments, comprising thirty-three years, was divided into three 

periods, namely 1967-1979, 1979-1988 and 1988-2000. 

In the case of Piracicaba, only two land use maps were elaborated during the four latest 

decades: in 1985 and 1999. However, the first urban zoning legislation (without maps) 

released for the city dates from 1964 (Piracicaba, 1964), immediately after the 

completion of an aerophotogrammetric survey carried out over the city and surrounding 

regions in 1962. Thus, the urban land use change simulations for Piracicaba are based 

on a time series, comprising thirty-seven years and consisting of two consecutive 

periods: 1962-1985 and 1985-1999. 
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Forty years were deemed an ideal length for the simulation time series, since one of the 

chief aims of this study concerns the understanding of the relatively recent driving 

forces determining urban land use change during the time in which the two case study 

cities were subjected to urbanization booms. The 1970s and 1980s were marked by the 

strengthening of the inward industrial relocation process in São Paulo State (see Section 

3.2.4.4), and the consequent fast urban expansion of its main cities. These two decades 

were included in the analysis, together with the preceding decade, once the rural out 

migration phenomena in Brazil, and especially in São Paulo State, were sharply 

enhanced around the 1960s and henceforth. 

A further reason for limiting the analysis to the latest four decades regards the matter of 

data availability. Land use maps in the 1950s and earlier are rare (if not totally 

inexistent), and even more scarce are maps of technical and social infrastructure as well 

as of occupation density, which account for the input variables to drive the simulation 

model. In this sense, working with longer time series would prove to be unfeasible. 

An important remark should be addressed to the delimitation of simulation periods. As 

previously said, their bounds (initial and final time) are confined to the available 

releases of urban land use maps. In fact, if these maps were issued more often, these 

periods could be set in accordance with homogeneous circumstantial contexts, such as a 

sequence of local and/or State governments with a similar political approach, stable 

macroeconomic scenarios, etc. Some works on deforestation processes modeling adopt 

this methodology for defining simulation periods (Soares-Filho, 1998; Mertens and 

Lambin, 1999; Mertens et al. 2000). This delimiting procedure is thus functional due to 

the fact that the set of driving forces determining the total amount of land use change 

tend to alter from time to time, as a result of exogenous forces like political-economic 

contexts. This suggestion remains as a methodological guidance for further studies, in 

case urban land use maps become more often available.  

The following sections will be dedicated to introduce the spatial input data used in the 

modeling experiments, reporting their main technical characteristics and also their 

specific usefulness for the elaboration of the digital land use and variables maps. 
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4.1.1 Cartographic Data 

All the cartographic data used in the modeling experiments were paper plans, 

concerning official city maps, land use maps, technical and social infrastructure maps as 

well as occupation density maps. Many of them, usually the most recent ones, existed in 

digital format, but due to copyright constraints, they were not rendered available by 

their authors: the planning and water supply & sewerage secretariats of the municipal 

governments in Bauru and Piracicaba.  

These plans were mostly drawn at scales of 1:20,000 for both cities, with a few 

exceptions being the map of zoning for Bauru in 1967, drawn at scale 1:10,000 and the 

map of earth and paved interregional roads of Bauru in 1988 at scale 1:75,000. The 

oldest plans were made with conventional China ink on onionskin, whereas the recent 

ones are either plotter or deskjet printings. The most recent official city maps were 

initially scanned and then vectorized on screen. Details about this digital conversion 

process will be provided in Section 4.3.1. Below is an example of a paper plan, 

converted in digital format (FIGURE 4.1). 

  

 

 

 

 

 

 

FIGURE 4.1 –  Map of Piracicaba in 1999. Street blocks are in red, railway in yellow, 

                leisure areas in green, rivers in light blue, and lagoons in dark blue. 

                            SOURCE: SEMUPLAN (1999).  
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4.1.2 Digital Aerial Photos 

As already stated in Section 4.1, an aerophotogrammetric survey was carried out over 

the city of Piracicaba and surrounding regions in 1962. This survey was undertaken by 

the enterprise `Terrafoto S.A.´, and the flight scale was 1:100,000. 

The photos covering the city of Piracicaba have been converted to digital format 

through a scanning with the Scanjet HP 6350 - 1250 dpi, and their subsequent 

arrangement in a digital mosaic (FIGURE 4.2), accomplished with the software 

TNT®mips 6.6. This mosaic has been done by the team under the coordination of Prof. 

Dr. Gerd Sparovek of the Department of Soils and Plants Nutrition (LSN), belonging to 

the School of Agronomy “Luiz de Queiroz” of the University of São Paulo (ESALQ-

USP). The urban area of Piracicaba has been visually delimited with polygons in vector 

format, drawn in orange color, and superimposed on the photos mosaic.  

 

 

 

 

 

 

 

 

 

 

FIGURE 4.2 –  Mosaic of digital aerial photos for the city of Piracicaba - 1962. 

                                 SOURCE: LSN -  ESALQ-USP (2002).  
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4.1.3 Remote Sensing Data 

Landsat satellite images have been used in this work to update the official city maps, 

inasmuch as illegal residential settlements are not shown on the latter. Their acquisition 

dates correspond to the bounds of the simulation periods (see Section 4.1) adopted for 

each of the two cities. A Landsat – 3 MSS image of 1979, and two TM - 5 images of 

1988 and 2000 (INPE, 1979, 1988, 2000) were used to update the Bauru city maps. In 

the case of Piracicaba, two TM – 5 images of 1985 and 1999 (INPE, 1985, 1999) have 

been employed. The land use maps issued in the 1960s could not be updated by means 

of RS data, since satellite images started being available from the beginning of the 

1970s. 

Among the scientific community engaged in the applications of remotely sensed data to 

urban studies, there is no consensus as to which is the most appropriate TM bands 

composition for detecting urban areas and differentiating their intra-urban structures. 

Seevers et al. (1985) reports that the combination of bands 5, 4, 3 is ideal for visual 

interpretation of urban areas, and bands 5, 4, 1, for automated classification. Johnston 

and Watters (1996) have worked with an isodata18 classification on bands 2, 3, 4, 5 and 

7 in order to manually interpret and group the derived sixteen classes into "paved" and 

"non-paved" ground cover types. Liu (2003) citing a study of the USGS EROS Data 

Center, states that for mapping urban features, the combinations  5, 4, 3;   4, 3, 2  and   

7, 4, 3 are preferred for visual interpretation. 

The heterogeneous nature of urban areas implies a great spectral complexity, what can 

be explained by the fact that they present materials with a very diversified spectral 

behavior and they often include non-urban uses, such as green areas, bare soil, etc. This 

diversity context creates thus problems for classification (Haack et al. 1987). Some 

alternative solutions have been proposed to tackle this problem. Gong and Howarth 

(1990) proposed a classification method designed to extract segments containing  an  

intensive  density  of  high  spatial  frequency, which they believe best characterizes 

                                                 
18 Richards (1995) citing Ball and Hall (1965) defines the isodata algorithm as the one based upon estimating some 
reasonable assignment of the pixel vectors into candidate clusters and then moving them from one cluster to another 
in such a way that the sum of squared errors measure of the preceding section is reduced. 
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urban areas. Solberg et al. (1990) developed an algorithm for the detection of urban 

areas based on an interference filtering. This method, restricted to high spatial resolution 

sensors only (10m or 20m), comprises the extraction of the traffic network on the 

image, which is then followed by a filtering operation, meant to detach areas with a high 

density of linear elements. The filtering algorithm creates thus interferences among the 

lines, making its answer enhanced when the lines density is greater. Although this 

method can detect urban areas with a high level of accuracy, its borders are uncertain 

and little detailed. 

Jensen-Moller (1990) created an algorithm for the detection of urban areas based on 

different flexible classification rules, comprising both quantitative information and 

heuristic assumptions reflecting the criteria that would be commonly adopted by a 

human interpreter. The procedures sequence is the following: a) intelligent detection of 

roads and linear structures; b) processing of image attributes, like mean and variance 

values and texture; c) final classification upon basis of an expert systems approach. 

An alternative method of describing urban land cover is the V-I-S (vegetation – 

impervious surface – soil) model proposed by Ridd (1995), which endeavors to assess 

biophysical composition of the urban landscape by assigning values for these three 

components. Briefly, this method deals with matters related to the mixture of or 

interference among targets at a sub-pixel scale. 

The usage of remote sensing data in this work, however, was limited to a visual 

interpretation of color composition images, since detailed information on the urban 

structure of the cities under study was already available, and satellite images have been 

solely employed to identify eventually existent illegal settlements. To meet this end, 

digital city maps in vector format have been superimposed on the satellite images, 

which previously underwent radiometric and geometric corrections, georeferencing 

operations and contrast enhancement. Detailed information on the georeferencing 

techniques will be provided in Section 4.3.2. 

For the color composition, the TM bands 1 (0.45 µm – 0.52 µm), 4 (0.76 µm – 0.90 µm) 

and 7 (2.08 µm – 2.35 µm) have been selected. Band 1 has been subjected to 
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atmospheric correction procedures. Built-up areas present a high response in bands 1 

and 7 (Bowker et al. 1985), whereas vegetation presents a peak of response in band 4 

(Richards, 1995), which is typically used for biomass assessment (Novo, 1988). This 

combination of bands offers therefore a good differentiation between urban and non-

urban areas. A further advantage in working with this set of bands is that they present 

little correlation among each other. An example of a colour composition image 

(1B_4R_7G) is given below, which shows the city of Piracicaba in 1999 (FIGURE 4.3). 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.3 – TM – 5 image of Piracicaba, 1B_4R_7G, 222/76 – 07/16/99. 

                                   SOURCE: INPE (1999).  

4.2 Non-Spatial Input Data: Demographic-Economic Data 

The non-spatial data have been used in this work to parameterize the total demand of 

land use change in the forecast scenarios. These future scenarios were built upon basis 

of linear regression analysis, where the dependent variable corresponds to amounts (in 

hectares) of land use types, while demographic data and economic performance 

  Scale 
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indicators account for the independent variables. Further details on these 

parameterization methods of forecast scenarios will be given in Section 5.3.2. This 

section is basically committed to introduce these non-spatial data and their respective 

sources, and present the way conversions of economic data in different currencies were 

made. 

4.2.1 Demographic Data 

Demographic data were obtained for the greater part of the time series of Bauru and 

Piracicaba in spans of five years. This is due to the fact that economic performance 

indicators were available only in quinquennia starting from 1970. Urban population has 

been exclusively taken into account in the regression analysis, because this is the share 

of the municipal population effectively impacting the growth of urban areas. 

According to Fundação Seade (2003), urban population refers to the counting of 

inhabitants living within the urban boundaries of a given municipality, which are 

defined by municipal legislation. Only the urban populations belonging to the municipal 

seat cities of Bauru and Piracicaba have been considered in the analysis. 

The population data have been obtained through demographic censuses for the years 

1970, 1980 and 2000 (IBGE, 1971, 1982, 2000). Estimates of population have been 

used to assess the urban population of Bauru and Piracicaba in the years 1985, 1990 and 

1995 (IBGE, 1987, 1991, 1997). Since only total population is provided by these 

estimates, the urban populations have been calculated by interpolating the proportion of 

urban population identified in the two closest censuses. And finally, the urban 

populations of these cities in 1975 were estimated by obtaining the arithmethic mean 

between the population data of 1970 and 1980 (TABLES 4.1 and 4.2). 

4.2.2 Economic Data 

Total and sectorial municipal gross domestic products (GDP) have been selected as 

indicators to assess the economic performance of the cities under study. The total 

municipal GDP is defined as the value of goods and services produced in a given 
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municipality, from which the expenses with the inputs used in the production process 

during a year is deducted. It refers to the measure of the total gross added value 

generated by all economic activities (IBGE, 2002).  

An equivalent term for the GDP is the added value (AV), which corresponds to the 

value that the economic activities add to the goods and services consumed in its own 

productive process. In brief, it is the contribution or gross domestic product generated 

by the different economic activities, obtained by the difference between the production 

value and the intermediate consumption absorbed by these activities (IBGE, 2002). 

In fact, the GDP is the added value, and these terms are often used interchangeably. 

Total GDPs for the municipalities of Bauru and Piracicaba are available in US$ of 1998 

for the years 1970, 1975, 1980, 1985, 1990 and 1996 (IPEA, 2001). Total and sectorial 

(rural, industrial, commercial and services) GDPs for these municipalities are available 

in R$ of 2000 for the years 1970, 1975, 1980 and 1985 (IPEA, 2003b). Total added 

values (AV) are available in R$ of 2001 for the years 1993 through 2000, and sectorial 

added values are provided in R$ of 2000 also for the years 1993 through 2000 

(Fundação Seade, 2002). 

In order to obtain standardized values of total and sectorial GDPs for the years 1970, 

1975, 1980, 1985, 1990, 1995 and 2000, the following conversion procedures were 

adopted: 

 a) Estimation of the total GDP in 2000 (US $ of 1998): 

                                                                                                                .                 (4.1) 

  

b) Estimation of the total GDP in 1995 (US $ of 1998): 

                                                                                                      . (4.2) 

 

G DP  1996  (U S$  o f  199 8)   =   G DP  1996  (R$  o f  2001) 

G DP  2000  (U S$  o f  199 8)       G DP  2000  (R$  o f  2001)  

G DP  1996  (U S$  o f  1998)   =   G DP  1996  (R$  o f  2001) 

G DP  1995  (U S$  o f  1998)       G DP  1995  (R$  o f  2001) 
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c) Conversion of the total AV in R$ of 2001 into R$ of 2000: 

                                                                                                       . (4.3) 

                                                                                                                 19 

These are all simple rules of proportion, since conversion of currencies are linear 

transformations. 

d) Estimation of sectorial GDPs in US$ of 1998: 

                                                                                                                                 , (4.4)  

                 20 

where k denotes a certain type of sectorial GDP: rural, industrial, commercial or 

services. 

e) Calculation of sectorial GDPs for 1990 in US$ of 1998: 

                                                                                                              . (4.5) 

And this proportional rate has been obtained through the following series of ratios: 

                                                                                               , (4.6) 

 

 

                                                                        ,                        (4.7) 

 

                                                 
19 IPCA (“Índice Anual Geral de Preços ao Consumidor”) refers to `Consumers Annual Prices Index´, and the values 
of IPCA in 2000 and 2001 are respectively R$1,683.47 and R$ 1,812.65 (IPEA, 2003a). 
20 GDP values were used in the years 1970, 1975, 1980, and 1985, while AV values were used in the years 1995 and 
2000. 

A V  (R$  o f  2000 )  =   A V  (R$  o f  2 00 1)  x   IP C A  (2 00 0 )

                                                           IP C A  (2 00 1 )

Sectorial GDPk(US$ of 1998) = Total GDP(US$ of 1998) x Proportional Ratek
1990

Sectorial GDPk (US$ of 1998) = Total GDP (US$ of 1998) x Sectorial GDP/AVk (R$ 2000)
                                                                                           Total GDP/AV (R$ 2000)

P ro po rt io na l Ra t e  k  1 9 9 1  =  P ro po rt io na l Ra t e  k  ( 1 9 8 9  +  1 9 9 3 )  
                                                                                   
                                                         2                         

P roport iona l Ra t e  k  1 9 9 0  =  P roport ion a l Ra t e  k  (1 9 8 9  +  1 9 9 1 )   
                                                                                   
                                                         2                         
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                                                                                      ,                    (4.8) 

                                                                                       , (4.9) 

 

                                                      .                              (4.10) 
 

The final GDP values in US$ of 1998 as well as the population data used in the 

parameterization of forecast scenarios are shown below (TABLES 4.1 and 4.2). 

TABLE 4.1 – Urban population, total and sectorial GDPs (US$): Bauru – 1970-2000. 
 

Years Urban Pop. Total GDP Rural GDP Ind. GDP Com. GDP Serv. GDP 

1970 61,592 526,500.428 24,884.128 124,826.722 136,439.859 376,832.414 
1975 110,166 718,986.733 14,959.686 233,091.154 155,342.626 470,935.893 
1980 159,926 983,887.317 23,486.596 344,767.749 176,902.442 1,572,421.062
1985 215,153 1,222,203.235 62,325.610 428,632.198 201,542.378 731,245.427 
1990 237,954 1,358,236.390 46,922.487 472,677.454 479,003.725 419,780.872 
1995 279,407 2,256,520.737 11,292.207 705,164.856 891,184.402 299,490.980 
2000 310,442 1,906,359.257 6,512.305 627,732.044 713,024.547 467,496.231 

SOURCE: Adapted from IPEA (2001, 2003a, 2003b) and FUNDAÇÃO SEADE (2002). 

TABLE 4.2 – Urban population, total and sectorial GDPs (US$):Piracicaba– 1970-2000. 
 

Years Urban Pop. Total GDP Rural GDP Ind. GDP Com. GDP Serv. GDP 

1970 73,153 666,029.934 60,056.683 314,733.774 95,101.568 291,239.467 
1975 115,960 1,312,284.818 39,437.798 853,930.964 121,743.828 418,916.047 
1980 158,708 2,126,207.943 66,581.222 1,307,157.079 147,927.333 752,469.633 
1985 198,407 1,704,037.322 68,131.878 1,075,191.585 128,818.571 560,713.867 
1990 218,590 2,424,143.275 96,842.165 1,615,544.478 289,475.481 432,548.144 
1995 236,687 3,251,245.119 24,907.799 2,108,284.969 491,681.220 277,346.390 
2000 317,374 3,335,315.985 17,102.944 2,170,367.463 494,371.845 492,749.832 

SOURCE: Adapted from IPEA (2001, 2003a, 2003b) and FUNDAÇÃO SEADE (2002). 

P roport iona l Ra t e  k  1 9 8 5  =    Sect oria l G DP k  1 9 8 5  
                                                                    
                                          T o t a l G DP  1 9 8 5      

P roport iona l Ra t e  k  1 9 9 3  =   Sect oria l A V k  1 9 9 3  
                                                                    
                                            T o t a l A V  1 9 9 3       

P roport iona l Ra t e  k  1 9 8 9  =  P rop ort iona l Ra t e  k  (1 9 8 5  +  1 9 9 3 )   
                                                                                   
                                                         2                         
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It is worth remarking that the sum of sectorial GDPs surpasses the total GDP due to the 

fact that the financial dummy activities are only deducted from the total GDP, since 

they cannot be accounted for each sector separately (IBGE, 1999, 2002). 

4.3 Data Pre-Processing Operations 

4.3.1 Digital Conversion of Cartographic Data 

As previously stated in Section 4.1.1, the most recent city maps of Bauru (DAE, 2000) 

and Piracicaba (SEMUPLAN, 1999) were scanned in black and white at the Dutch 

scanner OCE – G6035S. The TIFF files thereby derived were converted in files with 

extension OLE or XREF through the Australian software DESKAN 4.5, and then 

exported to AUTOCAD 14. 

These maps were vectorized on screen. Older city maps were recomposed directly upon 

the recent digital city maps through a visual comparison between the recent maps and 

the respectively older paper plans. The reconstitution of the Piracicaba city map in 

1962, however, was based on a comparison between the 1985 digital city map and a 

digital mosaic of aerial photos  (see Section 4.1.2) dating from 1962 (FIGURE 4.4). 

These procedures have been adopted aiming at a perfect adjustment in-between maps 

throughout the whole time series of the two cities. 

Further information like technical and social infrastructure, occupation density and land 

use in diverse years was drawn in different layers, always using the respective city maps 

as a reference basis.  

4.3.2 Georeferencing Techniques 

4.3.2.1 Image to Map Georeferencing 

Initially, TM – 5 satellite images of Bauru and Piracicaba, respectively acquired in 1984 

and 1985 (INPE, 1984, 1985) were used for georeferencing procedures upon basis of 

topographic charts (IBGE, 1969, 1973) inside SPRING GIS (Câmara et al. 1996). 

Although the image of Bauru dating from 1984 was not used in the modeling processes 
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themselves, it has been useful in the georeferencing stage, for it presented the best 

contrast for visualization purposes. 

 

 

 

 

 

 

 

 

 
FIGURE 4.4 – Reconstitution of Piracicaba city map in 1962: recent digital city        

                          map and digital mosaic of aerial photos dating from 1962. 

                                      SOURCE: SEMUPLAN (1985); LSN – ESALQ-USP (2002).  

In both cities, the georeferencing used five control points (CP) and a first order 

polynomial for the correction method. A minimum of four control points is needed 

when this method is adopted and overdetermined systems are to be employed (Richards, 

1995), but given the fact that the images presented a high level of geometric correction 

and that the urban areas account for a very small portion of an image scene, five points 

were deemed convenient. In all cases, there was a struggle for scattering the control 

points all over the urban area as much as possible in order to improve the 

georeferencing results (FIGURE 4.5). In the case of Bauru, the total georeferencing 

error was 1.3 pixels, and in Piracicaba, 1.2 pixels, which are not surpassing the 

admissible threshold of 1.5 pixels (Machado e Silva and D´Alge, 1986; D´Alge, 1987). 

The control points coordinates for the two cities are presented in TABLES 4.3 and 4.4. 
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TABLE 4.3 – Control points coordinates in the georeferencing of Bauru image (TM – 5 
            221/75, 10/01/84). 

 

Control  

Points (CP) 

Latitude 

 (UTM, Datum: SAD - 69) 

Longitude 

 (UTM, Datum: SAD - 69) 
1 s  22°   16´   53.90” w  49°  05´  10.97” 
2 s  22°   21´   44.21” w  49°  02´  25.74” 
3 s  22°   18´   24.85” w  49°  07´  22.76” 
4 s  22°   19´   07.70” w  49°  03´  11.47” 
5 s  22°   18´   56.31” w  49°  08´  20.56” 

 

TABLE 4.4 – Control points coordinates in the georeferencing of Piracicaba image (TM 
                       – 5 220/76, 08/10/85). 
 

Control  

Points (CP) 

Latitude 

 (UTM, Datum: SAD - 69) 

Longitude 

 (UTM, Datum: SAD - 69) 
1 s  22°   42´   10.03” w  47°   39´  00.98” 
2 s  22°   42´   55.82” w  47°  39´  28.20” 
3 s  22°   42´   08.72” w  47°  38´  52.95” 
4 s  22°   42´   31.81” w  47°  38´  42.38” 
5 s  22°   40´   45.18” w  47°  40´  30.28” 

 

 

 

 

 

 

 

 
FIGURE 4.5 – Georeferenced image of Bauru with control points (TM – 5 221/75, 

                             10/01/84). 

                             SOURCE: INPE (1984).  
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4.3.2.2 Image to Image Registration 

Image to image registration is necessary for the perfect match among different images 

of a time series. The geometric distortion of satellite images can be ascribed to a number 

of factors. These systematic distortions are mainly caused by alterations in the location, 

altitude, attitude and speed of the platform, sensor non-idealities as well as from the 

relief and curvature of the ground surface and the earth's revolution (Machado e Silva, 

1989). 

The 1999 image of Piracicaba was thus co-registered with the image of 1985, and the 

1988 and 2000 images of Bauru were co-registered with the image of 1984. In the first 

case, the total error was around 0.3 pixel, and in the case of Bauru, the errors remained 

around 0.5 pixel. Three control points were used in both cases, in face of the high 

geometric correction level of the images. In order to check for the match between 

images, the SPRING coupling resource was used (FIGURE 4.6). 

 

 

 

 

 

 

 

 

 

FIGURE 4.6 – Coupling between the Piracicaba images of 1985 and 1999 (TM – 5  

                             220/76, 08/10/85 and 07/16/99). 

                             SOURCE: INPE (1985, 1999).  
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4.3.2.3 Image to Vector Data Registration 

All the vector data were exported as files with extension DXF, and imported to a 

SPRING project without geographic projection system within the database containing 

the georeferenced images.  

The set of control points used in the image to map registration was also used for 

registering the vector data imported from AUTOCAD. For Bauru and Piracicaba, the 

vector data first employed in the registration procedures were the most recent city maps, 

showing the street blocks and traffic network, since all of the control points were 

located at crossing points of roads and eventually of roads and railways. 

In SPRING, the main window is reserved for the georeferenced image, and in a 

secondary window, the vector data are retrieved. The control points coordinates, 

recorded with datum SAD-69, were digitized in the georeferencing command window, 

and subsequently, the control points were one by one placed in their respective positions 

on the city maps (FIGURE 4.7). 

The set of three control points producing the best adjustment by means of a first order 

polynomial were kept, and the two other ones excluded. This set of final control points 

is recorded as a file with PRO extension. The recent city map as well as all the other 

remaining layers in vector format are finally imported into a definitive project inside 

SPRING presenting the Universal Transverse Mercator (UTM) geographic projection 

system. During this import process, the control points file is used in order to insert each 

of the maps in the correct position in relation to the adopted projection system. 

4.3.3 Spatial Data Analysis and Processing 

The georeferenced vector data underwent preliminary processing operations in 

SPRING, such as vector edition (elimination of duplicated and/or spurious lines), 

polygonalization and association of thematic classes to polygons. A further processing 

stage was undertaken to generate derivative raster maps from the edicted vector data, 
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like maps of distances and spatial statistical analysis maps like the Kernel points density 

estimator (Bailey and Gatrell, 1996). 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.7 – Image to vector data registration for the Bauru city plan of 2000 (TM – 5 

                        221/75, 06/07/00). 

                        SOURCE: INPE (2000) and DAE (2000).  

Maps of distance concerned both linear elements (roads, rivers, railways) and polygons 

(classes of land use, types of occupation density, etc). In some simulation periods, as we 

may check with more depth in Chapter 6, some input variables concerned maps of 

distance to the ranges of clusters density, defined upon basis of the Kernel points 

density estimator. This was the case, for instance, of the map of commercial activities in 

Bauru in 1979 (FIGURE 4.8). For the urban dweller, distances to main clusters of 

commercial activities are what really concern them, and not the individual distances to 

particular commercial establishments themselves. 

Some maps were kept in binary format (presence/absence), like water supply, social 

housing and ranges of occupation density. In the latter case, each interval of occupation 
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density (0%-5%; 5%-10%; 10%-15%; 15%-25%; 25%-40%; 40%-70%; greater than 

70%) was considered in different layers, i.e. different types of occupation density were 

represented in different maps. 

Binary maps were converted to raster files with cells size 100 x 100 (m), which was also 

held in the maps of distances. The adopted resolution is about a city block size, what 

was deemed convenient for the purpose of urban land use analysis, for intra-city block 

variations in land use are disregarded. 
 

  

 

 

 

                                               a )                                                 b)                                                 c) 

 

 

 

 

 

                                               d )                                                 e)                                                 f) 

 
FIGURE 4.8 – Sequence of operations for generating a map of distance to commercial 

                          activities clusters: a) polygons of commercial activities and their  

                          centroids; b) Kernel density numerical grid (bandwidth = 5,000 m);  

                          c) Kernel density grid slicing; d) vector map of grouped slicing ranges; 

                          e) grid of distances to slicing ranges; f) map of distances slicing.  

4.3.4 Updating the Land Use Maps through Remote Sensing Data 

As previously stated in Section 4.1.3, the remotely sensed data were visually interpreted 

so as to update the official city maps, since illegal residential settlements are not shown 
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on the latter. This has been achieved by superimposing the city maps in vector format 

on the respective enhanced color composition images (FIGURE 4.9a and 4.9b). In fact, 

satellite imagery (and aerial photos) could have also been used to remove from the 

official city plans the legally approved settlements which are drawn but have not indeed 

been built. Given the fact that there is no ground truth (aerophotogrammetric survey) for 

the city of Bauru in 1967, this procedure has not been adopted due to standardization 

requirements throughout the time series. In the two cities, squatter settlements are very 

small and practically always inserted within regular residential areas. 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

FIGURE 4.9a and 4.9b – Bauru city map superimposed on the TM – 5 image of Bauru, 

                                          1B_4R_7G, 221/75 – 06/07/00. Western city sector to the left 

                                          (a) and eastern city sector to the right (b). 

                                          SOURCE: INPE (2000) and DAE (2000).  

The city maps of Bauru contain little distortions in its western and eastern sectors, 

whereas Piracicaba city maps, as it can be checked in Chapter 6, present generalized 

distortions throughout the whole of its urban area. These deformities, however, are 
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moderate to subtle and do not harm the identification of illegal settlements, since this is 

not done automatically, but by visual analysis. 

 

These distortions can be ascribed to integrity problems in the original cartographic data, 

such as: 

a) quality of stereoscopic procedures; 

b) low precision of conventional China ink drawings in the oldest city maps; 

c) expansions in the onionskins in face of moist and heat; 

d) updates of older city maps often accomplished by the mere addition of new 

aerial photos without the due stereoscopic accuracy care. 

The inclusion of further control points well scattered through the image and the usage of 

higher orders polynomials could have yielded better matches between the images and 

their respective city maps to the detriment of undesirable distortions in the vector data. 

4.3.5 Generalization Procedures Applied to the Land Use Maps 

The maps provided by the Bauru and Piracicaba local authorities contained severe 

inconsistencies. Some urban zones refer to areas which are not yet occupied, and some 

other zones categories do not correspond to the prevailing use indeed encountered 

within their limits, reflecting just the local officials´ intention for their future use. For 

instance, a zone designed as industrial may shelter in reality just a few small-sized 

industries, and be extensively occupied by residential settlements. 

In this way, the following generalization procedures were applied to the Bauru and 

Piracicaba land use maps so as to render them agreeable with the reality to which they 

are related, and at the same time, workable by the computational model: 

a) reclassification of zones initially assigned by the cities local authorities 

according to their dominant and effectively existent use; 

b) reclassification of similar zones shown on official maps to only one category, 

e.g.: residential zones of different densities are all reclassified to simply 
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residential; special use zones and social infrastructure zones are reclassified to 

institutional zones only; 

c) adoption of eight land use zone categories21: residential, commercial, 

industrial, services, institutional, mixed use zone, leisure/recreation, and non-

urban use; 

d) exclusion of districts segregated from the main urban agglomeration by more 

than 10 km from the official urban boundary; and, 

e) disregard of minor non-occupied areas and traffic network in the simulations, 

for the latter is at a fine enough scale to be represented as a land use. 

4.4 Conclusions 

Building the geographic database was a complex task. The data preprocessing involved 

a great amount of operational proceedings, like standardization of non-spatial data, 

conversion of paper plans into digital data, georeferencing and digital processing of 

satellite images, cross-checking between remotely sensed and vector data, etc. 

Adjustments were made in the land use maps in order to make them more compatible 

with the indeed existing urban situation. In this case, loyalty to the reality observed in 

the land use contexts of the two cities has been preserved in a more generalized level. 

All these procedures comply with the implicit reductionism of model building. 

Nevertheless, as stated by Briassoulis (2000), when models refuse to subject themselves 

to feasible generalization approaches, they are prone to be condemned either to total 

impracticability or ineffectiveness under the existent time and other resources 

constraints. 

 

 

                                                 
21 The mixed use zone basically comprises the residential, commercial, and services uses. The leisure/recreation zone 
includes parks, the city zoo and other public green areas. Institutional zones refer to areas sheltering great public 
equipments, like university campii, airports, railways support areas, and great hospital and other social infrastructure 
complexes. 
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CHAPTER 5 

METHODS FOR THE URBAN LAND USE DYNAMICS  

SIMULATION MODEL 

5.1 Introduction 

This chapter will initially regard the two empirical statistical methods used to 

parameterize the land use change simulation model. Both of these methods – “weights 

of evidence” and “logistic regression” - are based on algebraic manipulations of the log 

function.  

Statistical methods employed to determine the total amount of land use change in the 

forecast scenarios are presented in the third section. The stationary approach, in which 

urban land use transition rates are supposed to be constant throughout time, is given by 

the Markov chain or Markov model, whereas non-stationary procedures to estimate the 

global amount of change are provided by linear regression analyses, relating the rate of 

land use change to demographic trends and economic performance. These regression 

analyses are able to provide optimistic and pessimist forecast scenarios, upon basis of 

variations in the independent or explaining variables.  

And finally, similarities and divergences between the “weights of evidence” and 

“logistic regression” as well as pros and cons in applying each of these two methods 

will be dealt with in the last section.  

5.2 Simulation Methods 

5.2.1 The Weights of Evidence Method 

5.2.1.1 Introduction to the Weights of Evidence Method 

The weights of evidence method is entirely based on the Bayes´ theorem of conditional 

probability (Bonham-Carter, 1994). Basically, this theorem concerns the favorability to 
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detect a certain event, which can be in the current case a given category of land use 

change (e.g. non-urban use to residential use), provided that an evidence (e.g. water 

supply area), also called explaining variable, has already happened (FIGURE 5.1). 

 
            Study Area, A 

                                    

                                          Explaining Variable (Water Supply, S) = present 

 

                                                                                      Event: Change from Non-urban to Residential Use, R 

 

                           Explaining Variable (Water Supply,  S) = absent 

 

FIGURE 5.1 – Diagram to illustrate the weights of evidence method. 

The favorability to find the event (change from non-urban to residential use) R given the 

presence of the evidence (water supply) S can be expressed by: 

                                                                           , (5.1) 

 

where P {RS} is the conditional probability of occurring the event R given the presence 

of the explaining variable or evidence S. But, P {R ∩ S} is equal to the proportion of the 

total area occupied by R and S together. Supposing N is the counting of map cells (area 

of an event or an evidence), then the above formula can be rewritten as: 

 

                                                                          . (5.2)               

      

In order to obtain an expression relating the posterior probability of the event R in terms 

of the prior probability and a multiplication factor, we note that the conditional 

P  {R /S } =  P  {R % S } 
                  P  {S }

P  {R /S} =  N  {R % S } 
                  N  {S}
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probability of being on the explaining variable map S, given the presence of the event R 

is defined as: 

                                                                       . (5.3) 

 

Since P {S ∩ R} is the same as P {R ∩ S},  Equations (5.3) and (5.1) can be combined to 

solve for P {R S}, satisfying the relationship: 

                                                               .           .                                  (5.4) 

 

A similar expression can be derived for the posterior probability of the event R 

occurring given the absence of the evidence S . Thus,  

                                                                            . (5.5) 

 

All the equations above can be expressed in an odds form. Odds are defined as a ratio of 

the probability that an event will occur to the probability that it will not occur. The 

weights of evidence method uses the natural logarithm of odds, known as log odds or 

logits. To clarify this approach, Equation (5.5) will be converted to odds. For this end, 

both sides will be divided by P {R  S }, leading to: 

 

                                                                               . (5.6) 

 

But from the definitions of conditional probability: 

 

P  {S /R} = P  {S  % R} 
                  P  {R}

P  {R /S } =  P  {R} .  P  {S /R}
                   P  {S }

P  {R/S} =  P  {R} .  P  {S /R}

                   P  {S}

P  {R /S } =   P  {R} .  P  {S /R}

P  {R /S }    P  {R /S } .  P  {S}
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                                                                                                 . (5.7) 

 

Substituting Equation (5.7) in Equation (5.6) yields the following: 

 

                                                                                           . (5.8) 

 

Substituting odds into Equation (5.8) and canceling leads to the desired expression: 

 

                                                                             , (5.9) 

 

where O {R S}  is the conditional (posterior) odds of R given S, O {R} is the prior odds 

of R and P{S R} / P{S R } is known as the sufficiency ratio (LS). In weights of 

evidence, the natural logarithm of both sides of Equation (5.9) are taken, and loge LS is 

the positive weight of evidence W+, which is calculated from the data. Then: 

 

                                                                              . (5.10) 

Similar algebraic manipulations lead to the derivation of an odds expression for the 

conditional probability of R given the absence of the evidence S, with the result being: 

 

                                                                          . (5.11) 

 

O {R/S}  =   O {R} .  P  {S /R} 

                            P  {S /R} 

log it  {R/S}  =  log it  {R} +  W
+

O {R/S}  =   O {R} .  P  {S /R}

                            P  {S /R}

P  {R/S}  =   P  {R % S }  =   P  {S /R}  P  {R}

                    P  {S}                P  {S}

P  {R/S}  =   P  {R} .   P  {S}  .  P  {S /R}

P  {R/S}     P  {R}    P  {S}    P  {S /R}
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The term P{ S  R} / P{ S / R  } is called the necessity ratio (LN). In weights of evidence, 

the negative weight of evidence W – is the natural logarithm of LN, or loge LN. Thus in 

logit form, Equation (5.11) is: 

                                                                     .     .                        (5.12) 

LS and LN are also called likelihood ratios. When events and evidences are positively 

correlated, the value of LS is greater than 1, whereas LN is in the range [0,1]. However, 

if an evidence is negatively correlated with the events, LN would be greater than 1 and 

LS would be in the range [0,1]. If the evidence is uncorrelated with the events, then 

LS=LN=1, and the posterior probability equals the prior probability, and the probability 

of an event would be unaffected by the presence or absence of a certain evidence. 

Similarly, W+ is positive, and  W- is negative, due to the positive correlation between the 

evidences and the events. Conversely W+ would be negative and W- positive for the case 

where a very limited part of the event occur on the evidence area than would be 

expected due to chance. If the events are independent of whether the evidence is present 

or not, then W+ = W- = 0, and the posterior = the prior, as above (Bonham-Carter, 

1994). 

When the evidence from several maps is combined, the weights are calculated from 

each map independently, and then combined in a single equation. The conditional 

probability of an event occurring, given the presence of two predictive evidences, S1 

(water supply) and S2 (sewerage supply) is: 

 

                                                   ,                            (5.13) 

 

 

which can be written as 

 

logit  {R/S}  =  logit  {R} +  W
-

P  {R/S 1 % S 2}  =   P  {R % S 1  % S 2}

                            P  {S 1  % S 2} 
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                                                                                                          . (5.14) 

 

 

This is Bayes´ theorem. According to it, there are only two mutually exclusive 

hypotheses, R and R , with P {R} + P { R } = 1. The effects of interaction between S1 

and S2 can be ignored by making an assumption of conditional independence. This 

provides a simplification, because it permits the effects of each evidence map to be 

evaluated individually and then combined by multiplying (or adding in the log-linear 

case) the factors for several maps together. 

The conditional independence assumption can be stated as:  

                                                                                        , (5.15) 

 

which allows Equation (5.14) to be simplified in the following form: 

 

                                                                                              . (5.16) 

 

Using the odds formulation, the conditional or posterior odds can be expressed from: 

                                                                                  , (5.17) 

 

or with the log-linear weights of evidence from: 

 

P  {R/S 1 % S 2}  =   P  {S 1  % S 2 /R} .  P  {R} 

                               P  {S 1  % S 2} 

=                  P  {S 1  % S 2 /R} .  P  {R} 

   P  {S 1  % S 2 /R} .  P  {R} +  P  {S 1  % S 2 /R} .  P  {R}   

P  {S 1 % S 2/R}  =  P {S 1/R} .  P  {S 2 /R}

P  {R/S 1 % S 2 }  =   P  {R}  .  P  {S 1 /R} .  P  {S 2 /R}

                                     P  {S 1}     P  {S 2 }

O {R/S 1 % S 2}  =  O {R}  .  L S 1 .  L S 2
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                                n

log it  {R/S 1 % S 2  % S 3  % . . . .  S n}  =  logit  {R} .  ∑  W
+

i
 i = 1

                                                                                              . (5.18) 

 

Whichever formulation of the model is used, there are four different ways of combining 

two evidence maps, the first being when both evidences are present (Equation 5.18); the 

other three ways are S1 present and S2 absent; S1 absent and S2 present; and both S1 and 

S2 absent. In the log-linear form, they can be written as: 

                                                                                               , (5.19) 

 

                                                                                               , (5.20) 

                                                                                               . (5.21) 

 

With three evidences, there are 23 or 8 possible combinations and in general with n 

maps there are 2n possible different combinations. The general expression for 

combining i = 1, 2, …, n maps is either: 

 

 (5.22) 

for the likelihood ratios or  

 

 

                                                                                     +                 , (5.23) 

for the weights. In these general formulas, the LS becomes LN, and W+  becomes W- , if 

the i-th map pattern is absent instead of present. Where data is missing for a particular 

map layer in some locations, the likelihood ratio is set to 1, or the weight is set to 0. 

Equations (5.22) and (5.23) are the computing formulae for combining a set of binary 

maps with the Bayesian model. 

log it  {R/S 1 % S 2}  =  log it  {R}  +  W
+

1 +  W
+

2

lo g it  {R /S 1  % S 2 }  =   lo g it  {R}  +  W
+

1  +  W
-

2

log it  {R/S 1  % S 2 }  =   log it  {R}  +  W
-

1  +  W
+

2

log it  {R /S 1  % S 2 }  =   lo g it  {R}  +  W
-

1  +  W
-

2

O {R/S 1 % S 2  % S 3  % . . . .  S n}  =  O {R}  .       L S i∏
=

n

i 1
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According to Bonham-Carter (1994), the advantages of the Bayesian model are: 

 • the method is objective, and avoids the subjective choice of weighting factors; 

• multiple maps of evidence can be combined with a model that is  

straightforward to program with a modeling language; 

 • input maps with missing data can be accommodated into the model;  

• the possibility of incorporating multiclass input maps, where each map class is 

associated with a weight (or likelihood ratio); 

• the modeling of uncertainty due to variances of weights or missing data. 

And the disadvantages are: 

• the combination of inputs maps assumes that the maps are conditionally 

independent of one another with respect to the response variable. The testing for 

conditional independence is only possible where the method is applied in a data 

driven mode, since it requires overlay data between pairs of evidence maps. 

• weights of evidence, in common with other data-driven methods, is only 

applicable in regions where the response variable (event) is fairly well known. 

5.2.1.2 Exploratory Analysis and Selection of Variables 

Since the weights of evidence method is based on the Bayes´ theorem of conditional 

probability as previously mentioned, the selection of variables for the modeling analysis 

should take into account the checking of independence amongst pairs of explaining 

variables or evidences chosen to explain the same category of land use change. 

For this end, two methods were used: the Cramer´s Coefficient (V) and the Joint 

Information Uncertainty (U). In both cases, it is necessary to obtain values from an area 

cross-tabulation between pairs of maps of variables under analysis. Let the area table 

between map A and map B be called matrix T, with elements Tij, where there are i = 1, 
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2, ..., n classes of map B (rows of the table) and j = 1, 2, ..., m classes of map A 

(columns of the table). The marginal totals of T are defined as Ti. for the sum of the i-th 

row, T.j  for the sum of the j-th column, and T.. for the grand total summed over rows 

and columns. If the two maps are independent of one another, with no correlation 

between them, then the expected area in each overlap category is given by the product 

between the marginal totals, divided by grand total. Thus the expected area Tij* for the 

i-th row and j-th column is: 

                                                                     . (5.24) 

 

Then, the chi-square statistic is defined as: 

                                                                   ,                           (5.25) 

 

the familiar (observed – expected)2 / expected expression, which has a lower limit of 0 

when the observed areas exactly equal the expected areas, and the two maps are 

completely independent. As the observed areas become increasingly different from the 

expected areas, chi-square increases in magnitude and has a variable upper limits. The 

Cramer´s Coefficient (V) is then defined as (Bonham-Carter, 1994): 

 

                                                            ,                                               (5.26) 

 

where M is the minimum of (n-1, m-1).  

The Joint Information Uncertainty (U) belongs to the class of entropy measures, which 

are also based on the area cross-tabulation matrix T, and can be used for measuring 

associations as well. Suppose that the Tij values are transformed to area proportions, p, 

T i j  *   =   T i  .  T j

    T . .

           n m

X
2
  =   ∑   ∑     (T i j  -  T i j * )

2

         
 i = 1  

 
 j = 1  

        T i j  *       

V   =          X
2

         T . .  M
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by dividing each area element by the grand total T... Thus, pij = Tij /T.., and the marginal 

proportions are defined as pi. = Ti. /T.. and as p.j = T.j /T... Therefore entropy measures, 

also known as information statistics can be defined using the area proportions as 

estimates of probabilities. Proportions are dimensionless, so entropy measures have the 

advantage over chi-squared measures of being unaffected by measurement units 

(Bonham-Carter, 1994). 

Assuming that an area proportions matrix for map A and map B has been determined 

from T, then the entropy of A and B are defined as:  

 

                                                                                    and (5.27) 

 

                                                                           , (5.28) 

 

where ln is the natural logarithm. The joint entropy of the combination, H(A,B), is 

simply 

  

                                                                                  . (5.29) 
 

Then the “Joint Information Uncertainty” of A and B, U(A,B), can be used as a 

measure of association and is defined as 

 

                                                                                             , (5.30) 

 

 

which varies between 0 and 1. When the two maps are completely independent, then 

H(A,B) = H(A) + H(B) and U(A,B) is 0, and when the two maps are completely 

dependent, H(A) = H(B) = H(A,B) = 1, and U(A,B) is 1.  

              m

H (A )  =   -  ∑    p . j   ln  p . j
j = 1

              n

H (B)  =   -  ∑    p i.   ln  p i.
i = 1

               n m

H (A ,B)  =   -  ∑    ∑    p i j   ln  p i j
i = 1 j = 1

U  (A ,B)  =   2     H (A ) +  H(B) - H(A ,B)

                              H (A ) +  H(B)
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The criterion which is used to determine whether one factor is independent of another is 

to a large extent arbitrary as there is no large body of case results associated with the 

application of these methods (Almeida et al. 2003). Where this particular variant of logit 

modeling has been used in the geosciences, Bonham-Carter (1994) reports that values 

less than 0.5 for Cramer’s Coefficient and the Joint Information Uncertainty suggest 

less association rather than more. 

In practice, the variables selection routine also include empirical procedures in SPRING 

GIS, based on the visualization of distinct variables superimposed on the final land use 

map in vector format, so as to identify those more meaningful to explain the different 

types of land use change  (FIGURE 5.2). 

 

                          

 

 

 

 

 

 

 

 

FIGURE 5.2 – Illustrative image showing the visual analysis on the identification of  

                       relevant factors determining the transition from residential to mixed 

                            use in Bauru from 1979 to 1988. The buffer bands are distance to 

                            planned roads; the red polygons are areas of medium-high density of  

                            occupation (40%-70% of built area per block); and the pink polygons  

                            correspond to social housing. 
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In the cases where high positive or negative correlations are identified, two evidence 

maps can be combined into one, through a Boolean operation, or one of them should be 

discarded, preferably the one with the smaller association with the response variable or 

event (Bonham-Carter, 1994). 

A useful and commonly used measure of spatial association between an evidence (S) 

and a given event (R) is the contrast C, whose formula is given by: 

 .                                               (5.31) 

The question of determining whether the magnitude of the contrast is large enough to be 

statistically significant can be tested  by the variance of the contrast, S2 (C), estimated 

from the expression (Goodacre et al. 1993): 

 .     (5.32) 

 

5.2.1.3 Estimation of Global Transition Probabilities 

The global transition probabilities refer to the total amount of change per type of land 

use transition in a given simulation period. Throughout a sufficiently long time series, 

the Markov chain can be used to estimate the global amount of change when data on 

urban land use in a certain period bound is missing, provided data on land use are 

available at least in the two preceding bounds (initial and final time of the former 

simulation period). The Markov chain will be approached in detail in Section 5.3.1. 

Global transition rates, however, are estimated in the modeling experiments regarding 

past and present times by means of a cross-tabulation operation between the initial and 

final land use maps of each simulation period. 

 

C   = W
+

- W
-

S
2
 (C)  =           1         +          1         +          1         +          1

                P {S % R}         P {S % R}       P {S % R}        P {S % R}
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5.2.1.4 Calculation of Local Transition Probabilities 

As exposed in Section 5.2.1.2, the logit of the conditional (posterior) probability of 

occurring a certain event (R) in face of “n” evidences (S) is given by a formula relating 

the prior logit of the event and the sum of the positive weights for each evidence or 

each class of evidence (Equation 5.23). In the simulation experiments of the current 

research, the local transition probabilities are calculated for each cell, represented by its 

x,y coordinates, and the equation used for this end converts the logit formula into a 

conventional conditional probability (Equation 5.33). The odds of R is purposely set to 

1, so as to raise the final posterior probability value. In the denominator, values of e 

raised to the sum of positive weights of evidence related to other transitions (t) are 

included, in order to generate a more judicious value for the transition probabilities. 

 

 .          (5.33) 

 

 

5.2.1.5 Model Calibration 

Model calibration aims at the selection of the best set of input variables and internal 

software parameters, so as to produce the best fit between the empirical data and the 

observable reality. This is basically a twofold task. Firstly, a visual comparative analysis 

is carried out for each type of land use change, amongst the general trends of 

preliminary simulation results, the hints provided by maps showing transition 

probabilities and the exact area of land use transition, and the guideline information 

contained in the simultaneous overlay of different explaining variables maps upon the 

final land use map in vector format. This comparison envisages identifying those 

variables or evidences which are effectively concurring to explain the respective events 

from those which are just noise in the modeling. 
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An example of this visual comparative analysis is shown in FIGURE 5.3 for Bauru in 

relation to the “residential-services (res_serv)” land use change from 1979 to 1988. The 

transition probabilities map can be seen on the upper left corner; the land use transition 

map, on the upper right; a preliminary simulation result, on the lower left corner; the 

real final land use map, on the lower right corner; and a simultaneous overlay of the 

water supply map and the services axes distances map upon the borders of the final land 

use map, enabled by SPRING, is seen in the center. The elaboration of land use 

transition maps and transition probabilities maps will be further explained in Chapter 6. 

 

 

 

 

 

 

 

 

FIGURE 5.3 – Example of visual comparative analysis for the model empirical 

                                calibration in relation to the transition “residential-services 

                                (res_serv)” in Bauru, from 1979 to 1988. 

The model calibration, on the other hand, is as well accomplished by the analysis of 

scatter plots relating subcategories of evidences (distances ranges), whenever they are 

available, with their respective positive weights of evidence. In a general manner, when 

the plots present a good fit of trendlines (which can assume different orders and types), 

i.e. when the lines do not demand very complex models for adjustment, the evidences to 

which they are associated are highly prone to be included in the model (FIGURE 5.4).  
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FIGURE 5.4 – Examples of scatter plots and respective trendlines for the relations 

                         between subcategories of evidences (X axis) and their corresponding 

                         positive weights of evidence (Y axis), considering different types of land 

                         use change.  

 
The scatter plots above relate to the transitions “residential-services                             

(res_serv)” and “non-urban-services (nu_serv)” held in the city of Bauru during the 

simulation period 1979 – 1988. The plot to the left hand side show a case of complex 

fit, and hence, of probable evidence exclusion. On the contrary, the plot to the right 

present a good adjustment of trendline, what implies the high probability of inclusion of 

such evidence in the urban land use dynamics model. 

The scatter plots analysis is a mere ancillary tool in calibration and is thus not a decisive 

criterion in the variables selection. The final decision towards the inclusion or exclusion 

of a given variable or evidence will always rely upon a broad judgment, in which the 

environmental importance of the evidence and its coherence concerning the 

phenomenon (land use transition) being modeled are analyzed (Soares-Filho, 1998). 

The second stage of model calibration concerns the setting of the simulation software 

internal parameters: size and variance of patches, number of iterations, proportions of 

the transitions algorithms. As it will be further approached in Section 5.4, heuristic 

techniques are employed to define these simulation model parameters upon basis of a 

visual comparative analysis amongst preliminary simulation results, the final land use 

map, transition probabilities and land use transition maps as shown in FIGURE 5.3. 
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5.2.1.6 Statistical Validation Test 

Validation tests can be understood as procedures to verify whether or not the model 

results reflect reality to the desired degree (Batty, 1976). With the purpose of 

conducting statistical tests for the spatial validation of land use dynamics models, 

Constanza (1989) presents a procedure entitled “Multiple Resolution Method”, which 

can be applied to a wide variety of spatial resolutions through the change of size in a 

sampling window.  

This sampling window moves over the entire images (FIGURE 5.5), and the average fit 

between two given scenes (the real and the simulated one) for a particular window size 

is calculated by the following expression:  

     

 

                                                                                                      ,                            (5.34) 

                                                            

where Fw is the fit for the window of size w x w; ai1 is the number of cells belonging to 

class i in scene 1 (simulated image) and ai2 is the number of cells belonging to class i in 

scene 2 (real image) in the sampling window; p refers to the number of different classes 

found in the sampling window and tw, to the total number of windows sampled in a 

scene for a window size of w x w. 

For two identical scenes, a plot relating Fw and w will provide a straight line. But, if the 

scenes present the same proportion of land use classes with different spatial patterns, 

this line will gradually increase until Fw reaches value 1. When this happens, the 

sampling window will be identical to the scene under evaluation. However, if a 

reasonable patterns spatial fit exists, this curve will rapidly increase in an asymptotic 

way. 

The total goodness of fit is then given by the equation below:  

¹¹¹¹  tw            p     

                ∑     1 - ∑      ai1  -  ai2

  Fw  =     s= 1             i=1        2w2

                                tw  
s
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 ,                                 (5.35) 

 

where Ft is the average of all fit measures obtained by the different window sizes 

employed in the analysis, Fw is the fit for sampling windows of linear dimension w, and 

k, a constant. 

 

           SCENE 1              SCENE 2 
 

                                  1 x 1 WINDOW 
             F = 1 

1 1 1 1 2 2 2 3 3 3 1 1 2 2 2 2 2 2 3 3
1 1 1 2 2 2 3 3 3 3 1 1 1 1 2 3 3 3 3 3
1 1 2 2 2 3 3 3 3 3 1 1 1 2 3 3 3 3 3 3
3 3 2 2 3 3 3 3 3 3 3 1 2 2 3 3 3 4 4 4
1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
1 1 1 3 3 3 3 3 3 3 1 1 1 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 3 3 1 1 2 2 2 2 2 2 3 3
3 3 3 3 3 3 3 3 3 3 1 2 2 3 3 2 2 3 3 3
3 3 3 3 2 2 3 3 3 3 3 3 3 3 2 2 2 3 3 3
3 3 3 3 2 2 2 2 3 3 

 
            2 x 2 WINDOW 
 
             F = 1 – 4/8 = .50 
 
 
            3 x 3 WINDOW 
 
            F = 1 – 6/18 = .6667 

3 3 3 3 2 2 2 2 3 3
 
 

FIGURE 5.5 – Example of the multiple resolution method for a scene of size 10 x 10 

                    pixels and with four classes. In this example, k = 0.1 and Ft = 0.84. 

                   SOURCE: Constanza (1989). 

When k is zero, all the window sizes have the same weight, whereas when k=1, only the 

bigger windows are important. According to Constanza (1989), the values of k can be 

adjusted in function of the model objective and the data quality. 

This multiple resolution method was implemented in a UNIX environment program 

named FIT, developed by the Center for Remote Sensing of the Federal University of 

Minas Gerais, Brazil (CSR-UFMG).  

            n

               ∑    Fw  e - k  ( w -  1 )

 Ft =        w=1

n

                 ∑   e - k  ( w -  1 )

w=1
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Other spatial statistical validation models operating on multiple resolutions have been 

proposed by Pontius Jr. (2000, 2002), in which the error assessment is subdivided into 

quantification and location error. In his methods, the proportion of fit is separately 

calculated for areas that underwent change and for areas where no change took place in 

reality. Due to the fact that our simulation model contains an algorithmic routine that 

prevents areas of land use permanence to suffer change, Pontius´s statistical validation 

methods could not have been applied. 

5.2.2 The Logistic Regression Method 

5.2.2.1 Introduction to the Logistic Regression Method 

The logistic regression method is applicable to cases where the response or dependent 

variable is discrete, taking on two or more possible values, i.e. the variable owns a 

qualitative character. This method was originally conceived to respond to the needs of 

biomedical and public health sciences, in the sense that it aimed at modeling the drivers 

of pathologies in general.  

A good example that illustrates a possible application of the logistic regression method 

is the incidence of coronary heart disease (CHD), held by Hosmer and Lemeshow 

(1989) for a sample group of 100 subjects with different ages. In this example, the 

outcome or response variable is binary or dichotomous, i.e. it presents two levels only, 

which are coded with a value of zero to indicate the CHD absence, or 1 to indicate that 

the disease is present in the individual. The conversion of a simple plot of 

presence/absence of CHD into a plot of the proportion of individuals with CHD versus 

the midpoint of each age interval, shows that the resulting curve presents the shape of an 

“s” (FIGURE 5.6). This is the so-called “logistic distribution” or “logistic function” 

curve, which shows constant or stationary trends in its extremes and a markedly linear 

intermediate behavior. It is noticeable that the occurrence frequency of CHD increases 

with age. 
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When the logistic regression method embodies more than two levels for the outcome 

variable, it is termed `polytomous logistic regression model´. In this case, the outcome 

or response variable can assume n values (n ∈ N), i.e. Y = 0, 1, 2, ..., n. 

 

                                                                                                    Logistic Function 
CHD                                               CHD 

 

1.0           ♦    ♦ ♦     ♦  ♦♦♦♦♦♦♦   1.0                                                             ♦ 

0.8        0.8                                                    ♦ 

0.6                                                                                  0.6                                           ♦                             

0.4                                                                                  0.4                                   ♦ 

0.2                                                                                  0.2                   ♦    ♦  

0.0                ♦     ♦      ♦      ♦♦              ♦                 0.0 

                   10    20     30     40    50    60     70   Age                      10    20     30     40    50    60     70   Age 

 
 
FIGURE 5.6 – Schematic plots showing the presence/absence of coronary heart disease 

                     (CHD) in relation to the individuals age (to the left), and the incidence 

                   frequency of CHD versus the midpoint of age intervals of ten years . 

                 SOURCE: Adapted from Hosmer and Lemeshow (1989, p. 4, 5). 

The binary logistic regression model (Y=0 or Y=1) consists in the extraction of the 

natural logarithm of the chance or odds in relation to the two levels of the outcome 

variable. As already defined in Section 5.2.1.1, odds are the ratio of the probability that 

an event will occur to its complementary probability, i.e. the probability that it will not 

occur. In the case of the binary regression, the odds are the ratio P(1)/P(0). The odds 

logarithm or logit corresponds to a conventional linear uni or multivariate regression, 

which is then transposed to the logistic function. Equation (5.36) is an example of this 

log transformation for the case of a multivariate regression: 

 

 ,       (5.36)  L  =  log       P i ,j  (x,y)        = ß0 , i j  + ß1 , i j  . V1 , xy + . . . + ßk, i j  . Vk, xy

                 1 -  P i ,j  (x,y)
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 ,                                       (5.37) 

 

where i and j represent cell states or cell land use classes; x,y indicate a given cell in 

function of its location coordinates; and V accounts for the k independent variables 

selected to explain the transition from state i to state j. 

The polytomous logistic regression model, on its turn, aggregates partial binary logistic 

regressions, where the logit always adopts as denominator one of the levels of the 

outcome variable, which is called reference level. The reference level is determined by 

the modeler and is usually a level whose behavior distinguishes itself from the behavior 

of the other levels. The reference level can also be chosen in function of advantages it 

may offer to the regression analysis in being compared with the remaining levels of the 

dependent variable. 

Below are the formulas to calculate the probability in a polytomous logistic regression 

model, in which the dependent variable assumes three levels (0, 1 and 2), and where 0 is 

elected as the reference level. Equations (5.38) and (5.39) correspond to the logits, and 

Equations (5.40), (5.41) and (5.42) present the probability calculations properly 

speaking. 

 

 (5.38) 

 

 

 (5.39) 

 

 

P i ,j  (x,y)  =       e L     
                    1 + e L   

g1(x) = log    P (Y=1 / X1 -p)    ,  g1(x)  =  ß1 0 + ß1 1.X1+...+ ß1 p.Xp

                   P (Y= 0 / X1 -p)

g2(x) = log    P (Y= 2 / X1 -p)    ,  g2(x) =  ß2 0 + ß2 1.X1+...+ ß2 p.Xp

                   P (Y= 0 / X1 -p)
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 (5.40) 

 

 (5.41) 

 

 (5.42) 

 

The general method of estimation adopted for the logistic regression models is the 

maximum likelihood. In a very general sense, this method yields values for the 

unknown parameters (ßi) which maximize the probability of obtaining the observed set 

of data (Hosmer and Lemeshow, 1989). For a binary regression model, the likelihood 

function (l) is obtained from: 

 

 (5.43) 

 

where 

 .                                 (5.44) 

 

Since it is easier mathematically to work with the log of Equation (5.43), the log 

likelihood is defined as: 

 .             (5.45) 

P (Y=0/X1 -p)   =             1   
                        1 + e g 1 ( x) + e g 2 ( x) 

P (Y=1/X1 -p)   =             e g 1 ( x)   
                        1 + e g 1 ( x) + e g 2 ( x) 

P (Y=2/X1 -p)   =            e g 2 ( x)    
                        1 + e g 1 ( x) + e g 2 ( x) 

         nl

l (ß) =    {π (xi)
yi  [1 - π (xi)] 1 -y i} ,   

         i=1                                                           

 π  (xi)    =          eß0  +  ß1X 1  +  . . .  +  ßpX p

                           
1 + eß0  +  ß1X 1  +  . . .  +  ßpX p

                        nl

L(ß) = ln [ l(ß)]  =  ∑   {yi ln[π(xi)]  + (1 - yi ) ln [1 - π(xi)]}
i=1     
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To find the value of ß that maximizes L(ß) we differentiate L(ß) with respect to ß0 and ß1 

and set the resulting expressions equal to zero. These equations are as follows: 

 

 (5.46) 

 

and 

 .                                      (5.47) 

For a polytomous logistic regression model, where the response variable presents three 

levels (0, 1 and 2), the likelihood function (l) is obtained from: 

 

 .                       (5.48) 

 

Taking the log and using the fact that ∑ yji = 1 for each i, the log likelihood function is: 

 .          (5.49) 

 

The likelihood equations are found by taking the first partial derivative of L(ß) with 

respect to each of the 2 (p + 1) unknown parameters. In order to simplify the notation, 

let πji = πj (xi). The general form of these equations is as follows: 

 

                                                                      .    ,                    (5.50) 
                              
 

for j = 1, 2 and k = 0, 1, 2, ..., p; where x0i = 1 for each observation. The maximum 

likelihood estimator,      , is obtained by setting these equations equal to zero and 

   n

 ∑     y i  -   π (x i)    =   0
i = 1

   n

 ∑  x i   y i -   π (x i)   =   0
i = 1

                n

l (ß )  =             π 0  (x i)  
y 0 1π 1  (x i)  

y 1 1π 2  (x i) 
y 2 1

   
i = 1  

                n

L(ß)  =   ∑     y1ig1(x i) +  y2ig2(x i) - ln (1 + e 
g1( x i) + e 

g2( x i)
)

i=1 

 ßi

               

  L (ß )   =   ∑  x k i  (yj i  -  π j i)
  ß  j k       

i = 1
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∂
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solving for ß.  In both cases of binary and polytomous logistic regression models, the 

solution of likelihood equations requires iterative methods, usually available in 

statistical packages. 

The goal of any statistical regression model is to select the minimum and at the same 

time the best set of input variables to explain a given phenomena (Neter and 

Wasserman, 1974). In other words, the aim is to extract the most parsimonious set of 

independent variables to integrate the final regression model. To meet this end, the 

method “backward stepwise” has been adopted for selecting the final set of independent 

variables. The initial model included all variables and excluded the least significant 

variable at each step. Significance was based on the Wald chi-square test and the G 

statistics. The Wald test is obtained by comparing the maximum likelihood estimate of 

the slope parameter,      , to an estimate of its standard error. The G statistics, on its turn, 

evaluates the model by comparing it with and without a given independent variable 

(Hosmer and Lemeshow, 1989). The formulas for these significance tests are given 

below: 

 

 (5.51) 

and 

 ,                 (5.52) 

where                

                     ,                          and                            . 

The model is accepted when all independent variables are significant at the 0.05 level 

and the loss of the G statistics remains lower than 5% (Soares-Filho et al. 2001).  

n1 = ∑  yi n0  = ∑  1 - yi n = n1 +  n0  

W =      ßi

        (SE) ßi

 ßi

G = - 2 {L ( ßi) - [n1 ln (n1) + n0 ln (n0) - n ln (n)]}
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One of the first issues raised in conducting modeling experiments based on logistic 

regression concerns the way the outcome or response variable should be modeled. In the 

case of selecting a polytomous regression model, the land use permanences would be 

regarded as the reference level (and could be assigned value 0), and the different land 

use changes would assume natural values, ranging from 1 to n, given the n existent 

types of land use transitions observed in the simulation period under study. 

A second alternative could be the adoption of partial polytomous models, where 

transitions owning identical origin states would be handled in the same model. In this 

way, a certain simulation period would present different polytomous models. For 

instance, land use transitions like `non-urban to residential´ and `non-urban to industrial 

use´ would account for different levels of the outcome variable in one of the models, 

whereas the permanence of non-urban areas as such would correspond to the reference 

level of this outcome variable. In another model relating to the same simulation period, 

transitions like `residential to services´ and `residential to mixed use´ would represent 

levels 1 and 2 of the response variable, while the permanence in the residential use 

would be regarded as the reference level, and so forth. 

A third and last solution concerns the usage of binary models for each type of land use 

transition observed in a simulation period. According to this procedure, value 1 is 

assigned to the considered transition, and value 0, to the respective land use 

permanence. 

In the current research, the logistic regression model has been experimentally employed 

for the city of Bauru only in the simulation period 1979 to 1988. Applying this model to 

all simulation periods would be time-consuming and unnecessary for purposes of 

comparative analysis with the weights of evidence method. The binary modeling has 

been adopted due to the fact that, in each case, only the independent variables selected 

to explain the respective transition are considered. As a consequence, the insertion of 

noise is avoided by the fact that variables designed to explain other transitions are 

excluded from the model. Furthermore, the binary modeling complies with the 
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algorithmic logic of the simulation model, in which each land use transition has its 

calibration parameters individually adjusted.  

In conclusion, it is worth remarking that logistic regression is integrated into the class of 

generalized linear models – GLM (McCullagh and Nelder, 1989). In these models, there 

is a natural parameter to be estimated, for which the asymptotic convergence of 

estimators is very fast. This natural parameter [g(x)] is expressed as a linear function of 

covariates (independent variables). Thus, the logistic regression is regarded as a robust 

method, since it operates upon linear regressions. 

5.2.2.2 Exploratory Analysis and Selection of Variables 

In the logistic regression model as in linear regression methods in a general way, the 

selection of independent variables is based on an analysis of their pair-wise correlation 

indices with the outcome variable as well as on the correlation between pairs of 

independent variables themselves. 

A useful measure to evaluate colinearity is the correlation matrix, which provides basic 

information on the model input data, indicating the degree of association between two 

independent variables and between an independent variable and the outcome variable. 

The correlation index is obtained from the concept of covariance (ΛA,B), which measures 

the total mean of the sum of the products between deviations of variables belonging to 

two numerical data sets (A,B) in relation to their respective means: 

.               (5.53) 

The correlation index (αA,B), on its turn, indicates association between two numerical 

data sets upon an absolute scale. In brief, it normalizes the covariance within the range 

[-1, +1], where values close or equal to –1 indicate negative correlation, and values 

approaching or equal to +1, denote positive correlation. This index is calculated 

dividing the covariance by the square root of the product between the variances of the 

two data sets: 

                   N

™ A ,B  = 1/N ∑ (x A(i) - x A(i)) (x B(i) - x B(i))
i=1
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 .                                       (5.54) 

    

Another important aspect in the exploratory analysis regards the existence of interaction 

and confounding. Interaction is present when two independent variables, which present 

no correlation between each other, can together enhance the outcome variable. 

Graphically, the absence of interaction yields a model with two parallel lines, one for 

each independent variable. Similarly, the presence of interaction between two 

independent variables is identified by two non-parallel lines. FIGURE 5.7 is an 

illustrative plot of an independent variable relating to distance in the X axis, versus the 

logits of other independent variables (l1, l2 and l3). 

 

 

 

 

 

 

                                       1      2      3     4     5       6       7       8   km 

 

FIGURE 5.7 – Illustrative plot of the logits under three different models showing the 

                            presence (l1–l3) and absence (l1-l2) of interaction. 

                          SOURCE: Adapted From Hosmer and Lemeshow (1989, p. 65). 

The term confounder is used to describe a covariate that is associated with both the 

outcome variable of interest and an independent variable. Except in the cases where the 
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confounder and the independent variable associated with it are both decisive for 

explaining the response variable, one of them should be discarded from the model. 

The right way of dealing with an interaction term is to include the two independent 

variables, provided at least one of them is significant to integrate the model, and also the 

product between these variables. And for the cases when the confounder and the 

independent variable associated with cannot be excluded from the model, a product 

between these two terms should be included as well. 

5.2.2.3 Estimation of Global Transition Probabilities 

Likewise the weights of evidence method, the Markov chain can be employed to 

estimate the global amount of change when data on urban land use in a certain period 

bound is missing, provided data on land use are available at least in the two preceding 

bounds (initial and final time of the former simulation period). 

Global transition rates are estimated in the modeling experiments regarding past and 

present times by means of a cross-tabulation operation between the initial and final land 

use maps of each simulation period. 

5.2.2.4 Calculation of Local Transition Probabilities 

According to Equations (5.36) and (5.37) exposed in Section 5.2.2.1, the formula for 

estimating the land use transition probability of a given cell takes into account the 

logistic function and presents the linear regression model as the exponent of the term 

“e”. 

Although the binary modeling has been adopted for the estimation of the regression 

parameters in the simulations of the present work, the formula employed for the 

calculation of cells transition probabilities (Equation 5.55) is very similar to the formula 

of the polytomous regression model, for it inserts in the denominator values of e raised 

to linear regression models referring to other land use transitions (t). This mathematical 

artifact helps in preventing probability values from ending in a tie and produces more 

sensible values for the transition probabilities. 
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 ,                         (5.55) 

 

 

where t refers to transitions other than i,j, like i,k; i,l; k,l; etc.; γi,j is a vector of 

parameters:  γi,j = [ ß1, ß2,…,ßn ]  ; and V(x,y) a vector of independent variables: 
 
 

                        V1 
                        V2 
V(x,y)   =            .          . 
                         . 
                        Vn 
 

5.2.2.5 Model Calibration 

According to what was stated in Section 5.2.2.1, the Wald chi-square and the G 

statistics significance tests correspond to a sort of model calibration, for they contribute 

to define whether an independent variable remains in or is excluded from the final 

logistic regression model. 

Other resources for defining as to maintaining or changing the set of selected variables 

are goodness-of-fit measures used in logistic models and usually available in statistical 

packages, such as the Pearson chi-square, the deviance and the Hosmer-Lemeshow 

tests. 

Goodness-of-fit is assessed over the constellation of fitted values determined by the 

covariates (independent variables) in the model, not the total collection of covariates. 

For instance, supposing that a given fitted model contains p independent variables, x´= 

(x1, x2, x3, …, xp), and let J denote the number of distinct values of x observed. If some 
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observations have the same value of x then J < n. The number of observations with x = 

xj will be denoted by mj, j = 1, 2, 3, …, J. It follows that ∑ mj = n. Let yi denote the 

number of positive responses, y = 1, among the mj observations with x = xj. It follows 

that ∑ yj = n1, the total number of observations with y = 1. The distribution of the 

goodness-of-fit statistics is obtained by letting n become large. If the number of 

covariate patterns also increases with n then each value of mj will tend to be small. 

Distributional results obtained under the condition that only n becomes large are said to 

be based on n-asymptotics. If J < n is fixed and let n become large then each value of mj 

will tend to become large. Distributional results based on each mj  becoming large are 

said to be based on m-asymptotics (Hosmer and Lemeshow, 1989). 

The fitted values in logistic regression are calculated for each covariate pattern and 

depend on the estimated probability for that covariate pattern. Let yj be denoted as the 

fitted value. This fitted value equals: 

 

 ,                             (5.56) 

 

where g(xj) is the estimated logit. Two measures of the difference between the observed 

and the fitted values, the Pearson residual and deviance residual, will be considered.  

The Pearson residual is defined as follows: 

 

 .                                          (5.57) 

 

The summary statistic based on these residuals is the Pearson chi-square statistic: 

 

 

 .                                                (5.58) 

m jπ j  = m j (e x p   g (x j)  / {1  -  e x p    g (x j)  } )^ ^ ^

r  (y j ,  π j)   =     (y j -  m jπ j)

                       m jπ j  (1 -π j) 

^^

^ ^

^          J

X
2
 = ∑  r (yj, π j)

2

j=1
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The deviance residual is defined as follows: 

 

 ,           (5.59) 

 

 

where the sign is the same as the sign of  (yj - mjπj). For covariate patterns with yj = 0 

the deviance residual is: 

 

 .                                     (5.60) 

 

and the deviance residual when yj - mj , is: 

 

 .                                      (5.61) 

 

The summary statistic based on the deviance residuals is the deviance: 

 

 .                                                    (5.62) 

The Hosmer-Lemeshow goodness-of-fit statistic, C, is obtained by calculating the 

Pearson chi-square statistic from the 2 x g table of observed and estimated expected 

frequencies. A formula defining the calculation of C is as follows: 

 

 ,                                   (5.63) 

 

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹  
1 / 2

¹

d  (y j,  π j) =  + 2 y j ln     y j    + (m j -  y j)ln (m j -  y j) 
                                      m jπ j                        m j(1 -π j)

1 / 2 / 2 

  d   ( y j,   π j )   =              2m j ln (1 - π j)  

1/2/2

 d  (y j,  π j) =         2m j   ln  (π j) 

        J

 D = ∑  d  (y j, π j)
2  

j = 1

        g      (o k  -  n k ´ π k )
2

 C  =  ∑   
       

k = 1
    n k ´ π k  (1 -π k )
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where nk´ is the total number of observations in the kth group, 

 

 ,                                             (5.64) 

is the number of responses among the ck covariate patterns, and 

 

 ,                                       (5.65) 

 

is the average estimated probability and ck denotes the number of covariate patterns in 

the kth decile. 

The results provided from the above-mentioned statistics tests should be used in a 

critical and wise way. The heuristic procedures presented in Section 5.2.1.5 should be 

also used in the case of logistic regression modeling, given that visual analysis is 

decisive for identifying success and errors in model calibration. 

Not only goodness-of-fit tests but also tests of statistical significance (W and G) should 

be regarded as non-exclusive criteria for the insertion or removal of independent 

variables in a logistic regression method. According to Hosmer and Lemeshow (1989, 

p.32), “…we must not base our models entirely on tests of statistical significance…there 

are numerous other considerations that will influence our decision to include or exclude 

variables from a model.” 

5.2.2.6 Statistical Validation Test 

In some situations it may be possible to exclude a subsample of observations, develop a 

model based on the remaining data, and then test the model in the originally excluded 

observations. In other situations, it may be possible to obtain a new sample of data to 

assess the goodness-of-fit of a previously developed model.  

   c k

 o k  =  ∑   y j
j = 1

         c k      m j π j
 π k  =  ∑   
        

j = 1
      n ´ k
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Fitted models always perform in an optimistic manner on the developmental data set. 

This is the cause why it is preferable to apply tests where the fitted model is considered 

to be theoretically known, but no estimation has been performed yet (Hosmer and 

Lemeshow, 1989). 

In the particular case of the experiments carried out in this research, this type of 

validation tests is not effective. The reason for this can be ascribed to the fact that this is 

a spatial simulation experiment, and validation tests must necessarily take into account 

the spatial dimension of the modeling outputs. In this way, only the multiple resolution 

approach proposed by Constanza (1989), introduced in Section 5.2.1.6, has been applied 

to the logistic regression model outputs for validation purposes. 

5.3 Forecast Methods 

5.3.1 The Markov Chain and the Future Transition Probabilities Matrix 

A Markov chain is a mathematical model for describing a certain type of process that 

moves in a sequence of steps throughout a set of states (JRC and ESA, 1994). The 

Markov model can be expressed in matrix notation as (Baker, 1989): 

 ,                                             (5.66) 

where ∏ (t) is a column vector, with k elements, representing the fraction of land area in 

each of the s states at time t, n is the number of time steps between (t) and (t+1). If n 

corresponds to six months, then n would be 2 in the above formula, considering that the 

addition in time corresponds to 1 year. ∏ (t+1) is a column vector showing the fraction 

of occupation of s states at time t+1, and Pn is a matrix whose elements are transition 

probabilities Pij, accounting for the probability of a certain cell to change from state i to 

state j during the time interval  t            t+1. 

   (t  +  1 ) =  P
n
 .       (t )
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The attractiveness of Markov chain analysis is that the model´s parameters are easily 

estimated. The transition probabilities can be statistically estimated from a sample of 

transitions occurring during some time interval. Given data aij indicating transitions 

between pairs of states over some time interval, the transition probabilities Pij are 

readily estimated as (JRC and ESA, 1994): 

 .                                              (5.67) 

In this way, a Markov chain only requires the determination of a finite number of states 

and that the transition probabilities be known. Although its relative simplicity, several 

constraints and assumptions are associated with the employment of Markov models to 

simulate land use change. 

An important limitation of Markov chain models lies in the assumption that the 

probability of a particular set of outcomes depends only on the current distribution 

among states and on the transition probabilities – i.e. that Markov chain is a first-order 

process. However, according to JRC and ESA (1994), it is also possible to define chains 

whose dependency relationship involve more than one preceding state. A double 

dependence chain for example is dependent on two preceding states. If these two states 

are the two immediately preceding ones, the chain is a second-order chain. However, in 

that case, projecting future behavior would be much more difficult (Bell and Hinojosa, 

1977). 

Another assumption, which is not always suitable in the light of empirical knowledge of 

land use change phenomenon, is the stationarity of the transition matrix – i.e. temporal 

homogeneity (JRC and ESA, 1994). If this assumption holds, then consecutive 

iterations between the states column vector and the transition matrix n times would 

result in a vector representing the system states at time (t+n). If this vector converges 

towards a limit probability distribution among the possible states of the system 

regardless of its initial condition, then the Markov chain is said to be stationary or 

ergodic (Facelli and Steward, 1990).  

P i j  =  a i j  /  ∑  a i j
j
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A Markov chain is thus ergodic if it presents a finite number of states, its dynamics is 

non-periodic and it has no absorbing states (when Pij = 1). In this case, it is possible to 

calculate the system state in a hypothetical future equilibrium. According to Bell and 

Hinojosa (1977), this can be obtained by the principal components method: 

 ,                                                   (5.68) 

where H is the eigenvector matrix, H-1 is the transposed eigenvector matrix, and V is the 

eigenvalue matrix. 

In this way, P can be decomposed in: 

 ,                                                 (5.69) 

where n is the number of time steps. When the first eigenvalue is equal to 1 and the 

others smaller than 1, for n          ∞ , it is obtained: 

 

 ,                                          (5.70) 

 

whose result corresponds to the proportion of equilibrium among the system states. As 

stated by Facelli and Steward (1990), the ratio of the first eigenvector to the second 

eigenvalue could still be used to foresee the time in which the system will reach 

equilibrium. 

According to Baker (1989), the non stationarity alone does not preclude the use of a 

Markov chain approach, since “even if transitions are in reality non-stationary, 

stationarity can be assumed as a heuristic device.” 

Markov chains can be adjusted to incorporate higher order effects, like the influence of 

endogenous and exogenous variables, spatial effects and heterogeneity. The 

P = H V H
- 1

P
n
 = H V

n
H

- 1

              1   0
P

∞

 = H              H
- 1

              0   0  
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contribution of both endogenous and exogenous variables for the land use transitions, 

stationary or non-stationary, can be modeled using the following approach, in which 

Equation (5.66) is modified to (Baker, 1989): 

 ,                                  (5.71) 

where P is a matrix with elements Pij, with Pij = b1X1 + b2X2 + …+ bnXn and b1…bn are 

the parameters that relate Pij to the variables X1, X2, …, Xn. Following this line of 

thought, X1,…,Xn can represent endogenous and exogenous variables. In the case of 

urban land use change modeling, endogenous variables correspond to the availability of 

technical and social infrastructure, types of urban occupation density, relief, urban 

zoning, etc., while exogenous variables refer to breakages in the general economic 

trends (economic or financial crises, energetic shortages, etc.); climatic disturbances 

which affect agricultural or tourism activities; local or regional policies that may impact 

the expected performance of the different economic sectors, etc. 

In conclusion, it is important to restate here that the Markov chain is suitable for 

generating forecasts of urban land use change. It can also be used to estimate the global 

amount of change when data on urban land use in a certain period bound is missing, 

provided data on land use are available at least in the two preceding bounds (initial and 

final time of the former simulation period).  

The principal components method applied to the Markov model is helpful in enabling a 

decomposition of the transition matrix probabilities, which are then estimated for 

narrower time lags, e.g. steps of one year or less. This has been used in the simulations 

in order to generate yearly land use maps for the whole time series of the two cities 

under study.  

And finally, possible ways to overcome the Markov chain stationarity, as proposed by 

Baker (1989), will be approached in the next section. 

   (t  +  1 ) =  P  [  f (t )]  .       (t )
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5.3.2 Linear Regression Models for the Parameterization of Future Land Use 

Transition Probabilities 

5.3.2.1 Introduction to Linear Regression Models 

Regression analysis is a statistical tool which utilizes the relation between two or more 

quantitative variables so that one variable can be predicted from the other, in the case of 

univariate models, or from others, in the case of multivariate models (Neter and 

Wasserman, 1974). 

A statistical relation, unlike a functional relation, is not a perfect one. In general, the 

observations for a statistical relation do not fall directly on the curve of relationship 

(FIGURE 5.8). 

 

 

                                                 ♦                                                                                 ♦ 
                                                  ♦                                                                                 ♦ 
                                         ♦♦                                                                             ♦♦ 
                                 ♦                                                                                 ♦ 
                                  ♦                                                                                  ♦ 
                         ♦                                                                                ♦ 
                ♦   ♦                                                                           ♦   ♦ 
             ♦                                                                                 ♦ 
 
 
 
 
 
 

FIGURE 5.8 – Illustrative plots of statistical relations without and with a fitted linear 

                         regression model. 

                         SOURCE: Adapted from Neter and Wasserman (1974, p. 24). 

In multivariate models, it may be possible that the relationship between one or more 

independent variables (Xi) and the response variable (Y) are not linear. When this 

0 X 0 X

    Y                                                                  Y 



 169

happens, these relationships are linearized through mathematical transforms in order to 

fit them in the regression model. 

The linear regression model in the multivariate case is obtained from the following 

general equation: 

 ,                                (5.72) 

where Yi is the response obtained in the i-th observation; ß0, ß1,…,ßp-1  are parameters to 

be estimated; Xi1,…,Xi,p-1 are known variables; εi are the independent errors with normal 

distribution, with mean equals to zero and constant variance – N (0,σ2); i are the 

observations, i = 1, 2, …, n. 

The response function of the model, which is the average of several observations, is 

given by:  

 .                      (5.73) 

The parameter ß0 refers to the intercept of the regression plane. If none of the 

independent variables can assume value zero, ß0 loses its meaning. Yet, many 

statisticians prefer to include it in the final model for reasons of mathematical fit. 

The parameter ß1 corresponds to the average change in the outcome variable E (Y) for 

each increment unit in the value of X1, holding all other independent variables constant, 

and so on for the remaining parameters associated with explicative variables. 

5.3.2.2 Exploratory Analysis 

One of the first steps in conducting a linear regression analysis is the verification of 

independence among observations obtained for the outcome or response variable (Yi). 

This is achieved by means of a test entitled autocorrelation function (ACF), which 

checks correlations of a series with lagged values of itself. Autocorrelations are 

calculated for lags of 1, 2, …, up to a specified number. The ACF can be carried out in a 

  XXXY ipipiii εββββ +++++= −− 1,122110 ...

E  (Y)  =  ß 0  +  ß 1 X 1  +  ß 2 X 2  +  . . .  +  ß p - 1 X p - 1
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partial way, when it correlates the values of a series with the values lagged by 1 or more 

cases, after the effects of correlations at the intervening lags have been removed. 

According to Wei (1990), for a stationary process {Zt}, the mean is E (Zt) = µ and 

variance Var (Zt) = E (Zt - µ)2 = σ2, which are constant, and the covariances Cov (Zt, 

Zs), which are functions only of the time difference t - s. Hence, in this case, the 

covariance between Zt and Zt+k is written as: 

 ,                                (5.74) 

and the correlation between Zt and Zt+k as: 

 

 ,                         (5.75) 

 

where it is noticeable that Var (Zt) = Var (Zt+k). As functions of k, γk is called the 

autocovariance function and ρk is called the autocorrelation function (ACF) in time 

series analysis since they represent the covariance and correlation between Zt and Zt+k 

from the same process, separated only by k time lags. 

It is recognizable that for a stationary process the autocovariance function γk and the 

autocorrelation function ρk have the following properties:  

a. γ0 = Var (Zt); ρ0 = 1; 

b.  γk   <  γ0;   ρk   <  1;   

c. γk = γ -k  and ρk = ρ -k , for all k, i.e., γk  and ρk  are even functions, and 

hence symmetric about the time origin, k = 0. This follows from the 

fact that the time difference between Zt and Zt+k and Zt and Zt-k are the 

same. 

γ k  =  C ov  (Z t,  Z t + k ) =  E  (Z t  -  µ )(Z t + k  -  µ )

ρ k  =           C ov  (Z t,  Z t + k )         =     γ k

           V ar (Z t,)     V ar (Z t + k )         γ 0     
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The correlation function, therefore, is often plotted only for the nonnegative lags 

(FIGURE 5.9). This plot is sometimes called a correlogram. 

 

 

 

 

 

 

FIGURE 5.9 – Illustrative plot of the autocorrelation function for the response 

                                variable: destination area – industrial use (destarea) in Bauru for the 

                                years 1970, 1975, 1980, 1985, 1990, 1995 and 2000. 

Other important steps in the exploratory analysis are boxplot analyses, correlation 

matrix analyses and the verification of interaction and confounding. Correlation, 

interaction and confounding as well as approaches to deal with these aspects have been 

already explained in Section 5.2.2.2. 

5.3.2.3 Least Squares Estimators 

In matrix terms, the general linear regression model (Equation 5.72) is: 

 ,                                       (5.76) 

where Y is a vector of observations, ß is a vector of parameters, X is a matrix of 

constants, ε is a vector of independent normal random variables with expectation E (ε) 

= 0 and variance-covariance matrix σ2 (ε) = σ2 I. 

Consequently, the random vector Y has expectation: 

  Y   =    X     β    +    ε
n x 1    n x p   p x 1      n x 1
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 (5.77) 

and the variance-covariance matrix of Y is: 

 

 .                                                   (5.78) 

Let us denote the vector of estimated regression coefficients b0, b1, ..., bp-1 as b: 

 

 .                                                     (5.79) 

 

 

The least squares normal equations for the general linear regression model are: 

 (5.80) 

and the least estimators are:  

 .                                              (5.81) 

These least squares estimators are also maximum likelihood estimators and have the 

properties of being minimum variance unbiased estimators, consistent and sufficient 

(Neter and Wasserman, 1974). 

5.3.2.4 Analysis of Variance 

Let the vector of the fitted values  Yi  be denoted Y and the vector of the residual terms 

be denoted ei = Yi   -  Yi be denoted e: 

 

E  (Y)    =    X  β  

(Y)    =       I2σ 2σ

¹¹  b0  b0
            b 0

            b 1

 b   =      b 2
p x 1

         .
            .
            b p - 1

 (X ´ X )  b   =   X ´Y
p x p    p x 1  p x n  n x 1

 b   =  (X ´ X )
- 1

 X ´Y
p x 1  p x p p x 1

^ ^
^



 173

 

 ,                                            (5.82) 

 

 

 

 .                                           (5.83) 

 

The fitted values are represented by: 

 (5.84) 

and the residual terms by: 

 .                                             (5.85) 

The sum of squares for the analysis of variance is the following: 

 ,                                            (5.86) 

 ,                                            (5.87) 

 .                                            (5.88) 

SSTO stands for total sum of squares and has n - 1 degrees of freedom associated with 

it. SSE denotes error sum of squares and has n – p degrees of freedom associated with it 

since p parameters need to be estimated in the regression model (Equation 5.76). 

Finally, SSR, the regression sum of squares, has p – 1 degrees of freedom associated 

with it, representing the number of X variables X1, ..., Xp-1. 

            Y 1

 Y   =      Y 2
n x 1

          .
            Y n

^

^

^
^

            e 1

 e   =      e 2
n x 1

          .
            e n

Y  =  X b ¹
^

e  =  Y  -  Y  
^

 S S T O =  Y´ Y - n Y 
2

 SSR = b´ X ´ Y - nY
2

S S E  =   e ´ e   =   Y´ Y  -  b ´ X ´ Y 
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The means squares MSR (regression mean square) and MSE (error mean square) are 

given by: 

,                                         (5.89) 

 

 .                                         (5.90) 

 

The expectation of MSE is σ2, as for simple regression. The expectation of MSR is σ2 

plus a quantity which is positive if any of the ßk (k = 1, ..., p - 1) coefficients is not zero. 

To test whether there is a relation between the dependent variable Y and the set of 

variables X1, ..., Xp-1, that is, to choose between the alternatives: 

  H0: ß1 = ß2 ... = ß p-1 = 0 

  H1: not all ßk (k = 1, ..., p – 1)  equal 0, 

the following statistics is used: 

 .                                                    (5.91) 

 

  If F*  <  F  (1 - α; p – 1; n – p), accept H0; 

  If F*  >  F  (1 - α; p – 1; n – p), accept H1. 

An important measure used to assess the fit of a linear regression model is the 

coefficient of multiple determination, denoted by R2, which is defined as follows: 

 

 .                                    (5.92) 

 

M SR =   SSR
            p  - 1

MSE  =   SSE
n - p

F *  =    M SR
          M SE  

R
2
 =      SSR    =  1  -  SSE

          SST O           SST O 
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R2 lies within the interval [0,1] and assumes the value 0 when all bk = 0 (k = 1, ..., p – 

1). R2 takes on the value 1 when all observations fall directly on the fitted response 

surface, that is, when Yi = Yi for all i. 

The existence of a regression relation, by itself, does not obviously assure that useful 

predictions can be made by using it. A prediction interval with 1 - α confidence 

coefficient for a new observation Yh(new) corresponding to Xh (the specified values of the 

X variables) is: 

 .                         (5.93) 

The prediction error variance (difference between the new observation and the 

estimated value) is: 

 .                        (5.94) 

5.3.2.5 Analysis of Residuals 

The aptness of a linear regression model can be also tested by an analysis of residuals 

(Neter and Wasserman, 1974). For analytical convenience, residuals are also used in a 

standardized form (zrei) according to the following formula:  

 

 .                                          (5.95) 

 

A plot of the residuals ei versus the fitted values Yi should provide scattered points 

presenting no correlation pattern at all. When an absence of correlation is identified in 

the plot, this indicates that (a) the linear regression model is well fit, (b) the assumption 

of variance homogeneity is met; (c) and the model contains no outliers. Instead of using 

ei, the standardized residuals (zrei) can also be used. 

^

^

Yh +  t  (1  - a /2 ; n  - p ) S  (Yh ( n e w ) )
^

S
2
(Yh ( n e w ) )  =  M S E  (1  +  X ´ h  (X ´ X )

- 1
X h )

 zre i  =        e i

        
             M SE
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A plot of a standard normal distribution against the residuals ei is appropriate for 

checking the assumption of errors normality. When this assumption holds, this plot 

should present a linear correlation pattern. 

A plot of the residuals ei against an independent variable is useful to determine both 

whether a linear regression function is appropriate and problems of order exist, and also 

to examine whether the variance of the error terms is constant. An independent variable 

can also be plotted against the standardized residuals (zrei). In both cases, the plots 

should present no correlation pattern (FIGURE 5.10). 

 

 

 

 

 

 

 

 

FIGURE 5.10 – Illustrative plot of standardized residuals versus an independent 

                            variable (industrial added value - `indadv´) of a linear regression 

                                 model for the industrial area in the city of Piracicaba (1970–2000). 

5.3.2.6 Conversion of Predicted Destination Areas into Transition Probabilities 

Linear regression models relating the area of certain land uses with demographic data 

and economic indicators were built in order to allow predictions for future scenarios of 

land use. As population data and economic performance proved to be highly correlated, 

all the linear regression models designed to parameterize forecasts of land use change 
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ended up as univariate models, i.e. either population or an economic indicator (total or 

sectorial GDP) was elected as the independent variable in each one of these models. 

In all regression models where the correlation of economic data surpassed the 

correlation of demographic data in relation to the response variable, the “total GDP” 

presented the highest correlation with this variable. Nevertheless, not in all of the cases 

the total GDP was chosen as the independent variable. When the response variable was 

the industrial use, the industrial GDP was elected as the explicative or independent 

variable, since this sectorial GDP presented a high correlation with such response 

variable. 

In order to convert the land use area (outcome variable of linear regression models) into 

land use transition probabilities meant to feed up the simulation model, a set of formulas 

was used according to the respective case.  

There are basically three main cases relating origin and destination uses in land use 

transitions. The first of them is when the origin use of a certain transition is also the 

origin use of other transitions. For instance, the transitions “non-urban to industrial use” 

(nu_ind) and “non-urban to residential use” (nu_res) have the non-urban use as their 

origin use. In this case, the following formulas are employed for the calculation of 

transition probabilities: 

(5.96) 

 

and 

,                                             (5.97) 

 

where Pnu_ind is the probability for the transition “non-urban to industrial use”; indi and 

indf are respectively the industrial use areas in the initial and final time of simulation; 

non urbi is the non-urban use area in the initial time of simulation; Pnu_res is the 

P n u _ in d  =   ind f - ind i

             non urb i

P n u _ r e s  =  res f - res i

            non  urb i
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probability for the transition “non-urban to residential use”, and resi and resf are 

respectively the residential use areas in the initial and final time of simulation. 

The second case regards the situations where the destination use in a certain transition is 

also the destination use in other transitions. For example, the transitions “non-urban to 

services use” (nu_serv) and “residential to services use” (res_serv) have the services use 

as their common destination use. In this case, the formulas below are used for the 

calculation of transition probabilities: 

                           (5.98) 

 

,                                (5.99) 

 

where Pnu_serv is the probability for the transition “non-urban to services use”; servi and 

servf are respectively the services use areas in the initial and final time of simulation; 

non urbi is the non-urban use area in the initial time of simulation; res_serv is the 

residential use area converted into services use, and nu_serv is the non-urban use area 

converted into services use. Res_serv and nu_serv are both obtained through a simple 

system of equations built upon basis of sets theory. 

Finally, the third case concerns the situations in which the destination use in a certain 

transition is the origin use in other transitions, and eventually the origin use of the 

considered transition is also the origin use of the remaining transitions existent in the 

simulation period. For instance, the set of transitions “non-urban to residential use” 

(nu_res), “residential to services use” (res_serv), “residential to mixed use” (res_mix) 

and “non-urban to services use” (nu_serv) exemplify this third case. The following 

formula should be employed in this situation for the probability estimation of the 

transition “non-urban to residential use” (nu_res): 

 

 P n u _ s e r v   =  (serv f -  serv i)  - res_serv

                          non  urb i

P r e s _ s e r v  =  (serv f - serv i) - nu _ serv

                        n o n  u rb i
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,            (5.100) 

 

where Pnu_res is the probability for the transition “non-urban to residential use”; servi and 

servf are respectively the services use areas in the initial and final time of simulation; 

mixi and mixf are respectively the mixed use areas in the initial and final time of 

simulation; non urbi is the non-urban use area in the initial time of simulation, and 

nu_serv corresponds to the non-urban use area converted into services use, obtained by 

means of a triple system of equations built upon basis of sets theory. This system of 

equations besides nu_serv involves the unknown variables nu_res (non-urban use area 

converted into residential use) and res_serv (residential use area converted into services 

use). The remaining transition probabilities in this third case (Pnu_serv, Pres_serv, Pres_mix) 

are then calculated upon basis of the estimated values of nu_serv, nu_res and res_serv. 

5.3.3 Conceived Scenarios and Time Horizons for Land Use Change Forecasts 

As previously stated in Section 5.3.1, the Markov chain has been used to generate 

stationary forecasts of land use change. Optimistic and pessimist future scenarios of 

land use change were also conceived, with respectively slight over and underestimations 

of the independent variable. Both of them were based likewise the Markov chain on 

transitions exclusively observed in the last simulation period of the time series, i.e. on 

periods ranging from 1988 to 2000, for Bauru, and from 1985 to 1999, for Piracicaba. 

These non-stationary scenarios were formulated through linear regression models, 

relating areas of certain land uses with population and economic data (see Section 

5.3.2), where slight over- and under-estimations in the values of the independent 

variable respectively produced optimistic and pessimist scenarios of land use change. 

The adoption of slight variations in the projections of population and economic data can 

be justified by the fact that the demographic and macroeconomic scenarios of Brazil in 

the latest years are expected to reproduce themselves in the current decade, in view of 

steadfastly decreasing population growth rates as well as of the administrative 

continuity trend demonstrated by the current federal government. 

P n u _ r e s =   (res f - res i) - [ (serv f - serv i) - nu_serv ]  - (m ix f  -  m ix i)

                                            non  urb i
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As to the delimitation of time horizons, there are no official definitions regarding short- 

and medium-terms for urban land use change phenomena. In a general way, it is 

sensible to define a short-term as being a time length of up to five years, and a medium-

term being comprised within more than five and less than ten years. In the current 

research, the short-term horizon was set to the year 2004, and the medium-term 

horizon, to 2007. 

Specifically regarding urban land use change modeling, it is unsuitable to deal with 

long-term forecasts, due to two main reasons. First, long-term land use changes are 

hardly foreseeable, and hence error-prone, in face of sudden alterations in the 

macroeconomic sphere and consequently in the land use change behavior that may 

eventually take place in the course of years in the later medium-term or early long-term. 

Second, within the scope of strategic town planning, only the short- and medium-terms 

are relevant for the priorities definition, resources allocation and decision-making 

processes. 

5.4 The Urban Land Use Dynamics Simulation Model 

5.4.1 DINAMICA General Data Model 

The urban land use dynamics simulation model employed to carry out the simulation 

experiments in this research was the DINAMICA, developed by the Center of Remote 

Sensing of the Federal University of Minas Gerais (CSR – UFMG). The DINAMICA 

software was written in object-oriented C++ language and its present version runs on 32 

bit Windows © system (Soares-Filho et al. 2002). 

The DINAMICA is a cellular automaton model, implemented through empirical land 

use allocation algorithms. A generic data model for DINAMICA is presented in 

FIGURE 5.11. To operate it, an initial land use map and two data sets corresponding to 

the static and dynamic input variables are necessary. All these maps together with 

parameters obtained from either the weights of evidence or the logistic regression 

method will be used for the calculation of cells transition probabilities.
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 FIGURE 5.11 – DINAMICA generic data model for urban applications. 

                                SOURCE: Adapted from SOARES-FILHO (1998, p.257).
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The static variables refer to maps of technical and social infrastructure availability, 

types of urban occupation density, relief, urban zoning, etc. The dynamic variables refer 

to maps of distance to certain types of land use. These variables undergo changes in 

each program iteration, which are continuously updated so as to influence the 

calculation of transition probabilities in the next iteration. Thus, in each program 

iteration, changes take place in the state (land use) of given cells, changing thence the 

distance to these uses estimated from other cells. 

From the estimated land use transition probabilities (Pij, Pik, etc.), the land use transition 

maps are elaborated, which will be used for heuristic procedures in the model 

calibration (see Section 5.2.1.5). Finally, with the cells transition probabilities 

calculated and the total amount of land use change estimated through cross-tabulation, 

the Markov chain or linear regression models, changes in the cells land use will occur in 

successive iterations, so as to produce a final urban land use map. 

5.4.2 Software Structure and Input Parameters 

DINAMICA is a CA model based on an eight cell Moore neighborhood approach 

implemented through empirical land use allocation algorithms. The DINAMICA 

parameters include: 

a) a file containing the values of the positive weights of evidence (W+) or the 

      parameters (β0, βi) of the logistic regression models, depending on the estimation 

      method adopted;  

b) the total transition probabilities for each of the land use transitions identified in 

the considered simulation period;  

c) the size and variance of patches for each transition;  

d) the proportion of the transition or allocation algorithms (`expander function´ and 

`patcher function´) also considering each transition; and,  

e) the total number of iterations. 
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The latest version of DINAMICA allows the parameters setting by graphical interfaces, 

although for the current research, the DOS version of DINAMICA has been used. 

5.4.3 Transition Algorithms 

DINAMICA presents two land use transition (or land use allocation) algorithms: the 

expander and the patcher functions. The expander function accounts for the expansion 

of previous patches of a certain land use class. The patcher function, on its turn, is 

designed to generate new patches through a seedling mechanism (Soares-Filho et al. 

2002). In summary, the expander function realizes transitions from a state i to a state j 

only in the adjacent vicinities of cells with state j. And the patcher function 

accomplishes transitions from a state i to a state j only in the adjacent vicinities of cells 

with state other than j. 

These two processes can be merged into the following equation: 

,            (5.101) 

 

where Qij corresponds to the total amount of transitions of type ij specified per 

simulation period, and r and s are respectively the percentage of transitions executed by 

each function, with r + s = 1. 

According to Soares-Filho et al. (2002), both transition algorithms adopt a stochastic 

selecting mechanism. The applied algorithm consists in scanning the initial land use 

map to sort out the cells with the highest probabilities and then arrange them in a data 

array. Following this procedure, cells are selected randomly from top to bottom of the 

data array (the internal stochastic choosing mechanism can be loosened or tightened 

depending on the degree of randomization desired). In a final step, the land use map is 

again scanned to accomplish the selected transitions. 

In the case that the expander function does not execute the amount of desired transitions 

after a fixed number of iterations, it passes on to the patcher function a residual number 

Qij = r x  (expander funct ion) + s x  (patcher funct ion)
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of transitions, so that the total number of transitions always reaches an expected value 

(Soares-Filho et al. 2002). 

5.4.3.1 The Expander Function 

The expander algorithm is expressed by the following equation: 

 

,                    (5.102) 

where nj corresponds to the number of cells of type j occurring in a window 3 x 3. This 

method guarantees that the maximum P´ij will be the original Pij, whenever a cell type i 

is surrounded by at least 50% of type j neighboring cells. 

5.4.3.2 The Patcher Function 

The patcher function strives to simulate patterns of land use change by generating 

diffused patches and preventing at the same time the formation of single isolated one-

cell patches. This function employs a device which searches for cells around a chosen 

location for a considered transition. This is achieved firstly by selecting the core cell of 

the new patch and then selecting a specific number of cells around the core cell, 

according to their Pij transition probabilities. 

The expander and patcher functions, as previously mentioned, incorporate an allocation 

device which is responsible for identifying cells with the highest transition probabilities 

for each ij transition. This allocation device stores the cells and organizes them for 

subsequent selection. In this process, each newly selected cell will form a core for a new 

patch or an expansion fringe, which still need to be further developed by using one of 

these two transition algorithms. The sizes of the new patches and the expansion fringes 

are set according to a lognormal probability distribution, whose parameters are 

determined as a function of the mean size and variance of each type of patch and 

expansion fringe to be generated (Soares-Filho et al. 2002). 

If  nj > 3  then  P´ ij (x ,y) = Pij (x ,y) else

                     P´ ij  (x ,y) = Pij (x ,y) x  (nj )/4
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5.5 Methodological Summary Flowchart  

A flowchart that summarizes the methodological procedures for modeling urban land 

use dynamics is presented in FIGURE 5.12. In the initial block, which concerns the data 

input, remote sensing, urban cartographic and census data are gathered and duly 

processed to integrate a digital geographic database. In the next stage, an exploratory 

analysis of the input data is carried out, aiming at the variables selection. The aim of this 

stage is to extract the minimum and at the same time the best set of variables to explain 

the phenomena under study: the land use transitions. 

After defining the final variables set for each type of transition, the modeling stage itself 

is approached. Firstly, transition rates are calculated through cross-tabulation or via the 

Markov chain. Next, cells transition probabilities are obtained either by logistic 

regression or the weights of evidence method. 

With the transition rates and cells transition probabilities estimated, the simulations can 

be carried out at last. Simulations outputs are continuously calibrated until the 

obtainment of satisfactory results, which will then be validated afterwards. 

Therefore, by getting acquainted with trends of land use change throughout a 

sufficiently long time series, the modeler is finally able to conceive scenarios for future 

transitions. In this case, transition rates can be stationary, and hence estimated by the 

Markov chain; or non-stationary, which can be obtained from linear regression models 

relating areas of certain land uses with demographic and economic data. In all cases, 

forecasts of urban land use change are generated for time horizons in the short- and 

medium-terms. 

5.6 Conclusions 

Chapter 5 presented the statistical techniques designed to conduct the simulations and 

forecasts modeling experiments of land use change in the cities of Bauru and Piracicaba. 

The weights of evidence method, based on the Bayes´ theorem of conditional 

probability, has been extensively used in all simulation periods, while the logistic
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regression method has been experimentally applied to the city of Bauru and only for the 

simulation period ranging from 1979 to 1988.  

Both methods are based on logits, i.e. the natural logarithm of odds, defined as a ratio of 

the probability that an event will occur to the probability that it will not occur. The 

weights of evidence method calculates the parameters for each evidence (explicative 

variable) or class of evidence in a univariate form, i.e. each variable has its positive 

weight of evidence (W+) and negative weight of evidence (W-) individually determined. 

In the logistic regression method, on the other hand, the assessment of the regression 

parameters (β0, βi) is done simultaneously for all variables integrating the model. 

According to Hosmer and Lemeshow (1989), “one problem with any univariate 

approach is that it ignores the possibility that a collection of variables, each of which is 

weakly associated with the outcome, can become an important predictor of outcome 

when taken together.” 

Although the determination of parameters in the weights of evidence method is done 

individually for each variable, the probability formula aggregates all the information 

related to each of these variables. 

The weights of evidence can be regarded as a much more intuitive method, for the 

modeler monitors the whole process of parameters assessment. On the contrary, 

parameters estimation in the logistic regression model, executed through continuously 

iterative methods, remains a black box for modelers. These two methods present very 

similar results. Nevertheless, the weights of evidence should be given preference of 

application in view of its transparency and operational simplicity, what together concur 

for a faster and more consistent model calibration. 

One methodological aspect that should be highlighted here is the fact that in the 

simulation experiments that provide yearly outputs, the input variables should 

preferably be yearly updated as well, so as to allow for more sensible results. 

Unfortunately, most of the input variables used in urban land use change modeling are 
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very complex and detailed to be yearly updated from remote sensing or conventional 

cartographic data. 

And finally, it is worth remarking that the non-stationary forecast simulation methods, 

which are based on linear regression models, ought to employ time series analysis for 

the independent variables estimation. As time series analysis requires a minimum of 

thirty observations (Wei, 1990), and as the yearly total and sectorial municipal GDPs of 

Bauru and Piracicaba in the latest three decades were not available by the time this 

research was finished, this statistical technique has not been adopted. Anyway, the 

usage of time series analysis in the forecast simulations will remain as a direction for 

future work. 
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CHAPTER 6 

RESULTS AND DISCUSSIONS 

6.1 Bauru 

As previously stated in Section 3.4.1.2, Bauru was born as a crossing point between 

railways during the inward advance of the coffee culture in the XIX century. Still today, 

the city is mainly shaped by the transport system: its urban framework is organized 

around four interregional roads and the railway track, which still crosses the city core 

area.  

Bauru is currently regarded as a dynamic regional development pole in the central-west 

portion of São Paulo State, with an outstanding performance of tertiary activities 

(commerce and services). In view of its strategic historic development conditions, the 

city underwent a drastically fast urbanization process. These urbanization booms were 

followed by speculative processes, leading to the formation of a discontinuous urban 

tissue, marked by the scattered presence of empty areas, low occupation densities in the 

outer areas and the existence of detached residential settlements orbiting around the city 

center, as it will be seen in the next sections. 

In the sequence, the results for the land use change simulations throughout the time 

series ranging from 1967 to 2000 will be presented, followed by the forecasts 

simulations generated for the short- and medium-term, respectively 2004 and 2007. 

6.1.1 Simulation Period: 1967 - 1979 

There are no official data about the population of Bauru in 1967. The first demographic 

census in Brazil was held in 1970 (IBGE, 1971), and the total population of this 

municipality at that time was 64,859 inhabitants, out of which 61,592 inhabitants lived 

in urban areas.  It  can  be  approximately  inferred  that  the population in Bauru in 1967  
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FIGURE 6.1 – Bauru official city map in 1967. 

                                                          SOURCE: CEPEU-FAUUSP (1967a).  

 

 

 

 

 

 

 

 

FIGURE 6.2 – Bauru official city map in 1979. 

                                                          SOURCE: SEPLAN (1979a). 

Scale 
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was about 57,000 inhabitants. In the national census of 1980 (IBGE, 1982), the total 

population of Bauru rose to 164,105 inhabitants, from which 159,926 people were urban 

inhabitants. The urban population growth rate within this period (1967-1979) was 

considerably high, around 2.81%. The shifts in the urban area can be seen in FIGURES 

6.1 and 6.2, which present the city maps for the initial and final time of simulation. 

The initial and final land use maps used in the simulation period 1967 – 1979 (FIGURE 

6.3) were elaborated upon basis of the two official city maps previously shown, of 

generalization procedures applied to the original land use maps of 1967 (CEPEU-

FAUUSP, 1967b) and 1979 (SEPLAN, 1979a) and of the printed satellite image of 

Bauru in 1979 (INPE, 1979). 

 

 

 

 

 

 

 

 

FIGURE 6.3 – Generalized land use map in Bauru in 1967 (left) and 1979 (right). 

In order to calculate land use transition rates for the period 1967-1979, the initial and 

final land use maps, processed in SPRING, were converted to raster files with extension 

TIFF and resolution 100 x 100 (m), and then exported to the IDRISI Geographic 

Information System. A cross-tabulation operation was made between both land use 

maps (FIGURE 6.4) so as to generate transition percentages for the existent types of 

land use change (TABLES 6.1 and 6.2). 
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FIGURE 6.4 – Cross-tabulation map between Bauru land use maps of 1967 and 1979. 

TABLE 6.1 – Existent land use transitions in Bauru: 1967–1979. 

 
NOTATION LAND USE TRANSITION 

NU_RES Non-urban to residential 

NU_IND Non-urban to industrial 

NU_INST Non-urban to institutional 

NU_SERV Non-urban to services 

NU_LEIS Non-urban to leisure/recreation 

RES_SERV Residential to services 

RES_MIX Residential to mixed use 

 

TABLE 6.2 – Matrix of global transition probabilities for Bauru: 1967–1979. 

 

Land Use Non-urban Resid. Comm. Industr. Instit. Services Mixed   Leis./Recr. 

Non-urban 0.9361 0.0315 0 0.0022 0.0199 0.0009 0 0.0094 

Resid. 0 0.9498 0 0 0 0.0485 0.0016 0 

Comm. 0 0 1 0 0 0 0 0 

Industr. 0 0 0 1 0 0 0 0 

Instit. 0 0 0 0 1 0 0 0 

Services 0 0 0 0 0 1 0 0 

Mixed  0 0 0 0 0 0 1 0 

Leis./Recr.  0 0 0 0 0 0 0 1 
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After estimating the global transition probabilities, i.e. the total amount of land use 

change for Bauru in the period 1967 – 1979, it is necessary to determine the local 

transition probabilities (cells land use change probabilities). For this end, the set of 

variables designed to explain each of the land use transitions must be defined. Heuristic 

procedures and statistical tests are employed in this selection process as stated in 

Section 5.2.1.2. For the simulation period 1967–1979, twelve variables were selected 

(CEPEU-FAUUSP, 1967a, 1967b, 1967c), some of which are shown in FIGURE 6.5. 

 

 

 

 

                                               a )                                                 b)                                                 c) 

 

 

 

 

 

                                               d )                                                 e)                                                 f) 

 

FIGURE 6.5 – Independent variables used to explain the land use transitions in Bauru 

                    during the simulation period 1967 – 1979: a) distances to residential 

             zones; b) distances to industrial zones; c) distances to railways;  

                        d) distances to ranges of commercial activities clusters; e) distances to 

                           rivers and water bodies; f) water supply.  

TABLE 6.3 shows the notations utilized for each map of variable employed in this 

simulation experiment; TABLE 6.4 indicates which variable was selected to explain 

each of the seven existent transitions; and finally, TABLE 6.5 presents the values 
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obtained for the Cramer´s Coefficient (V) and the Joint Information Uncertainty (U) for 

the pairs of variables used to explain the same type of land use transition.  

TABLE 6.3 – Independent variables defining land use change in Bauru: 1967–1979. 

 

NOTATION PHYSICAL OR SOCIOECONOMIC LAND USE CHANGE VARIABLE 

water Area served by water supply. 
dist_riv Distances to river and water bodies. 

dist_com Distances to commercial zones in general. 
com_kern Distances to different ranges of commercial activities concentration,  

defined by the Kernel estimator. 
dist_ind Distances to industrial zones. 
dist_res Distances to residential zones. 
dist_rail Distances to railways. 
trv_rds Distances to transversal peripheral roads (sw-ne; se-nw). 

exist_rds Distances to main existent roads. 
serv_axes Distances to the services and industrial axes. 
asph_rds Distances to asphalted roads. 
per_rds Distances to peripheral roads, which pass through non-occupied areas. 

 

TABLE 6.4 – Selection of variables determining land use change in Bauru: 1967–1979. 
 

NOTATION NU_RES NU_IND NU_INST NU_SERV NU_LEIS RES_SERV RES_MIX

water       ♦ 
dist_riv     ♦   

dist_com   ♦ ♦   ♦ 
com_kern ♦       
dist_ind  ♦      
dist_res ♦  ♦ ♦    
dist_rail  ♦      
trv_rds     ♦   

exist_rds ♦   ♦    
serv_axes  ♦    ♦ ♦ 
asph_rds      ♦  
per_rds   ♦     

According to what was already stated in Section 5.2.1.2, Bonham-Carter (1994) reports 

that values less than 0.5 for Cramer’s Coefficient and the Joint Information Uncertainty 

suggest less association rather than more. As none of the association measure values 

surpassed this threshold simultaneously for both indices, no variables preliminarily 

selected for modeling have been discarded from the analysis.  
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TABLE 6.5 – Associations between independent variables - Bauru: 1967–1979. 

 
VARIABLE A VARIABLE B  CRAMER’S STATISTIC (VA,B) UNCERTAINTY (UA,B) 

dist_com exist_rds 0.3552 0.2674 
 dist_res 0.3878 0.3189 
 per_rds 0.1448 0.0580 
 serv_axes 0.1650 0.0753 

com_kern dist_res 0.5334 0.3822 
 exist_rds 0.4751 0.3039 

dist_res per_rds 0.1470 0.0461 
 exist_rds 0.5774 0.4249 

serv_axes water 0.2446 0.0475 
 dist_ind 0.1279 0.0497 
 asph_rds 0.0548 0.0130 
 dist_rail 0.1334 0.0426 

dist_ind serv_axes 0.1279 0.0497 
trv_rds dist_riv 0.0420 0.0025 

 

With the final set of independent variables being defined, procedures to obtain the 

positive weight of evidence (W+) are finally taken. In IDRISI, the land use cross-

tabulation map of Bauru (1967-1979) was used to generate land use transition maps 

(FIGURE 6.6) for each of the seven types of land use change presented in TABLE 6.1. 

This was done through reclassification tables, on which the following rules were 

observed: 

 

- all raster values corresponding to classes of land use permanence or transition 

whose initial land use was different from the initial land use category in the 

considered type of land use change were assigned value 0 (black colour); 

 
- all raster values corresponding to classes of land use transition whose initial 

and final land use categories were equal to the initial and final categories of the 

land use change at issue were assigned value 2 (blue colour);  

 
- all other remaining classes of land use permanence or transition were assigned 

value 1 (green colour).  
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FIGURE 6.6 – Example of a land use transition map (non-urban to leisure/recreation) 

                           for Bauru in the period: 1967-1979. 

Once all possible types of land use transition maps were elaborated, they were then 

subjected to partial cross-tabulations with the respective independent variables maps, 

according to the relationships established on TABLE 6.4. The variables (evidences) 

maps, pre-processed in SPRING, were in the same manner as the initial and final land 

use maps converted to raster files with resolution 100 x 100 (m).  
 

The partial cross-tabulations disregard the raster values 0 (black color) in the land use 

transition maps. The numerical values of cells proportions existing in the 

absence/presence of a binary evidence (e.g. water supply) or in the different ranges of 

distances maps and found to be overlying on either class 1 (green color) or 2 (blue 

color) of the land use transition maps are (for each cross-tabulation table) selectively 

transferred to files especially created for the calculation of the weights of evidence 

(Equations 5.9 and 5.10). 

Using the values of the positive weights of evidence W+ (TABLE 6.6) concerning the 

several evidences maps employed in the analysis of each category of land use change, 

the DINAMICA simulation model will then calculate the cells transition probabilities 

(Equation 5.33) for the seven types of land use transition.  
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TABLE 6.6 – Values of W+ for the selected independent variables - Bauru: 1967–1979. 

 
 

Positive Weights of Evidence  W+ 
 

 
Land Use 
Transition 

 
Variable 

1 2 3 4 5 6 7 
 

NU_RES 
 

com_kern1 
 

2.876 
 

2.126 
 

0.846 
 

-0.515 
 

0 
 

na 
 

na 
 dist_res2 1.849 -0.102 -0.772 -0.407 -3.087 0 0 
 exist_rds3 1.383 0.739 -2.352 -1.887 -1.120 0 0 

NU_IND dist_ind4 0 0 0 3.273 0.916 2.510 0 
 dist_rail5 2.247 2.425 2.450 1.315 0 0 0 
 serv_axes6 2.527 2.462 2.498 2.523  2.353 1.982 0 

NU_INST dist_com7 0 0 0 0 -0.466 1.082 -2.235 
 dist_res2 0.366 1.283 0.623 -1.647 0 0 0 
 per_rds8 3.247 2.550 1.194 0 0 -1.818 0 

NU_SERV dist_com7 0 0 0 0 3.259 0 0 
 dist_res2 2.067 0 0 0 0 0 0 
 exist_rds3 1.973 -3.784 0 0 0 0 0 

NU_LEIS trv_rds9 3.850 2.188 0 0 0 0 0 
 dist_riv10 0.909 0.836 0.668 -0.730 na na na 

RES_SERV serv_axes6 1.619 1.242 0.504 -0.305 -0.349 -0.536 -0.348 
 asph_rds6 3.069 1.324 -0.764 -2.504 0 0 -0.158 

RES_MIX water Presence 1.300 Absence -0.959 
 serv_axes6 0 0 1.591 1.691 2.294 -0.712 0 
 dist_com7 0 1.817 0 0 0 0 0 

Note: Distance bands in meters 
na  : non available 
1   1: 0 -3000; 2: 3000-6000; 3: 6000-14500; 4: 14500-23500; 5: > 23500 
2   1: 0 -2000; 2: 2000-5000; 3: 5000-7500; 4: 7500-10000; 5: 10000-15000; 6: 15000-20000; 7: >20000 
3   1: 0 -2250; 2: 2250-5000; 3: 5000-7500; 4: 7500-10000; 5: 10000-15000; 6: 15000-20000; 7: >20000 
4   1: 0 -500; 2: 500-1500; 3: 1500-2500; 4: 2500-3500; 5: 3500-4500; 6: 4500-7000; 7: >7000 
5   1: 0 -500; 2: 500-1000; 3: 1000-1500; 4: 1500-2500; 5: 2500-3500; 6: 3500-4500; 7: > 4500 
6   1: 0 -250; 2: 250-500; 3: 500-750; 4: 750-1000; 5: 1000-1250; 6: 1250-2000; 7: > 2000 
7   1: 0 -2250; 2: 2250-4500; 3: 4500-6650; 4: 6650-8900; 5: 8900-11000; 6: 11000-19750; 7: > 19750 
8   1: 0 -1000; 2: 1000-3500; 3: 3500-5000; 4: 5000-7500; 5: 7500-10000; 6: 10000-23500; 7: > 23500 
9   1: 0 -1000; 2: 1000-3500; 3: 3500-5000; 4: 5000-7500; 5: 7500-10000; 6: 10000-23500; 7: > 23500 
10 1: 0 -50; 2: 50-350; 3: 350-500; 4: > 500 
 

By means of the cells transition probabilities, DINAMICA will generate the respective 

transition probabilities maps (FIGURES 6.7a, 6.7b and 6.7c) for each of the seven types 

of land use change existing in Bauru from 1967 to 1979. These maps are seen in 

ERMAPPER, employed by the DOS version of DINAMICA for visualization purposes. 
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FIGURE 6.7a – Estimated transition probability surfaces and land use change for Bauru. 
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FIGURE 6.7b – Estimated transition probability surfaces and land use change for Bauru. 
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regions in the probabilities maps relate to the very areas owning the highest transition 

probabilities rates. 

With the transition probabilities maps, it is possible to define the DINAMICA internal 

parameters that produce the best simulation results (TABLE 6.7). Due to the 

randomness of the DINAMICA transition algorithms, even though the same sets of 

evidences maps for each type of land use transition and the internal parameters are kept 

in different runs, distinct simulations results will be produced after each run of the 

model. In this way, the best urban land use simulation results for the city of Bauru in the 

period 1967–1979 are presented in FIGURE 6.8. 

TABLE 6.7 – DINAMICA internal parameters for the simulation of urban land use  

                            change in Bauru: 1967–1979. 

 
Land Use 
Transition 

Average Size of 
Patches 

Variance of 
Patches Size 

Proportion of 
`Expander´ 

Proportion of 
`Patcher´ 

Number of 
Iterations 

NU_RES 900 300 0.65 0.35 5 
NU_IND 70 1 0 1.00 5 
NU_INST 1000 0 0 1.00 5 
NU_SERV 40 1 0 1.00 5 
NU_LEIS 230 0 0 1.00 5 

RES_SERV 25 1 0.10 0.90 5 
RES_MIX 30 2 0 1.00 5 

 

The patcher algorithm proved to be greatly suited to modeling residential settlements 

detached from the main urban agglomeration. Nevertheless, the shapes of these 

settlements in the modeling results do not strictly coincide to those observed in reality. 

This happens because these contours are associated with limits of real estate properties. 

Since actions for the merging or split of plots may occur at any time and drastically alter 

their form, such boundaries can be regarded as highly unstable factors, and thus, 

inappropriate for modeling.  

The exact areas where new residential settlements occur are not always precisely 

identified. This is due to the fact that these new investments depend on landlords´ and 
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real estate enterpreneurs´ decisions, who define the areas to be invested to the detriment 

of other also advantageous locations. Nevertheless, the aim of modeling is not to 

reproduce reality as close as possible, but solely to detect main patterns and trends of 

land use change. 
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FIGURE 6.8 – The best simulations compared to the actual land use in Bauru in 1979. 

These simulation results underwent statistical validation tests based on the multiple 

resolution fitting procedure proposed by Constanza (1989), for windows size of 3x3, 

5x5 and 9x9, and k = 0.5 (TABLE 6.8). 

Non-urban use Commercial use 

Industrial use 

Institutional use 

Services use 

Mixed use 

    Leis./recreat. use    Residential use 
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TABLE 6.8 – Goodness-of-fit tests for the best land use change simulations of Bauru: 

                         1967-1979. 

 
Simulations Multiple Resolution Goodness-of-Fit (F) 

S1 F = 0.944541 

S2 F = 0.942551 

S3 F = 0.941809 
 

Upon basis of the carried out calibration process, it becomes evident that the probability 

of certain non-urban areas in the city of Bauru to shelter residential settlements (“nu_res 

land use transition”) largely depends on the previous existence of this type of 

settlements in their surroundings, because this implies the possibility of extending 

existing nearby infrastructure. It also depends on the greater proximity of these areas to 

commercial activities clusters as well as on the available accessibility to such areas. 

As to the transition of “non-urban areas to industrial use (nu_ind)”, there are three great 

driving forces: the nearness of such areas to the previously existent industrial use and 

the availability of road and railway access. This can be explained by the fact that in the 

industrial production process, the output of certain industries represent the input of other 

ones, what raises the need of rationalization and optimization of costs by the clustering 

of plants interrelated in the same productive chain. Furthermore, plots in the vicinities 

of industrial areas are often prone to be devaluated for other uses, what makes them 

rather competitive for the industrial use. 

Concerning the implementation of large institutional areas (“nu_inst”), it is observable 

that they arise in farther areas, relatively away from the central commercial zone, near 

peripheral roads, but at the same time, reasonably close to the demand areas (residential 

zones). 

Regarding the transition of “non-urban areas to services use (nu_serv)”, three major 

factors are crucial: the proximity of these areas to clusters of commercial activities, their 

closeness to areas of residential use, and last but not least, their strategic location in 
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relation to the main urban roads of Bauru. The first factor accounts for the suppliers 

market (and in some cases also consumers market) of services; the second factor 

represents the consumers market itself; and the third and last factor corresponds to the 

accessibility for both markets related to the services use. 

The creation of leisure and recreation zones (“nu_leis”), on its turn, takes place in outer 

areas with good accessibility, and sometimes along low and flat riverbanks, since these 

areas are floodable and hence unsuitable for sheltering other urban uses. 

The transition “residential to services use (res_serv)” supposes the insertion of services 

into previously consolidated urban areas. In this way, since this transition type already 

takes place amid the suppliers and consumers markets, it will solely prioritize good 

accessibility conditions such as the proximity to major asphalted roads and a strategic 

location in relation to the N-S / E-W services axes of Bauru. 

Finally, the last type of land use transition concerns the shift from “residential use to 

mixed use (res_mix)”. The mixed use zones, which actually play the role of urban sub-

centers, constitute a sort of secondary commercial centers enhancement, which at a later 

stage start to attract services and social infrastructure equipments besides commercial 

activities themselves. This transition supposes the availability of water supply and the 

existence of good accessibility conditions. These areas also strive for locating not too 

far away from central commercial areas, for they depend on the specialized supply from 

these areas, but not too close to them either for competitiveness reasons. 

6.1.2 Simulation Period: 1979 – 1988 

6.1.2.1 Weights of Evidence Method 

As previously stated in Section 6.1.1, the population of Bauru at the initial time of this 

simulation period was 164,105 inhabitants, from which 159,926 people were urban 

inhabitants. In 1988, the total population accounted 236,740, out of which 232,005 

inhabitants lived in urban areas (IBGE, 1991). The population growth rate for this period 
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FIGURE 6.9 – Bauru official city map in 1979. 

                                                          SOURCE: SEPLAN (1979a). 

 

 

 

 

 

 

 

 

FIGURE 6.10 – Bauru TM – 5 image and official city map in 1988. 

                                           SOURCE: INPE (1988) and SEPLAN (1988a). 
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is comparatively lower than the preceding simulation period, remaining around 1.45%. 

The shifts in the urban area extension can be seen in FIGURES 6.9 and 6.10, which 

present the city maps for the initial and final time of simulation. 

The initial and final land use maps used in the simulation period 1979 – 1988 (FIGURE 

6.11) were elaborated upon basis of the two official city maps previously shown, of 

generalization procedures applied to the original land use map of 1979 (SEPLAN, 

1979a) and 1988 (SEPLAN, 1988a), of the printed satellite image of Bauru in 1979 

(INPE, 1979) and of the digital satellite image in 1988 (INPE, 1988). 

 

 

 

 

 

 

 

 

FIGURE 6.11 – Generalized land use map in Bauru in 1979 (left) and 1988 (right). 

A cross-tabulation operation was made between both land use maps (FIGURE 6.12) so 

as to generate transition percentages for the existent types of land use change (TABLES 

6.9 and 6.10). 

 

 

    Residential use 

Non-urban use Commercial use 

Industrial use 

Institutional use 

Services use 

Mixed use 

    Leis./recreat. use

                            0                      5.0 km                                0                     5.0 km 
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FIGURE 6.12 – Cross-tabulation map between Bauru land use maps of 1979 and 1988. 

TABLE 6.9 – Existent land use transitions in Bauru: 1979–1988. 

 
NOTATION LAND USE TRANSITION 

NU_RES Non-urban to residential 

NU_IND Non-urban to industrial 

NU_SERV Non-urban to services 

RES_SERV Residential to services 

RES_MIX Residential to mixed use 

 

TABLE 6.10 – Matrix of global transition probabilities for Bauru: 1979–1988. 

 

Land Use Non-urban Resid. Comm. Industr. Instit. Services Mixed   Leis./Recr. 

Non-urban 0.9171 0.0698 0 0.0095 0 0.0036 0 0 

Resid. 0 0.9380 0 0 0 0.0597 0.0023 0 

Comm. 0 0 1 0 0 0 0 0 

Industr. 0 0 0 1 0 0 0 0 

Instit. 0 0 0 0 1 0 0 0 

Services 0 0 0 0 0 1 0 0 

Mixed  0 0 0 0 0 0 1 0 

Leis./Recr.  0 0 0 0 0 0 0 1 
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For the simulation period 1979–1988, twelve variables have been selected (DAE, 

1979a, 1979b, 1979c, 1979d, 1979d; SEPLAN, 1979a, 1979b), some of which are 

shown in FIGURE 6.13. 

 

 

 

 

                                               a )                                                 b)                                                 c) 

 

 

 

 

 

                                               d )                                                 e)                                                 f) 

 

FIGURE 6.13 – Independent variables used to explain the land use transitions in Bauru 

                    during the simulation period 1979 – 1988: a) distances to detached 

               residential settlements; b) medium-high density of occupation; 

                            c) distances to the services and commercial axes; d) existence of social 

                            housing; e) distances to ranges of commercial activities clusters;  

                            f) water supply.  

TABLE 6.11 shows the notations utilized for each map of variable employed in this 

simulation experiment; TABLE 6.12 indicates which variable was selected to explain 

each of the five existent transitions; TABLE 6.13 presents the values obtained for the 

Cramer´s Coefficient (V) and the Joint Information Uncertainty (U) for the pairs of 
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variables used to explain the same type of land use transition; and finally TABLE 6.14 

presents the values for the positive weights of evidence.  

TABLE 6.11 – Independent variables defining land use change in Bauru: 1979–1988. 
 

NOTATION PHYSICAL OR SOCIOECONOMIC LAND USE CHANGE VARIABLE 

water Area served by water supply. 
mh_dens Medum-high density of occupation (25% to 40%). 
soc_hous Existence of social housing. 
com_kern Distances to different ranges of commercial activities concentration,  

defined by the Kernel estimator. 
dist_ind Distances to industrial zones. 
dist_res Distances to residential zones. 
per_res Distances to peripheral residential settlements, 

isolated from the urban concentration. 
dist_inst Distances to social infrastructure (institutional use),  

isolated from the urban concentration. 
exist_rds Distances to main existent roads. 
serv_axes Distances to the services and commercial axes. 
plan_rds Distances to planned roads. 
per_rds Distances to peripheral roads, which pass through non-occupied areas. 

 

TABLE 6.12 –Selection of variables determining land use change in Bauru: 1979–1988.. 

 

NOTATION NU_RES NU_IND NU_SERV RES_SERV RES_MIX 

water    ♦  
mh_dens     ♦ 
soc_hous     ♦ 
com_kern ♦  ♦   
dist_ind  ♦    
dist_res   ♦   
per_res ♦     
dist_inst ♦     
exist_rds ♦     
serv_axes  ♦ ♦ ♦  
plan_rds     ♦ 
per_rds ♦    ♦ 

 

Likewise the first simulation period, as none of the association measure values 

surpassed the threshold of 0.50 simultaneously for both indices, no variables 

preliminarily selected for modeling have been discarded from the analysis.  
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TABLE 6.13 – Associations between independent variables - Bauru: 1979–1988. 

 
VARIABLE A VARIABLE B CRAMER’S STATISTIC (VA,B) UNCERTAINTY (UA,B) 

water serv_axes 0.3257 0.0767 
mh_dens soc_hous 0.0460 0.0017 

 plan_rds 0.2617 0.0701 
 per_rds 0.0201 0.0003 

soc_hous plan_rds 0.1174 0.0188 
 per_rds 0.0480 0.0047 

com_kern dist_res 0.4129 0.3447 
 per_res 0.1142 0.0310 
 dist_inst 0.1218 0.0520 
 exist_rds 0.2685 0.1499 
 serv_axes 0.2029 0.1099 
 per_rds 0.0434 0.0064 

dist_ind serv_axes 0.1466 0.0477 
dist_res serv_axes 0.2142 0.1002 
per_res dist_inst 0.1487 0.0559 

 exist_rds 0.0592 0.0078 
 per_rds 0.1733 0.0553 

dist_inst exist_rds 0.0601 0.0108 
 per_rds 0.0765 0.0238 

exist_rds per_rds 0.0239 0.0019 
plan_rds per_rds 0.0247 0.0029 

 

TABLE 6.14 – Values of W+ for the selected independent variables - Bauru: 1979–1988. 

 
 

Positive Weights of Evidence  W+ 
 

 
Land Use 
Transition 

 
Variable 

1 2 3 4 5 6 7 
 

NU_RES 
 

com_kern1 
 

3.749 
 

2.106 
 

1.864 
 

0.491 
 

-0.323 
 
0 

 
na 

 per_res3 1.968 1.615 1.392 0.892 -0.626 -0.469 na 
 dist_inst4 0.003 0.600 1.254 0.727 -0.359 -0.089 na 
 exist_rds5 0.231 0.320 0.353 0.510 0.443 0.196 -0.085 
 per_rds6 2.377 2.269 2.068 1.984 1.444 0.857 -0.127 

NU_IND dist_ind2 3.862 4.016 3.792 3.452 1.763 0 0 
 serv_axes5 2.722 2.799 2.676 2.625 2.525 1.727 -3.832 

NU_SERV com_kern1 3.412 4.469 2.912 0.878 0 0 na 
 dist_res3 2.144 1.523 0.621 -0.065 0 0 na 
 serv_axes5 3.508 3.321 2.917 1.869 0.450 0 0 

RES_SERV water Presence -0.6611 Absence 0.2883 
 serv_axes5 2.780 1.948 1.461 0.888 -0.297 -1.412 -3.284 

RES_MIX mh_dens Presence 0.6452 Absence -0.0635 
 soc_hous Presence 2.4678 Absence -0.3214 
 plan_rds5 3.506 1.863 0 0 0 0 0 
 per_rds6 1.775 1.652 1.848 0.903 0 0 0 
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Note: Distance bands in meters 
na  : non available 
1 1: 0 -500; 2: 500-1000; 3: 1000-1500; 4: 1500-10000; 5: 10000-30000; 6: > 30000 
2 1: 0 -500; 2: 500-1000; 3: 1000-1500; 4: 1500-2000; 5: 2000-5000; 6: 5000-10000; 7: >10000 
3 1: 0 -500; 2: 500-1000; 3: 1000-2000; 4: 2000-5000; 5: 5000-10000; 6: > 10000 
4 1: 0 -500; 2: 500-1000; 3: 1000-3000; 4: 3000-8000; 5: 8000-15000; 6: > 15000 
5 1: 0 -250; 2: 250-500; 3: 500-750; 4: 750-1000; 5: 1000-1250; 6: 1250-2000; 7: > 2000 
6 1: 0 -250; 2: 250-500; 3: 500-750; 4: 750-1000; 5: 1000-1500; 6: 1500-2500; 7: > 2500 

The maps of estimated transition probabilities surfaces, generated by DINAMICA upon 

basis of the values of the positive weights of evidence (W+), together with their 

respective land use transition maps are seen in FIGURES 6.14 a and 6.14b. 

The arguments employed to explain the transitions “nu_res”, “nu_ind” and “nu_serv” in 

the period 1967-1979 (Section 6.1.1) are also valid to justify these same transitions in 

the current simulation period. Slight differences concern the requirements for the 

transitions “res_serv” and “res_mix”.  

The transition “residential to services use (res_serv)” from 1979 to 1988 supposes the 

insertion of services into residential areas. In this way, since this transition type already 

takes place amid the suppliers and consumers markets, it will prioritize the strategic 

location in relation to the N-S / E-W services axes of Bauru and will take place in the 

absence of water supply, considering the initial time of simulation. Note that in this case 

W+ is negative. This means that areas close to the services axes but deprived of water 

supply in the initial time of simulation refer to those areas located in the immediate 

fringe of consolidated urban areas, exactly where new services zones are prone to occur. 

The decisive factors for the conversion of “residential areas into mixed use zones 

(res_mix)” in the period 1979-1988 are (a) existence of medium-high density of 

occupation (higher density values only occur in the central commercial zone of the town 

or in the immediacies of already existent mixed use zones); (b) presence or proximity of 

social housing settlements (for they shelter the greatest occupational densities in more 

peripheral areas, and hence, greater consumers markets); (c) nearness to planned or 

peripheral roads, since new mixed use zones arise in farther areas of the town, so as not 

to compete with the central commercial zone. 



 211

 

 

Transition Probabilities Maps from 
Weights of Evidence 

Land Use Transition Maps              
Bauru: 1979-1988 
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FIGURE 6.14a – Estimated transition probability surfaces and land use change - Bauru. 
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Transition Probabilities Maps from 
Weights of Evidence 

Land Use Transition Maps              
Bauru: 1979-1988 

 

 

 

FIGURE 6.14b – Estiated transition probability surfaces and land use change – Bauru. 

The three best simulation results produced for the period 1979-1988 are presented in 

FIGURE 6.15. The internal DINAMICA parameters associated with these optimal 

simulations are seen in TABLE 6.15, whose statistical validation tests for windows size 

of 3x3, 5x5 and 9x9, and k = 0.5 are listed on TABLE 6.16. 

TABLE 6.15 – DINAMICA internal parameters for the simulation of urban land use  

                            change in Bauru: 1979–1988. 

 
Land Use 
Transition 

Average Size of 
Patches 

Variance of 
Patches Size 

Proportion of 
`Expander´ 

Proportion of 
`Patcher´ 

Number of 
Iterations 

NU_RES 1100 500 0.65 0.35 5 
NU_IND 320 1 1.00 0 5 

NU_SERV 25 2 0.50 0.50 5 
RES_SERV 25 2 0.10 0.90 5 
RES_MIX 35 2 0 1.00 5 
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areas where land use transitions occurred  P=0         null probability 

(increasing ranking) areas  where  no  transitions  occurred 

areas not considered for transition analyses 

Legends:

     maximum probability  P=1 



 213

 

TABLE 6.16 – Goodness-of-fit tests for the best land use change simulations produced  

                          by the weights of evidence method for Bauru: 1979-1988. 
 

Simulations Multiple Resolution Goodness-of-Fit (F) 

S1 F = 0.903103 
S2 F = 0.896722 
S3 F = 0.901703 

 
 

 
Land Use 1988 

 

 
Simulation 1 

  
 

Simulation 2 
 

 
Simulation 3 

 

 
 

llllllllllllllllllllll      

 

FIGURE 6.15 – The best simulations produced by the weights of evidence method  

 compared to the actual land use in Bauru in 1988. 
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6.1.2.2 Logistic Regression Method 

In the logistic regression method, all continuous variables, i.e. all independent variables 

related to maps of distances, were treated as categorical, owning thematic classes 

associated to each range of distance. This has been done in view of the fact that 

practically all of them presented a non-linear and/or multi-modal behavior in relation to 

the respective land use transitions. Handling this information as continuous variables 

would imply a great data heterogeneity, what would certainly bring about noise in the 

simulations and harm the model calibration. 

According to what was already stated in Section 5.3.2.2, empirical procedures were 

used for the variables selection, like the visualization of distinct variables superimposed 

on the final land use map, what aimed at identifying the set of those ones more 

meaningful to explain the five different types of land use change. Another auxiliary 

method was the analysis of boxplots generated by each selected independent variable 

versus the respective land use transition. FIGURE 6.16 shows examples of boxplots. It 

is observable for the first case that the majority of the cells where the transition from 

residential to mixed use occurs coincide with the cells where social housing units are 

also found.  In the second case, the boxplot shows that the transition from non-urban to 

industrial use takes place in the closest areas from the already existent industrial zones. 

 

 

 

FIGURE 6.16 – Boxplot of the transition `residential to mixed use´ versus social 

                                 housing (left) and boxplot of the transition `non-urban to industrial 

                                 use´ versus distances to industrial zones (right) – Bauru: 1979-1988. 
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The exploratory analysis also took into account the correlation index (Λ), assessed for 

pairs of variables selected to explain the same type of land use transition. This proved to 

be a measure highly sensitive to the spatial autocorrelation between cells, for it is 

obtained from a pixel-based statistics. Thence, this index has not been used as an 

eliminatory criterion for the variables selection, and the association measures provided 

by the Cramer´s Statistics (V) and the Joint Information Uncertainty (U) were prevailing 

also in the exploratory analysis for the logistic regression method. TABLE 6.17 presents 

the values obtained for the correlation index (Λ). 

TABLE 6.17 – Correlations between independent variables - Bauru: 1979–1988. 

 

VARIABLE A VARIABLE B CORRELATION INDEX  (ΛA,B) 

water serv_axes -0.3060 
mh_dens soc_hous 0.0530 

 plan_rds -0.1600 
 per_rds -0.0560 

soc_hous plan_rds -0.0760 
 per_rds -0.0440 

com_kern dist_res 0.9050 
 per_res 0.1580 
 dist_inst -0.2930 
 exist_rds 0.7670 
 serv_axes 0.7060 
 per_rds 0.4490 

dist_ind serv_axes 0.5630 
dist_res serv_axes 0.7900 
per_res dist_inst 0.7070 

 exist_rds 0.1860 
 per_rds 0.5380 

dist_inst exist_rds -0.1190 
 per_rds 0.2170 

exist_rds per_rds 0.3090 
plan_rds per_rds 0.0658 

 

In order to estimate the parameters (βi) of the logistic regression model, the independent 

variables and the land use transition maps were converted to numerical raster grids in 

SPRING. These transition maps were generated through a maps algebra operation in 

SPRING by means of a language intitled “Spatial Language for Algebraic 

Geocomputation” (`LEGAL´ - Linguagem Espacial para Geoprocessamento 

Algébrico). 
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The numerical grids were converted into columns text files and then exported to the 

statistical package MINITAB 13.0, where separate database for each of the five types of 

land use change were built. FIGURE 6.16 synthesizes these conversion procedures. 

 

 

 

 

 

 

 

FIGURE 6.17 – Conversion of numerical raster grids into statistical database in 

                                  MINITAB 13.0. 

According to what was previously exposed in Section 5.2.2.1, the method “backward 

stepwise” was adopted for the parameters estimation, which can be seen in TABLE 

6.18. Although the variables “dist_res” and “mh_dens” were not significant at the 0.05 

level (p < 0.05), they were kept in the model in view of their effective contribution for 

explaining the transitions “nu_serv” and “res_mix”, respectively.  According to Hosmer 

and Lemeshow (1989), a diversified set of criteria other than statistical significance tests 

must be taken into consideration for including or removing variables from a model.  

Some variables presented mild support for being included in the model as cases of 

interaction and confounding. Nevertheless, when this was the case, the statistical 

package routines could not reach a convergence of parameters even after a high number 

of iterations (20,000). Consequently, the products of these variables have been 

suppressed from the model. 

Numerical 
grids files  Columns 

 text files Files export to 
MINITAB 
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It is noticeable in TABLE 6.18 that in all models, except for the Hosmer-Lemeshow test 

concerning the transition “res_mix”, goodness-of-fit tests do not indicate statistical 

significance (p > 0.05). As stated in Section 5.2.2.5, these tests results should be 

regarded in a critical and wise way. In any case, the fitting of these five models was 

effectively evaluated by means of the statistical validation test proposed by Constanza 

(1989), where the models spatial dimension is duly and carefully taken into account. 

TABLE 6.18 – Results of the logistic regression analyses for Bauru: 1979–1988. 

 
 

VARIABLES NU_RES  NU_IND NU_SERV RES_SERV RES_MIX 

 ßk P ßk P ßk P ßk P ßk P 

Constant (ß0) 7.646900 0.000 5.274530 0.000 4.865300 0.000 -1.551900 0.000 3.901200 0.000 
water # # # # # # 1.708810 0.000 # # 

mh_dens # # # # # # # # 0.383300 0.232 
soc_hous # # # # # # # # -1.068800 0.000 
com_kern -0.924990 0.000 # # -1.461660 0.000 # # # # 
dist_ind # # -1.048320 0.000 # # # # # # 
dist_res # # # # 0.027680 0.442 # # # # 
per_res -0.392090 0.000 # # # # # # # # 
dist_inst -0.405525 0.000 # # # # # # # # 
exist_rds 0.051476 0.000 # # # # # # # # 
serv_axes # # -0.741110 0.000 -0.974470 0.000 -0.929550 0.000 # # 
plan_rds # # # # # # # # -1.865200 0.000 
per_rds -0.309469 0.000 # # # # # # -0.521040 0.000 

 RESULTS    FOR    THE    TESTS    OF    GOODNESS – OF - FIT 

Tests Chi-square P Chi-square P Chi-square P Chi-square P Chi-square P 

Pearson 41,202.475 0.000 13,639.316 0.000 938.120 0.000 338.064 0.000 422.206 0.000 
Deviance 30,435.653 0.000 6,055.790 0.000 774.369 0.000 341.693 0.000 328.558 0.000 

Hosmer-Lem. 613.082 0.000 258.618 0.000 44.667 0.000 247.916 0.000 1.653 0.438 

 

With the parameters (βi) estimated for each of the five types of land use change, 

DINAMICA will produce likewise in the weights of evidence method the maps of 

transition probabilities surfaces for each of the existent types of transition. These maps 

and their respective land use change maps are seen in FIGURES 6.17a and 6.17b. 
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FIGURE 6.18a – Estimated transition probability surfaces and land use change - Bauru. 
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Transition Probabilities Maps from 
Logistic Regression 

Land Use Transition Maps              
Bauru: 1979-1988 

 

 

 

FIGURE 6.18b – Estimated transition probability surfaces and land use change – Bauru. 

The three best simulation results produced for the period 1979-1988 are presented in 

FIGURE 6.19. The internal DINAMICA parameters associated with these optimal 

simulations are seen in TABLE 6.15, whose statistical validation tests for windows size 

of 3x3, 5x5 and 9x9, and k = 0.5 are listed on TABLE 6.19. 

TABLE 6.19 – Goodness-of-fit tests for the best land use change simulations produced 

by the logistic regression method for Bauru: 1979-1988. 

 
Simulations Multiple Resolution Goodness-of-Fit (F) 

S1 F = 0.905172 

S2 F = 0.907539 

S3 F = 0.907868 
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Land Use 1988 
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Simulation 2 

 

 
Simulation 3 

  
 
 
 
 
 
 

 
 
 
 

 

 

FIGURE 6.19 – The best simulations produced by the logistic regression method  

    compared to the actual land use in Bauru in 1988. 

6.1.3 Simulation Period: 1988 – 2000 

According to what was stated in Section 6.1.2, the population of Bauru at the initial time 

of this simulation period was 236,740 inhabitants, from which 232,005 people were urban  
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    Leis./recreat. use    Residential use 
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FIGURE 6.20 – Bauru TM – 5 image and official city map in 1988. 

                                           SOURCE: INPE (1988) and SEPLAN (1988a). 

 

 

 

 

 

 

 

 

FIGURE 6.21 – Bauru TM – 5 image and official city map in 2000. 

                                           SOURCE: INPE (2000) and DAE (2000). 
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        Scale 
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inhabitants. In 2000, the total population rose to 316,064, out of which 310,442 

inhabitants lived in urban areas (IBGE, 2000). The population growth rate for this 

period is slightly lower than the preceding simulation period, lying around 1.34%. The 

impacts of this population growth on the urban area extension can be seen in FIGURES 

6.20 and 6.21, which present the city maps for the initial and final time of simulation. 

The initial and final land use maps used in the simulation period 1988 – 2000 (FIGURE 

6.22) were elaborated upon basis of the two official city maps previously shown, of 

generalization procedures applied to the original land use map of 1988 (SEPLAN, 

1988a) and 2000 (DAE, 2000) and of the digital satellite images of Bauru in 1988 and 

2000 (INPE, 1988, 2000). 

 

 

 

 

 

 

 

 

FIGURE 6.22 – Generalized land use map in Bauru in 1988 (left) and 2000 (right). 

A cross-tabulation operation was made between both land use maps (FIGURE 6.23) so 

as to generate transition percentages for the existent types of land use change (TABLES 

6.20 and 6.21). 
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FIGURE 6.23 – Cross-tabulation map between Bauru land use maps of 1988 and 2000. 

TABLE 6.20 – Existent land use transitions in Bauru: 1988–2000. 

 
NOTATION LAND USE TRANSITION 

NU_RES Non-urban to residential 

NU_IND Non-urban to industrial 

NU_SERV Non-urban to services 

RES_SERV Residential to services 

IND_RES Industrial to residential 

 

TABLE 6.21 – Matrix of global transition probabilities for Bauru: 1988–2000. 

 

Land Use Non-urban Resid. Comm. Industr. Instit. Services Mixed   Leis./Recr. 

Non-urban 0.9615 0.0333 0 0.0043 0 0.0009 0 0 

Resid. 0 0.9997 0 0 0 0.0003 0 0 

Comm. 0 0 1 0 0 0 0 0 

Industr. 0 0.0438 0 1 0 0 0 0 

Instit. 0 0 0 0 1 0 0 0 

Services 0 0 0 0 0 1 0 0 

Mixed  0 0 0 0 0 0 1 0 

Leis./Recr.  0 0 0 0 0 0 0 1 
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For the simulation period 1988–2000, seven variables have been selected (SEPLAN, 

1988a, 1988b), most of which are shown in FIGURE 6.24. 

 

 

 

 

                                               a )                                                 b)                                                 c) 

 

 

 

 

 

                                               d )                                                 e)                                                 f) 

FIGURE 6.24 – Independent variables used to explain the land use transitions in Bauru 

                     during the simulation period 1988 – 2000: a) distances to residental 

    zones; b) distances to the services and commercial axes; 

          c) distances to residential areas belonging to the main urban 

                            agglomeration ; d) distances to services corridors; e) distances to the 

                            central commercial zone; f) distances to industrial zones.  

TABLE 6.22 shows the notations utilized for each map of variable employed in this 

simulation experiment; TABLE 6.23 indicates which variable was selected to explain 

each of the five existent transitions; TABLE 6.24 presents the values obtained for the 

Cramer´s Coefficient (V) and the Joint Information Uncertainty (U) for the pairs of 
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variables used to explain the same type of land use transition; and finally, TABLE 6.25 

presents the values for the positive weights of evidence.  

TABLE 6.22 – Independent variables defining land use change in Bauru: 1988–2000. 

 
NOTATION PHYSICAL OR SOCIOECONOMIC LAND USE CHANGE VARIABLE 

dist_ind Distances to industrial zones. 
dist_res Distances to residential zones. 

dist_com Distances to the central commercial zone. 
main_res Distances to residential areas 

belonging to the main urban agglomeration. 
dist_serv Distances to services corridors. 
serv_axes Distances to the services and commercial axes. 
exist_rds Distances to main existent roads. 

 

TABLE 6.23 – Selection of variables determining land use change in Bauru: 1988–2000. 

 
NOTATION NU_RES NU_IND NU_SERV RES_SERV IND_RES 

dist_ind  ♦    
dist_res ♦     

dist_com ♦ ♦ ♦  ♦ 
main_res  ♦ ♦   

dist_serv    ♦  

serv_axes  ♦ ♦ ♦ ♦ 
exist_rds ♦     

 

Likewise the preceding simulation periods, as none of the association measure values 

surpassed the threshold of 0.50 simultaneously for both indices, no variables 

preliminarily selected for modeling have been discarded from the analysis.  
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TABLE 6.24 – Associations between independent variables - Bauru: 1988–2000. 

 

VARIABLE A VARIABLE B CRAMER’S STATISTIC 
(VA,B) 

UNCERTAINTY 
(UA,B) 

dist_ind serv_axes 0.1324 0.0381 
 dist_com 0.3007 0.1730 

serv_axes main_res 0.1442 0.0485 
 dist_serv 0.2504 0.1512 

dist_res dist_com 0.2954 0.1920 
 exist_rds 0.3733 0.2022 

main_res dist_ind 0.2638 0.1593 
 dist_com 0.3554 0.2651 

dist_com serv_axes 0.1426 0.0462 
exist_rds dist_com 0.3072 0.1763 

 

TABLE 6.25 – Values of W+ for the selected independent variables - Bauru: 1988–2000. 

 
 

Positive Weights of Evidence  W+ 
 

 
Land Use 
Transition 

 
Variable 

1 2 3 4 5 6 7 
NU_RES dist_com1 3.0315 1.8660 1.4883 0.0488 0 0 -1.5975 

 dist_res2 1.0269 -3.0001 0 0 0 0 0 
 exist_rds3 0.2788 0.0470 0.0618 0.5859 0 0 0 

NU_IND dist_com1 0 -1.6787 1.9652 0 -1.0938 1.2762 -3.5038 

 dist_ind4 3.9186 3.4248 2.0878 -4.0570 0 1.1740 0 
 serv_axes5 1.5034 1.6862 1.8472 1.9530 2.1609 1.4820 -4.2138 
 main_res6 -0.1651 0.4635 1.1896 1.2176 1.5354 1.1978 0 

NU_SERV dist_com1 0 0 2.4844 -0.1735 0 0 0 
 serv_axes5 3.6826 2.6842 0 0 0 0 0 
 main_res6 1.4228 1.6990 1.7045 1.1503 -1.0949 -2.0000 -2.0000 

RES_SERV serv_axes5 3.4313 2.8969 0 0 0 0 0 
 dist_serv7 2.2674 1.5067 1.0902 0 0 0 0 

IND_RES dist_com1 0 0 0 0 2.1914 -0.7973 0 
 serv_axes5 0.3286 0.5856 0.5630 0.4506 0.2105 -3.4915 0 
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Note: Distance bands in meters 
1 1: 0 -5500; 2: 5500-11000; 3: 11000-14000; 4: 14000-19750; 5: 19750-22750; 6: 22750-26250; 7: >26250 
2 1: 0 -2700; 2: 2700-5400; 3: 5400-8100; 4: 8100-10800; 5: 10800-13500; 6: 13500-16200; 7: >16200 
3 1: 0 -2500; 2: 2500-5000; 3: 5000-7500; 4: 7500-11150; 5: 11150-15000; 6: 15000-20000; 7: >20000 
4 1: 0 -500; 2: 500-1500; 3: 1500-3000; 4: 3000-5500; 5: 5500-13000; 6: 13000-15700; 7: >15700 
5 1: 0 -250; 2: 250-500; 3: 500-750; 4: 750-1000; 5: 1000-1250; 6: 1250-2500; 7: > 2500 
6 1: 0 -500; 2: 500-1000; 3: 1000-1500; 4: 1500-2000; 5: 2000-2700; 6: 2700-3850; 7: > 3850 
7 1: 0 -250; 2: 250-550; 3: 550-750; 4: 750-1000; 5: 1000-1250; 6: 1250-2000; 7: > 2000 

The maps of estimated transition probabilities surfaces, generated by DINAMICA upon 

basis of the values of the positive weights of evidence (W+), together with their 

respective land use transition maps are seen in FIGURES 6.25 a and 6.25b. 

The arguments employed to explain the transitions “nu_res” and “nu_serv” in the period 

1967-1979 (Section 6.1.1) are also valid to justify these same transitions in the current 

simulation period. Some differences concern the requirements for the transitions 

“nu_ind” and “res_serv”.  

The expansion of the industrial zone (“nu_ind”) in the northeastern sector of Bauru still 

demands the nearness of such areas to the previously existent industrial use and the 

availability of road access. But from 1988 to 2000, a new industrial sector was 

effectively created in the northwestern section of the city, requiring proximity to the 

labor force supply centers (residential areas) and also a location not too distant from the 

central commercial zone, since industrial areas depend on commercial activities for 

logistical support. 

The transition “residential to services use (res_serv)” occurs in a moderate rhythm from 

1988 to 2000, basically as an extension of already established services corridors. In this 

sense, this type of land use change will request closeness to previously existent services 

areas and a strategic proximity to the N-S / E-W services axes of Bauru. 

And finally, the transition “industrial to residential use (ind_res)” supposes good 

accessibility conditions and a location within a reasonable distance from the central 

commercial zone in face of the dwellers´ need of commuting to work places and shops 

in central areas. 
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Transition Probabilities Maps from 
Weights of Evidence 

Land Use Transition Maps              
Bauru: 1988-2000 
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FIGURE 6.25a – Estimated transition probability surfaces and land use change - Bauru. 
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Transition Probabilities Maps from 
Weights of Evidence 

Land Use Transition Maps              
Bauru: 1988-2000 

 
 
 
 
 

FIGURE 6.25b – Estimated transition probability surfaces and land use change – Bauru. 

The three best simulation results produced for the period 1988-2000 are presented in 

FIGURE 6.26. The internal DINAMICA parameters associated with these optimal 

simulations are seen in TABLE 6.26, whose statistical validation tests for windows size 

of 3x3, 5x5 and 9x9, and k = 0.5 are listed on TABLE 6.27. 

TABLE 6.26 – DINAMICA internal parameters for the simulation of urban land use  

                            change in Bauru: 1988–2000. 

 
Land Use 
Transition 

Average Size of 
Patches 

Variance of 
Patches Size 

Proportion of 
`Expander´ 

Proportion of 
`Patcher´ 

Number of 
Iterations 

NU_RES 2000 500 0.60 0.40 300 
NU_IND 150 2 0.45 0.55 300 

NU_SERV 400 2 1.00 0 300 
RES_SERV 40 1 1.00 0 300 
IND_RES 100 1 1.00 0 300 
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areas where land use transitions occurred  P=0         null probability 

(increasing ranking) areas  where  no  transitions  occurred 

areas not considered for transition analyses 

Legends:

     maximum probability  P=1 
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TABLE 6.27 – Goodness-of-fit tests for the best land use change simulations produced  

                          by the weights of evidence method for Bauru: 1988-2000. 
 

Simulations Multiple Resolution Goodness-of-Fit (F) 

S1 F = 0.954193 

S2 F = 0.956617 

S3 F = 0.956341 
 
 

 
Land Use 2000 

 

 
Simulation 1 

  
 
 
 
 
 
 
 
 
 

 
Simulation 2 

 

 

Simulation 3 

  
 
 
 
 
 
 
 
 
 
 

 

 

FIGURE 6.26 – The best simulations compared to the actual land use in Bauru in 2000. 

 

Non-urban use Commercial use 

Industrial use 

Institutional use 

Services use 

Mixed use 

    Leis./recreat. use    Residential use 
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6.1.4 Yearly Simulations: 1967 – 2000 

 

According to Equation (5.69), the global matrix of transition can be decomposed in 

annual transition probabilities by the principal components method. This has been done 

separately for each simulation period (TABLES 6.28, 6.29 and 6.30). The yearly 

simulation outputs can be seen in FIGURES 6.27a, 6.27b, 6.27c, 6.27d and 6.27e. 

TABLE 6.28 – Matrix of yearly transition probabilities for Bauru: 1967–1979. 
 

Land Use Non-Urban Residential Commercial Industrial Institutional Services  Mixed Use Leis./Recr. 

Non-Urban 9.9452*10-1 2.7672*10-3 0 1.8591*10-4 1.7121*10-3 1.2074*10-5 0 8.0959*10-4 
Residential 0 9.9572*10-1 0 0 0 4.1413*10-3 1.3996*10-4 0 
Commercial 0 0 1.00 0 0 0 0 0 
Industrial 0 0 0 1.00 0 0 0 0 

Institutional 0 0 0 0 1.00 0 0 0 
Services  0 0 0 0 0 1.00 0 0 

Mixed Use 0 0 0 0 0 0 1.00 0 
Leis./Recr. 0 0 0 0 0 0 0 1.00 

 
 

TABLE 6.29 – Matrix of yearly transition probabilities for Bauru: 1979–1988. 

Land Use Non-Urban Residential Commercial Industrial Institutional Services  Mixed Use Leis./Recr. 

Non-Urban 9.9043*10-1 8.2863*10-3 0 1.1001*10-3 0 1.8758*10-4 0 0 
Residential 0 9.9291*10-1 0 0 0 6.8296*10-3 2.5885*10-4 0 
Commercial 0 0 1.00 0 0 0 0 0 
Industrial 0 0 0 1.00 0 0 0 0 

Institutional 0 0 0 0 1.00 0 0 0 
Services  0 0 0 0 0 1.00 0 0 

Mixed Use 0 0 0 0 0 0 1.00 0 
Leis./Recr. 0 0 0 0 0 0 0 1.00 

 

TABLE 6.30 – Matrix of yearly transition probabilities for Bauru: 1988–2000. 
 

Land Use Non-Urban Residential Commercial Industrial Institutional Services  Mixed Use Leis./Recr. 

Non-Urban 9.8414*10-1 2.5872*10-3 0 3.4581*10-4 0 7.1684*10-5 0 0 
Residential 0 9.9997*10-1 0 0 0 2.5003*10-3 0 0 
Commercial 0 0 1.00 0 0 0 0 0 
Industrial 0 3.7187*10-3 0 1.00 0 0 0 0 

Institutional 0 0 0 0 1.00 0 0 0 
Services  0 0 0 0 0 1.00 0 0 

Mixed Use 0 0 0 0 0 0 1.00 0 
Leis./Recr. 0 0 0 0 0 0 0 1.00 
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 Yearly Simulation Outputs for Bauru: 1967 - 2000 
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FIGURE 6.27a – Yearly simulation outputs for Bauru: 1967 - 1974. 
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 Yearly Simulation Outputs for Bauru: 1967 - 2000 
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FIGURE 6.27b – Yearly simulation outputs for Bauru: 1975 - 1982. 
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 Yearly Simulation Outputs for Bauru: 1967 - 2000 
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FIGURE 6.27c – Yearly simulation outputs for Bauru: 1983 - 1990. 
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 Yearly Simulation Outputs for Bauru: 1967 - 2000 

Si
m

ul
at

io
n 

- 1
99

1 

 
 
 
 
 

Si
m

ul
at

io
n 

- 1
99

2 

 

Si
m

ul
at

io
n 

- 1
99

3 

 
 
 
 

 
 
 
 
 
 

Si
m

ul
at

io
n 

- 1
99

4 

 

Si
m

ul
at

io
n 

- 1
99

5 

 
 
 
 
 

 

 
 
 
 

Si
m

ul
at

io
n 

- 1
99

6 

 

Si
m

ul
at

io
n 

- 1
99

7 

 
 

 
 
 

 
 
 
 

Si
m

ul
at

io
n 

- 1
99

8 

 

 

FIGURE 6.27d – Yearly simulation outputs for Bauru: 1991 - 1998. 
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 Yearly Simulation Outputs for Bauru: 1967 - 2000 
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FIGURE 6.27e – Yearly simulation outputs for Bauru: 1999 - 2000. 

6.1.5 Short-Term Forecasts: 2000 – 2004 

The land use changes considered for forecasts were those observed in the last simulation 

period (1988-2000), excluding the transition “industrial to residential use (ind_res)”, for 

it is regarded as unusual taking into account the whole time series. In the next sections, 

the transition matrices as well as simulation outputs for stationary (Markovian) and non-

stationary forecasts of land use change will be presented. 

6.1.5.1 Stationary Forecasts 

A stationary transition matrix for the year 2004 was obtained using the Markov chain 

(Equation 5.66) upon basis of the global transition matrix 1988-2000, in which the 

probability for the transition “ind_res” was purposely set to zero, due to reasons 

exposed in the previous section. These stationary transition probabilities are shown in 

TABLE 6.31. 

 
 
 
 

Non-urban use Commercial use 

Industrial use 

Institutional use 

Services use 

Mixed use 

    Leis./recreat. use    Residential use 
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TABLE 6.31 – Matrix of stationary transition probabilities for Bauru: 2000-2004. 
 

Land Use Non-Urban Residential Commercial Industrial Institutional Services  Mixed Use Leis./Recr. 

Non-Urban 9.9437*10-1 5.3857*10-3 0 2.4048*10-4 0 1.7599*10-10 0 0 
Residential 0 9.9999*10-1 0 0 0 5.8664*10-11 0 0 
Commercial 0 0 1.00 0 0 0 0 0 
Industrial 0 0 0 1.00 0 0 0 0 

Institutional 0 0 0 0 1.00 0 0 0 
Services  0 0 0 0 0 1.00 0 0 

Mixed Use 0 0 0 0 0 0 1.00 0 
Leis./Recr. 0 0 0 0 0 0 0 1.00 

 

6.1.5.2 Non-Stationary Forecasts 

Non-stationary forecasts of land use change have been built with the aid of linear 

regression models relating the area of certain land uses with demographic data and 

economic indicators, as previously mentioned in Section 5.3.2.6, where the destination 

uses of land use transitions were regarded as the dependent variable. 

For the transitions owning the same destination use, namely “nu_serv” and “res_serv”, 

only one linear regression model has been built, leading to the estimation of one 

common transition probability. The shares of transition to services originating from 

non-urban use and from residential use observed in the simulation period 1988-2000 

were assigned to the common transition probability both in the short- and medium-term 

forecasts. In the particular case of Bauru, the transition “non-urban to services” accounts 

for 75% of the total transition into services use, and the remaining 25% corresponds to 

the transition “residential to services”. 

The destination land uses had to be estimated for the quinquennia where the data on 

population and economic performance (see Section 4.2.2) were also available, i.e. for 

1970, 1975, 1980, 1985, 1990, 1995 and 2000. This has been enabled by the yearly 

simulation outputs generated by means of the principal components method (Section 

6.1.4). The simulation outputs produced inside DINAMICA were exported in TIFF 

format, and then imported in IDRISI. Inside IDRISI, the areas of the thematic classes 
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corresponding to the land uses of interest were assessed. The areas of these destination 

land uses together with the demographic and economic data used in the linear regression 

models are seen in TABLE 6.32. 

TABLE 6.32 – Areas of destination land uses, urban population, total and sectorial  

                              GDPs (US$): Bauru – 1970-2000. 

 

Years Dest. Area:  
Residential 

(ha) 

Dest.Area:  
Industrial 

(ha) 

Dest. Area:  
Services 

(ha) 

Urban 

Population 

Total GDP 

(US$ 1998) 

Rural GDP 

(US$ 1998) 

Indust. GDP 

(US$ 1998) 

Comm. GDP 

(US$ 1998) 

Services GDP 

(US$ 1998) 

1970 38,904 1,825 3,147 61,592 526,500.428 24,884.128 124,826.722 136,439.859 376,832.414 
1975 41,642 2,064 3,984 110,166 718,986.733 14,959.686 233,091.154 155,342.626 470,935.893 
1980 45,476 2,531 5,054 159,926 983,887.317 23,486.596 344,767.749 176,902.442 1,572,421.062
1985 53,808 3,865 6,938 215,153 1,222,203.235 62,325.610 428,632.198 201,542.378 731,245.427 
1990 59,651 4,761 8,253 237,954 1,358,236.390 46,922.487 472,677.454 479,003.725 419,780.872 
1995 62,657 5,057 8,338 279,407 2,256,520.737 11,292.207 705,164.856 891,184.402 299,490.980 
2000 65,627 5,341 8,420 310,442 1,906,359.257 6,512.305 627,732.044 713,024.547 467,496.231 

 

SOURCE: Adapted from IPEA (2001, 2003a, 2003b) and FUNDAÇÃO SEADE (2002). 

6.1.5.2.1 “Non-Urban to Residential Use (nu_res)” Linear Regression Model 

Initially, the tests for verifying the independence of observations (see Section 5.3.2.2) 

regarding the outcome variable Yi  (“residential use area – destarea”) showed partial 

acceptance for the autocorrelation function and total acceptance for the partial 

autocorrelation function (FIGURE 6.28). 

The extrapolations in the autocorrelation function are very moderate, for the greater part 

of the observations lie within the confidence interval. Commonly, very rare events 

belonging to a time series in reality are totally independent. Even though there are just a 

few observations for Yi, it is reasonable to suppose that the residential area observed for 

Bauru in lags of five years constitute independent observations. In any case, the partial 

autocorrelation function test provided support for considering the evolution of 

residential use area throughout the years as independent events. 
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FIGURE 6.28 – ACF and partial ACF tests for the residential use area (destarea). 

Still in the exploratory analysis, the independent variables “urban population (urbpop)”, 

“total GDP (totgdp)” and “industrial GDP (indgdp)” show a high correlation with the 

response variable “residential use area (destarea)”. Since these three independent 

variables are highly correlated amongst themselves (TABLE 6.33), only the variable 

“urban population” remains in the final regression model. The scatter plots concerning 

the correlation matrix for the “nu_res” model are seen in FIGURE 6.29. 

The final equation for this univariate model is the following: 

 

,                                  (6.1) 

whose R2 is 0.972, and the p-value of the 95% confidence interval for β0 and β1 is 0.000 

(p < 0.05). 

In the analysis of variance (ANOVA), the sum of squares reflects to which extent Y is 

divergent from Y.  In this sense, for well fit models it is expected that the regression sum 

of squares >>> residual sum of squares, and therefore that the regression sum of squares 

accounts for the majority of the total sum of squares (TABLE 6.34). 

Y  =   β 0  +  β 1  X

Y  =  29 ,705 .243  +   0 .116  .  u rbpop

^
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TABLE 6.33 – Correlation matrix for the “nu_res” model: Bauru, 2000-2004.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6.29 – Correlation matrix scatter plots for the “nu_res” model:  

                                        Bauru, 2000-2004.  

TABLE 6.34 – Analysis of variance for the “nu_res” model: Bauru, 2000-2004.  

 

 
 



 241

Concerning the analysis of residuals, when the model is satisfactorily fit, the 

standardized residuals (see Section 5.3.2.5) and the studentized residuals (adjusted to a 

t-distribution) must lie within the interval [-2,+2]. For the current model, these values 

are –1.442; +1.164 and –1.583; +1.493 respectively for the standardized and studentized 

residuals. Plots of the standardized residuals versus the independent variable (“urbpop”) 

and versus the adjusted predicted value Yi are seen in FIGURE 6.30. As stated in 

Section 5.3.2.5, these plots should not present any kind of correlation pattern. 

 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6.30 – Analysis of residuals for the “nu_res” model: Bauru, 2000-2004.  

 

6.1.5.2.2 “Non-Urban to Industrial Use (nu_ind)” Linear Regression Model 

Likewise the “nu_res” model, the tests for verifying the independence of observations 

regarding the outcome variable Yi  (“industrial use area – destarea”) showed partial 

acceptance for the autocorrelation function and total acceptance for the partial 

autocorrelation function (FIGURE 6.31). The observations of industrial use area 

throughout time were deemed as independent events for the same reasons exposed in 

Section 6.1.5.2.1. 

 

 

 

^
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FIGURE 6.31 – ACF and partial ACF tests for the industrial use area (destarea). 

The independent variables “urban population (urbpop)”, “total GDP (totgdp)” and 

“industrial GDP (indgdp)” show a high correlation with the response variable 

“industrial use area (destarea)”. Since these three independent variables are highly 

correlated amongst themselves (TABLE 6.35), only the variable “industrial GDP” 

remains in the final regression model. Although its correlation with the response 

variable is not the highest, it was judged to be the one which best explains the increases 

in the industrial area in the city in the latest three decades. The scatter plots concerning 

the correlation matrix for the “nu_ind” model are presented in FIGURE 6.32. 

The final equation for this univariate model is the following: 

 

,                                      (6.2) 

whose R2 is 0.979, and the p-value of the 95% confidence interval for β1 is 0.000 (p < 

0.05). Since β0 did not pass the significance test, it was removed from the model. 

In the analysis of variance (ANOVA), the sum of squares reflects to which extent Y is 

divergent from Y.  In this sense, for well fit models it is expected that the regression sum 

of squares >>> residual sum of squares, and therefore that the regression sum of squares 

accounts for the majority of the total sum of squares (TABLE 6.36). 

^

Y  =   β 1  X

Y  =   0 .008343  .  indgdp
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TABLE 6.35 – Correlation matrix for the “nu_ind” model: Bauru, 2000-2004.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6.32 – Correlation matrix scatter plots for the “nu_ind” model:  

                                        Bauru, 2000-2004.  

TABLE 6.36 – Analysis of variance for the “nu_ind” model: Bauru, 2000-2004.  
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Regarding the analysis of residuals, when the model is satisfactorily fit, the standardized 

residuals (see Section 5.3.2.5) and the studentized residuals (adjusted to a t-distribution) 

must lie within the interval [-2,+2]. For the current model, these values are –1.366; 

+1.353 and –1.675; +1.467 respectively for the standardized and studentized residuals. 

Plots of the standardized residuals versus the independent variable (“indgdp”) and 

versus the adjusted predicted value Yi are seen in FIGURE 6.33. According to what was 

stated in Section 5.3.2.5, these plots should not contain any kind of correlation pattern. 

 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6.33 – Analysis of residuals for the “nu_ind” model: Bauru, 2000-2004.  

 

6.1.5.2.3 “Non-Urban/Residential to Services Use (nu/res_serv)” Linear                 

Regression Model 

Likewise the “nu_res” and “nu_ind” models, the tests for verifying the independence of 

observations regarding the outcome variable Yi  (“services use area – destarea”) showed 

partial acceptance for the autocorrelation function and total acceptance for the partial 

autocorrelation function (FIGURE 6.34). The observations of services use area 

throughout the years were judged as independent events for the same reasons exposed in 

Section 6.1.5.2.1. 

 
 
 
 
 

^
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FIGURE 6.34 – ACF and partial ACF tests for the services use area (destarea). 

In the same way as the preceding linear models, the independent variables “urban 

population (urbpop)”, “total GDP (totgdp)” and “industrial GDP (indgdp)” show a high 

correlation with the response variable “services use area (destarea)”. Since these three 

independent variables are highly correlated amongst themselves (TABLE 6.37), only 

the variable “urban population” remains in the final regression model. The scatter plots 

regarding the correlation matrix for the “nu/res_serv” model are presented in FIGURE 

6.35. 

The final equation for this univariate model is the following: 

 

,                                      (6.3) 

whose R2 is 0.948, and the p-value of the 95% confidence interval for β0 is 0.031 and 

for β1  is 0.000 (p < 0.05).  

In the analysis of variance (ANOVA), the sum of squares reflects to which extent Y is 

divergent from Y.  In this sense, for well fit models it is expected that the regression sum 

of squares >>> residual sum of squares, and therefore that the regression sum of squares 

accounts for the majority of the total sum of squares (TABLE 6.38). 

^

Y  =   β 0  +  β 1  X

Y  =  1 ,590 .457   +   0 .02401  .  u rbpop
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TABLE 6.37 – Correlation matrix for the “nu/res_serv” model: Bauru, 2000-2004.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6.35 – Correlation matrix scatter plots for the “nu/res_serv” model:  

                                    Bauru, 2000-2004.  

TABLE 6.38 – Analysis of variance for the “nu/res_serv” model: Bauru, 2000-2004.  
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As to the analysis of residuals, when the model is satisfactorily fit, the standardized 

residuals (see Section 5.3.2.5) and the studentized residuals (adjusted to a t-distribution) 

must lie within the interval [-2,+2]. For the current model, these values are –1.124; 

+1.714 and –1.462; +1.891 respectively for the standardized and studentized residuals. 

Plots of the standardized residuals versus the independent variable (“urbpop”) and 

versus the adjusted predicted value Yi are seen in FIGURE 6.36. According to what was 

stated in Section 5.3.2.5, these plots should not contain any kind of correlation pattern. 

 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6.36 – Analysis of residuals for the “nu/res_serv” model: Bauru, 2000-2004.  

Heuristic projections were made for the values of the independent variables upon basis 

of their past trends. According to what was exposed in Section 5.6, time series analysis 

should have been employed for this end. As time series analysis requires a minimum of 

thirty observations, and as the yearly total and sectorial municipal GDPs of Bauru in the 

latest three decades were not available by the time this research was finished, this 

statistical technique could have not been adopted. 

Two types of non-stationary forecast scenarios of land use change were formulated: an 

optimistic and a pessimist one, with respectively slight over and underestimations of the 

independent variable, as already defined in Section 5.3.3. In the first case, the value of X 

concerning urban population was 346,934 inhabitants for the “nu_res” and 

“nu/res_serv” models; and US$ 676,495.266 regarding industrial GDP for the “nu_ind” 

^
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model. In the pessimist scenario, X assumed the values of 325,369 inhabitants for the 

“nu_res” and “nu/res_serv” models; and US$ 650,964.881 concerning industrial GDP 

for the “nu_ind” model. Using these values of X, transition probabilities were calculated 

for both scenarios in the short-term (TABLES 6.39 and 6.40), employing the conversion 

equations presented in Section 5.3.2.6. 

TABLE 6.39 – Matrix of optimistic transition probabilities for Bauru: 2000-2004. 

 

Land Use Non-Urban Residential Commercial Industrial Institutional Services  Mixed Use Leis./Recr. 

Non-Urban 9.8830*10-1 1.0726*10-2 0 9.7098*10-4 0 3.5050*10-10 0 0 
Residential 0 9.9999*10-1 0 0 0 1.1683*10-10 0 0 
Commercial 0 0 1.00 0 0 0 0 0 
Industrial 0 0 0 1.00 0 0 0 0 

Institutional 0 0 0 0 1.00 0 0 0 
Services  0 0 0 0 0 1.00 0 0 

Mixed Use 0 0 0 0 0 0 1.00 0 
Leis./Recr. 0 0 0 0 0 0 0 1.00 

 

TABLE 6.40 – Matrix of pessimist transition probabilities for Bauru: 2000-2004. 

 

Land Use Non-Urban Residential Commercial Industrial Institutional Services  Mixed Use Leis./Recr. 

Non-Urban 9.9762*10-1 2.3729*10-3 0 4.5373*10-6 0 7.7541*10-11 0 0 
Residential 0 9.9999*10-1 0 0 0 2.5847*10-11 0 0 
Commercial 0 0 1.00 0 0 0 0 0 
Industrial 0 0 0 1.00 0 0 0 0 

Institutional 0 0 0 0 1.00 0 0 0 
Services  0 0 0 0 0 1.00 0 0 

Mixed Use 0 0 0 0 0 0 1.00 0 
Leis./Recr. 0 0 0 0 0 0 0 1.00 

 

6.1.5.3 Forecasts Simulation Outputs 

Taking into account the same sets of independent variables selected for the last 

simulation period (1988-2000) and their respective weights of evidence (TABLE 6.25), 

stationary, optimistic and pessimist simulation outputs were generated for Bauru in the 

short-term (2004), using the TABLES 6.31, 6.39 and 6.40 to respectively set the total 

amount of land use change. These simulation outputs are presented in FIGURE 6.37. 



 249

 
Land Use 2000 

 

 
Stationary Scenario - 2004 

  
 
 
 
 
 
 
 
 
 

 
Optimistic Scenario - 2004 

 

 

Pessimist Scenario - 2004 

  
 
 
 
 
 
 
 
 
 
 

 

 

FIGURE 6.37 – Stationary, optimistic and pessimist simulations for 2004 compared to 

                            the actual land use in Bauru in 2000. 

It is observable from the above forecast simulations that the expansion of the services 

areas is meaningless. This does not imply that there will be no economic growth in the 

services sector in the near term, but that the areas sheltering services will undergo 

densification processes instead. 

The main areas where new residential settlements arise are located in the northern and 

southern sectors of Bauru, close to the N-S services and commercial axes. This 

Non-urban use Commercial use 

Industrial use 

Institutional use 

Services use 

Mixed use 

    Leis./recreat. use    Residential use 
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expansion pattern complies with trends observed in a recent official city map of Bauru, 

issued in 2003 (DAE, 2003). 

As previously explained in Section 5.3.3, only mild variations in the projections of 

population and economic data were introduced. This is due to the fact that, in view of 

the administrative continuity trend demonstrated by the current federal government as 

well as of steadfastly decreasing population growth rates, the demographic and 

macroeconomic scenarios of Brazil in the latest years are expected to reproduce 

themselves in the current decade.  

6.1.6 Medium-Term Forecasts: 2000 – 2007 

6.1.6.1 Stationary Forecasts 

A stationary transition matrix for the year 2007 was obtained using the Markov chain 

(Equation 5.66) upon basis of the global transition matrix 1988-2000, in which the 

transition “ind_res” was purposely set to zero. These stationary transition probabilities 

are shown in TABLE 6.41. 

TABLE 6.41 – Matrix of stationary transition probabilities for Bauru: 2000-2007. 
 

Land Use Non-Urban Residential Commercial Industrial Institutional Services  Mixed Use Leis./Recr. 

Non-Urban 9.9034*10-1 9.2448*10-3 0 4.1278*10-4 0  3.0210*10-10 0 0 
Residential 0 9.9999*10-1 0 0 0 1.0070*10-10 0 0 
Commercial 0 0 1.00 0 0 0 0 0 
Industrial 0 0 0 1.00 0 0 0 0 

Institutional 0 0 0 0 1.00 0 0 0 
Services  0 0 0 0 0 1.00 0 0 

Mixed Use 0 0 0 0 0 0 1.00 0 
Leis./Recr. 0 0 0 0 0 0 0 1.00 

 

6.1.6.2 Non-Stationary Forecasts 

The same linear regression models used for short-term predictions have been used in the 

medium-term forecasts. For the optimistic scenario, the value of X concerning urban 

population was 350,119 inhabitants for the “nu_res” and “nu/res_serv” models; and 

US$ 694,833.993 regarding industrial GDP for the “nu_ind” model. In the pessimist 
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scenario, X assumed the values of 322,877 inhabitants for the “nu_res” and 

“nu/res_serv” models; and US$ 651,084.742 concerning industrial GDP for the 

“nu_ind” model. Using these values of X, transition probabilities were calculated for 

both scenarios in the medium-term (TABLES 6.42 and 6.43), employing the conversion 

equations presented in Section 5.3.2.6. 

TABLE 6.42 – Matrix of optimistic transition probabilities for Bauru: 2000-2007. 
 

Land Use Non-Urban Residential Commercial Industrial Institutional Services  Mixed Use Leis./Recr. 

Non-Urban 9.7992*10-1 1.8412*10-2 0 1.6667*10-3 0 6.0165*10-10 0 0 
Residential 0 9.9999*10-1 0 0 0 2.0055*10-10 0 0 
Commercial 0 0 1.00 0 0 0 0 0 
Industrial 0 0 0 1.00 0 0 0 0 

Institutional 0 0 0 0 1.00 0 0 0 
Services  0 0 0 0 0 1.00 0 0 

Mixed Use 0 0 0 0 0 0 1.00 0 
Leis./Recr. 0 0 0 0 0 0 0 1.00 

 

TABLE 6.43 – Matrix of pessimist transition probabilities for Bauru: 2000-2007. 
 

Land Use Non-Urban Residential Commercial Industrial Institutional Services  Mixed Use Leis./Recr. 

Non-Urban 9.9592*10-1 4.0732*10-3 0 7.7884*10-6 0 1.3310*10-10 0 0 
Residential 0 9.9999*10-1 0 0 0 4.4367*10-11 0 0 
Commercial 0 0 1.00 0 0 0 0 0 
Industrial 0 0 0 1.00 0 0 0 0 

Institutional 0 0 0 0 1.00 0 0 0 
Services  0 0 0 0 0 1.00 0 0 

Mixed Use 0 0 0 0 0 0 1.00 0 
Leis./Recr. 0 0 0 0 0 0 0 1.00 

 

6.1.6.3 Forecasts Simulation Outputs 

Taking into account the same sets of independent variables selected for the last 

simulation period (1988-2000) and their respective weights of evidence (TABLE 6.25), 

stationary, optimistic and pessimist simulation outputs were generated for Bauru in the 

medium-term (2007), using the TABLES 6.41, 6.42 and 6.43 to respectively set the 

total amount of land use change. These simulation outputs are presented in FIGURE 

6.38. 
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FIGURE 6.38 – Stationary, optimistic and pessimist simulations for 2007 compared to 

                            the actual land use in Bauru in 2000. 

The medium-term forecasts simulations represent an enhancement of the residential 

expansion patterns observed in the official city map of 2003 (DAE, 2003), in which new 

residential areas are located in the northern and southern sectors of Bauru, close to the 

N-S services and commercial axes. 
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6.2 Piracicaba 

As previously mentioned in Section 3.4.2.2, Piracicaba has distinguished itself as an 

important sugar cane producer pole in São Paulo State, and gathers huge sugar cane and 

alcohol agribusiness complexes. The city also shelters a very diversified industrial park, 

with big-sized and high technology plants. 

The urban framework of Piracicaba is comparatively less fragmented than the one of 

Bauru. The city lays a great emphasis on the river, which is a landmark for the social 

life of its inhabitants. The main central commercial zone borders the green areas 

established along the Piracicaba river margins, as do the huge areas dedicated for 

universities and colleges campii in the northern and northeastern portions of the city. 

In contrast to the concentrated pattern of industrial development of Bauru, industrial 

districts in Piracicaba are scattered throughout the urban area. Services axes, on their 

turn, show a more or less radio-concentric pattern, departing from the main central 

commercial zone. As the city expands across both margins of the Piracicaba river, 

commercial nuclei are found on both sides of the river.  

In the next sections, the results for the land use change simulations throughout the time 

series ranging from 1962 to 1999 will be presented, followed by the forecasts 

simulations generated for the short- and medium-term, respectively 2004 and 2007. 

6.2.1 Simulation Period: 1962 - 1985 

There are no official data about the population of Piracicaba in 1962. As already stated 

in Section 6.1.1, the first demographic census in Brazil was held in 1970 (IBGE, 1971), 

and the total population of this municipality at that time was 76,439 inhabitants, out of 

which 73,153 inhabitants lived in urban areas.  In the population estimates carried out in 

the year 1985 (IBGE, 1987), the total population of Piracicaba rose to 252,079 people, 

from which 198,407 were urban inhabitants. 

 
 



 254

 

 

 

 

 

 

 

 

FIGURE 6.39 – Piracicaba official city map in 1962 (reconstitution map). 

                                      SOURCE: LSN-ESALQ-USP (2003) and SEMUPLAN (1985). 

 

 

 

 

 

 

 

 

FIGURE 6.40 – Piracicaba TM – 5 image and official city map in 1985. 

                                        SOURCE: INPE (1985) and SEMUPLAN (1985). 
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The impacts of this population growth on the urban area extension can be seen in 

FIGURES 6.39 and 6.40, which present the city maps for the initial and final time of 

simulation. 

The initial and final land use maps used in the simulation period 1962 – 1985 (FIGURE 

6.41) were elaborated upon basis of the two city maps previously shown, of 

generalization procedures applied to the zoning legislation issued in 1964 (Piracicaba, 

1964) and to the original land use map of 1985 (SEMUPLAN, 1985) as well as upon 

basis of the digital satellite image of Piracicaba in 1985 (INPE, 1985). 

 

 

 

 

 

 

 

 

 

FIGURE 6.41 – Generalized land use map in Piracicaba in 1962 (left) and 1985 (right). 

A cross-tabulation operation was made between both land use maps (FIGURE 6.42) so 

as to generate transition percentages for the existent types of land use change (TABLES 

6.44 and 6.45). 
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FIGURE 6.42 – Cross-tabulation map between Piracicaba land use maps of 1962  

                                 and 1985. 

TABLE 6.44 – Existent land use transitions in Piracicaba: 1962–1985. 

 

NOTATION LAND USE TRANSITION 

NU_RES Non-urban to residential 

NU_IND Non-urban to industrial 
NU_INST Non-urban to institutional 
NU_SERV Non-urban to services 
NU_LEIS Non-urban to leis./recreation 

RES_COM Residential to commercial 
RES_SERV Residential to services 
SERV_COM Services to commercial 
INST_RES Institutional to residential 
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TABLE 6.45 – Matrix of global transition probabilities for Piracicaba: 1962–1985. 

 

Land Use Non-urban Resid. Comm. Industr. Instit. Services Water B.   Leis./Recr. 

Non-urban 0.8332 0.1103 0 0.0341 0.0163 0.0035 0 0.0026 

Resid. 0 0.6439 0.3122 0 0 0.0439 0 0 

Comm. 0 0 1 0 0 0 0 0 

Industr. 0 0 0 1 0 0 0 0 

Instit. 0 0.0252 0 0 0.9745 0 0 0 

Services 0 0 0.7505 0 0 0.2495 0 0 

Water Bodies 0 0 0 0 0 0 1 0 

Leis./Recr.  0 0 0 0 0 0 0 1 

 

For the simulation period 1962–1985, eleven variables have been selected (LSN-

ESALQ-USP, 2003; SEMUPLAN, 1985), some of which are presented in FIGURE 

6.43. The notations utilized for each map of variable employed in this simulation 

experiment are shown in TABLE 6.46. 

TABLE 6.46 – Independent variables defining land use change in Piracicaba: 1962–1985. 

 
NOTATION PHYSICAL OR SOCIOECONOMIC LAND USE CHANGE VARIABLE 

dist_riv Distances to rivers. 

dist_com Distances to the main commercial zone. 

dist_ind Distances to the industrial zone. 

dist_inst Distances to institutional zones. 

dist_res Distances to residential zones. 

dist_leis Distances to leisure/recreation zones. 

main_rds Distances to main paved and non-paved interurban roads. 

urb_ext Distances to main urban roads and their extensions. 

int_rds Distances to roads interconnecting isolated residential settlements. 

ewper_rds Distances to peripheral e-w roads. 

trv_rds Distances to transversal (sw-ne) interurban roads. 
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                                               a )                                                 b)                                                 c) 

 

 

 

 

 

                                               d )                                                 e)                                                 f) 

FIGURE 6.43 – Independent variables used to explain the land use transitions in 

                                 Piracicaba during the simulation period 1962 – 1985: a) distances 

                                 to institutional zones; b) distances to rivers; c) distances to roads   

                                 interconnecting isolated residential settlements; d) distances to 

                                 main urban roads and their extensions; e) distances to residential 

                                 zones; f) distances to main paved and non-paved interurban roads.  

TABLE 6.47 indicates which variable was selected to explain each of the nine existent 

transitions; TABLE 6.48 presents the values obtained for the Cramer´s Coefficient (V) 

and the Joint Information Uncertainty (U) for the pairs of variables used to explain the 

same type of land use transition; and finally TABLE 6.49 presents the values for the 

positive weights of evidence.  
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TABLE 6.47 – Selection of variables defining land use change in Piracicaba: 1962-1985.                            

 

NOTATION 
NU_ 

RES 

NU_ 

IND 

NU_ 

INST 

NU_ 

SERV 

NU_ 

LEIS 

RES_ 

COM 

RES_ 

SERV 

SERV_ 

COM 

INST_ 

RES 

dist_riv     ♦     
dist_com  ♦  ♦  ♦ ♦ ♦ ♦ 
dist_ind   ♦       
dist_inst  ♦ ♦       
dist_res ♦   ♦ ♦    ♦ 
dist_leis     ♦    ♦ 

main_rds ♦         
urb_ext    ♦   ♦   
int_rds      ♦    

ewper_rds  ♦        
trv_rds   ♦       

 

TABLE 6.48 – Associations between independent variables - Piracicaba: 1962–1985. 

VARIABLE A VARIABLE B CRAMER’S STATISTIC 
(VA,B) 

UNCERTAINTY 
(UA,B) 

dist_riv dist_leis 0.2071 0.1219 
 dist_res 0.1367 0.0387 

dist_com dist_inst 0.2513 0.1630 
 dist_leis 0.2967 0.1619 
 dist_res 0.5375 0.4524 
 ewper_rds 0.2152 0.1007 
 urb_ext 0.3185 0.2243 
 int_rds 0.2708 0.1791 

dist_ind trv_rds 0.1650 0.0920 
dist_inst ewper_rds 0.2343 0.1470 

 dist_ind 0.1969 0.1279 
 trv_rds 0.1440 0.0611 

dist_res dist_leis 0.2588 0.1208 
 main_rds 0.2962 0.1607 
 urb_ext 0.3229 0.2029 

As none of the association measure values surpassed the threshold of 0.50 

simultaneously for both indices, no variables preliminarily selected for modeling have 

been discarded from the analysis.  
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TABLE 6.49 – Values of W+ for the selected independent variables - Piracicaba:  

                                1962–1985. 

 
Positive Weights of Evidence  W+ 

 

 
Land Use 
Transition 

 
Variable 

1 2 3 4 5 6 7 
NU_RES dist_res1 3.5372 2.8824 2.4818 1.2739 -0.7771 -0.7661 0 

 main_rds2 0.9624 0.7108 0.3230 -0.8406 0 0 0 
NU_IND dist_com3 0 0 0 0 -0.3359 0.6469 -4.1709 

 dist_inst4 1.0527 1.7593 1.8492 1.7601 1.6944 1.6070 -0.9707 
 ewper_rds2 0.4117 0.7181 1.1100 1.8514 1.9465 -0.6499 -2.0727 

NU_INST dist_inst4 2.3179 2.5599 2.5427 2.3438 2.2362 1.5974 0 
 dist_ind5 2.5498 3.3498 3.8420 3.7771 3.4886 2.0421 0 
 trv_rds6 1.7467 1.6864 1.9748 1.6190 1.7839 1.2866 -6.5520 

NU_SERV dist_res1 2.5528 2.5745 1.5656 0.6994 -0.6624 0 0 

 dist_com3 0 0 2.0271 2.2408 1.2789 -2.0861 0 
 urb_ext7 5.7160 1.9544 0.0494 0.5500 -0.0357 0 0 

NU_LEIS dist_res1 2.4515 3.0108 2.2754 -1.4958 0 0 0 

 dist_riv8 3.0856 0.9169 -0.4063 0 0 0 0 

 dist_leis8 5.6992 4.8919 3.4233 3.5253 3.4364 1.2944 0 
RES_COM dist_com3 2.6250 1.4373 -0.8688 0 0 0.6390 0 

 int_rds9 0.2626 0.4668 -0.1211 -0.2062 0.2615 0 0 
RES_SERV dist_com3 0 -1.3292 -0.2857 1.5782 0 0 0 

 urb_ext7 3.2240 -0.2676 -2.8540 0 0 0 0 
SERV_COM dist_com3 0 0 -2.9027 0 0 0 0 

IND_RES dist_res1 1.3750 1.1637 0.2279 0 0 0 0 

 dist_com3 0 0 1.3783 0.2638 -2.1116 0 0 
 dist_leis8 3.1220 -1.1165 0 0 0 0 -0.3929 

Note: Distance bands in meters 

1 1: 0 -250; 2: 250-500; 3: 500-1000; 4: 1000-1750; 5: 1750-4500; 6: 4500-6500; 7: >6500 
2 1: 0 -250; 2: 250-500; 3: 500-1000; 4: 1000-2000; 5: 2000-3000; 6: 3000-4500; 7: >4500 
3 1: 0 -500; 2: 500-1000; 3: 1000-2000; 4: 2000-3000; 5: 3000-4500; 6: 4500-8000; 7: >8000 
4 1: 0 -250; 2: 250-500; 3: 500-750; 4: 750-1000; 5: 1000-1500; 6: 1500-2500; 7: >2500 
5 1: 0 -250; 2: 250-500; 3: 500-750; 4: 750-1000; 5: 1000-1500; 6: 1500-3000; 7: > 3000 
6 1: 0 -50; 2: 50-100; 3: 100-150; 4: 150-200; 5: 200-500; 6: 500-1500; 7: > 1500 
7 1: 0 -50; 2: 50-100; 3: 100-150; 4: 150-200; 5: 200-500; 6: 500-1000; 7: > 1000 
8 1: 0 -250; 2: 250-500; 3: 500-750; 4: 750-1000; 5: 1000-1250; 6: 1250-1500; 7: > 1500 
9 1: 0 -100; 2: 100-250; 3: 250-550; 4: 550-1000; 5: 1000-3000; 6: 3000-5000; 7: > 5000 
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Considering the calibration process carried out for this experiment, it became clear that 

the probability of certain non-urban areas in the city of Piracicaba to shelter residential 

settlements (“nu_res land use transition”) largely depends on the previous existence of 

this type of settlements in their surroundings, because this implies the possibility of 

extending existing nearby infrastructure. It also depends on the available accessibility to 

such areas. 

As to the transition of “non-urban areas to industrial use (nu_ind)”, there are three great 

driving forces. Firstly, industrial areas demand the proximity to institutional areas, for 

the latter are located in the outskirts, and therefore, in cheaper plots. Secondly, although 

new industrial settlements take place in more peripheral areas, they would rather be 

located within a reasonable distance from central clusters of commercial activities, 

which also account for the logistical support of industrial districts. And lastly, industrial 

areas request good accessibility conditions, in view of the continuously increasing need 

of raw material inflow and final production outflow. 

Concerning the implementation of large institutional areas (“nu_inst”), it is observable 

that they arise close to industrial areas, in view of the need of large and cheap plots for 

their expansion.  They are also located near peripheral roads and previously existent 

institutional areas, since they grow as extensions of already established institutional 

zones.  

Regarding the transition of “non-urban areas to services use (nu_serv)”, three major 

factors are crucial: the proximity of these areas to commercial zones, their closeness to 

areas of residential use, and last but not least, their strategic location in relation to the 

main urban roads of Piracicaba. The first factor accounts for the suppliers market (and 

in some cases also consumers market) of services; the second factor represents the 

consumers market itself; and the third and last factor corresponds to the accessibility for 

both markets related to the services use. 

The creation of leisure and recreation zones (“nu_leis”), on its turn, takes place adjacent 

to already existent zones of this type, since they are commonly created as extensions of 

previous leisure and recreation areas. These areas are created along low and flat 
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riverbanks, since they are floodable and hence unsuitable for sheltering other urban 

uses. 

Leisure and recreation zones are as well strategically located in relation to their 

catchment area, i.e. near central residential areas, which are those sheltering higher 

population densities. 

The transition “residential to services use (res_serv)” supposes good accessibility 

conditions and a location within a reasonable distance from the suppliers (and in some 

cases, also consumers) market, represented by the central commercial area. 

The conversion of “residential use into commercial zones (res_com)” demonstrated that 

farther residential settlements are prone to develop their own commercial nuclei, which 

are likely to occur along roads of greater hierarchical importance, as a means to assure 

both strategic visibility and good accessibility conditions. Furthermore, residential 

settlements located very near the central commercial area are susceptible of giving place 

to commercial use. 

Regarding the change of services into commercial use, this can be explained by the fact 

that services axes established very close to the central commercial area are prone to be 

“devoured” by the latter. 

And finally, the last type of transition concerns the transformation of institutional areas 

into residential zones. This conversion regards institutional areas located in the 

immediacies of residential settlements, which are valorized by their proximity to leisure 

and commercial areas. 

The maps of estimated transition probabilities surfaces, generated by DINAMICA upon 

basis of the values of the positive weights of evidence (W+), together with their 

respective land use transition maps are seen in FIGURES 6.44 a, 6.44b and 6.44c. 

 

 



 263

 

 

Transition Probabilities Maps from 
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Land Use Transition Maps              
Piracicaba: 1962-1985 
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FIGURE 6.44a – Estimated transition probability surfaces and land use change - Piracicaba. 
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Transition Probabilities Maps from 
Weights of Evidence 

Land Use Transition Maps              
Piracicaba: 1962-1985 
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FIGURE 6.44b – Estimated transition probability surfaces and land use change - Piracicaba. 
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Transition Probabilities Maps from 
Weights of Evidence 

Land Use Transition Maps              
Piracicaba: 1962-1985 

 

 

FIGURE 6.44c – Estimated transition probability surfaces and land use change - Piracicaba. 

The three best simulation results produced for the period 1962-1985 are presented in 

FIGURE 6.45. The internal DINAMICA parameters associated with these optimal 

simulations are seen in TABLE 6.50, whose statistical validation tests for windows size 

of 3x3, 5x5 and 9x9, and k = 0.5 are listed on TABLE 6.51. 

TABLE 6.50 – DINAMICA internal parameters for the simulation of urban land use  

                             change in Piracicaba: 1962–1985. 

 

Land Use 
Transition 

Average Size of 
Patches 

Variance of 
Patches Size 

Proportion of 
`Expander´ 

Proportion of 
`Patcher´ 

Number of 
Iterations 

NU_RES 300 30 0.85 0.15 300 
NU_IND 1500 1 0.10 0.90 300 
NU_INST 2000 1 0 1.00 300 
NU_SERV 5 0 0.05 0.95 300 
NU_LEIS 100 1 0.15 0.85 300 
RES_COM 300 10 0.20 0.80 300 
RES_SERV 8 0 0.05 0.95 300 
SERV_COM 100 1 0.65 0.35 300 
INST_RES 20 1 0.50 0.50 300 

IN
ST

_R
E

S 

 
 

 
 

areas where land use transitions occurred  P=0         null probability 

(increasing ranking) areas  where  no  transitions  occurred 

areas not considered for transition analyses 

Legends:

     maximum probability  P=1 
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TABLE 6.51 – Goodness-of-fit tests for the best land use change simulations of  

                         Piracicaba: 1962-1985. 
 

Simulations Multiple Resolution Goodness-of-Fit (F) 

S1 F = 0.842271 

S2 F = 0.834702 

S3 F = 0.840050 
 
 

 
Land Use 1985 

 

 
Simulation 1 

 
 
 
 
 
 
 
 
 
 

 

 
Simulation 2 

 

 
Simulation 3 

  
 
 
 
 
 
 

 
 
 
 

 
 

FIGURE 6.45 – The best simulations compared to the actual land use in Piracicaba in 

                             1985. 

 6.2.2 Simulation Period: 1985 - 1999 

Non-urban use Commercial use 

Industrial use 

Institutional use 

Services use 

Water bodies 

    Leis./recreat. use    Residential use 
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FIGURE 6.46 – Piracicaba TM – 5 image and official city map in 1985. 

                                        SOURCE: INPE (1985) and SEMUPLAN (1985). 

 

 

 

 

 

 

 

 

FIGURE 6.47 – Piracicaba TM – 5 image and official city map in 1999. 

                                        SOURCE: INPE (1999) and SEMUPLAN (1999). 

          Scale 

          Scale 

          Scale 
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As previously stated in Section 6.2.1, the population of Piracicaba at the initial time of 

this simulation period was 252,079 inhabitants, from which 198,407 people were urban 

inhabitants. In 1999, the total population accounted 319,104, out of which 309,531 

inhabitants lived in urban areas (IBGE, 1999). The population growth rate for this period 

is around 1.56%. The effects of this population growth on the urban area extension can 

be seen in FIGURES 6.46 and 6.47, which present the official city maps for the initial 

and final time of simulation. 

The initial and final land use maps used in the simulation period 1985 – 1999 (FIGURE 

6.48) were elaborated upon basis of the two official city maps previously shown, of 

generalization procedures applied to the land use maps of 1985 and 1999 (SEMUPLAN, 

1985, 1999) and of the digital satellite images of Piracicaba in 1985 and 1999 (INPE, 

1985, 1999). 

 

 

 

 

 

 

 

 

FIGURE 6.48 – Generalized land use map in Piracicaba in 1985 (left) and 1999 (right). 

A cross-tabulation operation was made between both land use maps (FIGURE 6.49) so 

as to generate transition percentages for the existent types of land use change (TABLES 

6.52 and 6.53). 

    Residential use 

Non-urban use Commercial use 

Industrial use 

Institutional use 

Services use 

Water bodies 

    Leis./recreat. use

     0                        5.0 km      0                        5.0 km 
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FIGURE 6.49 – Cross-tabulation map between Piracicaba land use maps of 1985 

                                 and 1999. 

TABLE 6.52 – Existent land use transitions in Piracicaba: 1985–1999. 

 
NOTATION LAND USE TRANSITION 

NU_RES Non-urban to residential 

NU_IND Non-urban to industrial 

NU_INST Non-urban to institutional 

NU_LEIS Non-urban to leisure/recreation 

 

TABLE 6.53 – Matrix of global transition probabilities for Piracicaba: 1985–1999. 

 

Land Use Non-urban Resid. Comm. Industr. Instit. Services Water  B. Leis./Recr. 

Non-urban 0.8353 0.1501 0 0.0113 0.0028 0 0 0.0005 

Resid. 0 1 0 0 0 0 0 0 

Comm. 0 0 1 0 0 0 0 0 

Industr. 0 0 0 1 0 0 0 0 

Instit. 0 0 0 0 1 0 0 0 

Services 0 0 0 0 0 1 0 0 

Water  Bodies 0 0 0 0 0 0 1 0 

Leis./Recr.  0 0 0 0 0 0 0 1 
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For the simulation period 1985–1999, eight variables have been selected (SEMUPLAN, 

1999), most of which are shown in FIGURE 6.50. 

 

 

 

 

                                               a )                                                 b)                                                 c) 

 

 

 

 

 

                                               d )                                                 e)                                                 f) 

FIGURE 6.50 – Independent variables used to explain the land use transitions in 

                                 Piracicaba during the simulation period 1985 – 1999: a) distances 

                                 to institutional zones; b) distances to commercial zones; c) 

                                 distances to leisure and recreation zones; d) distances to main 

                                 paved and non-paved urban and interurban roads; e) distances to 

                                 rivers; f) distances to residential zones.  

TABLE 6.54 shows the notations utilized for each map of variable employed in this 

simulation experiment; TABLE 6.55 indicates which variable was selected to explain 

each of the five existent transitions; TABLE 6.56 presents the values obtained for the 

Cramer´s Coefficient (V) and the Joint Information Uncertainty (U) for the pairs of 

variables used to explain the same type of land use transition; and finally TABLE 6.57 

presents the values for the positive weights of evidence.  
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TABLE 6.54 – Independent variables defining land use change in Piracicaba: 1985–1999. 

 
NOTATION PHYSICAL OR SOCIOECONOMIC LAND USE CHANGE VARIABLE 

dist_riv Distances to rivers. 

dist_com Distances to commercial zones. 

dist_ind Distances to small-sized industrial zones. 

dist_inst Distances to institutional zones. 

dist_res Distances to residential zones. 

dist_leis Distances to leisure/recreation zones. 

int_rds Distances to main interurban roads. 

main_rds Distances to main paved and non-paved urban and interurban roads. 

 

TABLE 6.55 – Selection of variables defining land use change in Piracicaba: 1985–1999. 

 
NOTATION NU_RES NU_IND NU_INST NU_LEIS 

dist_riv    ♦ 

dist_com  ♦   

dist_ind  ♦   

dist_inst   ♦  

dist_res ♦ ♦  ♦ 

dist_leis    ♦ 

int_rds  ♦ ♦  

main_rds ♦    

 

Likewise the preceding simulation period, as none of the association measure values 

surpassed the threshold of 0.50 simultaneously for both indices, no variables 

preliminarily selected for modeling have been discarded from the analysis.  

 

 



 272

TABLE 6.56 – Associations between independent variables - Piracicaba: 1985–1999. 

 

VARIABLE A VARIABLE B CRAMER’S STATISTIC 
(VA,B) 

UNCERTAINTY 
(UA,B) 

dist_res dist_riv 0.1120 0.0252 
 dist_com 0.3955 0.2690 
 dist_leis 0.1445 0.0674 
 dist_ind 0.1518 0.0492 
 main_rds 0.3141 0.1715 
 int_rds 0.2458 0.1025 

dist_com dist_ind 0.1743 0.0537 
 int_rds 0.1139 0.0243 

int_rds dist_ind 0.3339 0.1764 
 dist_inst 0.1808 0.0870 

dist_leis dist_riv 0.2328 0.1368 

 

TABLE 6.57 – Values of W+ for the selected independent variables - Piracicaba:  

                                1985–1999. 

 
 

Positive Weights of Evidence  W+ 
 

 
Land Use 
Transition 

 
Variable 

1 2 3 4 5 6 7 

NU_RES dist_res1 2.1009 1.3378 0.2675 -0.7339 -1.3935 0 0 

 main_rds2 1.2736 0.9527 0.4770 -0.8162 -3.7650 0 0 

NU_IND dist_com3 0 0 0 0 -1.5333 1.0890 -2.8871 

 dist_ind4 2.8956 0 0 0 0 0.8313 0 

 dist_res1 -0.5849 0.5347 1.1667 0.7213 0 0 0 

 int_rds5 2.2310 0.9677 0.5135 0.9252 0 0 0 

NU_INST dist_inst6 4.0903 3.5881 3.0078 -0.4728 0 0 0 

 int_rds5 1.2368 1.7747 1.7116 0 0 0 0 

NU_LEIS dist_riv7 1.2483 2.8570 1.2788 0 0 0 0 

 dist_res1 2.2379 0.0639 0 0 0 0 0 

 dist_leis7 7.9451 4.0632 0 0 0 0 0 
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Note: Distance bands in meters 
1 1: 0 -250; 2: 250-500; 3: 500-1000; 4: 1000-1750; 5: 1750-4500; 6: 4500-6500; 7: > 6500 
2 1: 0 -250; 2: 250-500; 3: 500-1000; 4: 1000-2000; 5: 2000-3000; 6: 3000-4500; 7: > 4500 
3 1: 0 -1000; 2: 1000-2000; 3: 2000-3000; 4: 3000-4000; 5: 4000-5000; 6: 5000-7500; 7: >7500 
4 1: 0 -750; 2: 750-1500; 3: 1500-2500; 4: 2500-3500; 5: 3500-4500; 6: 4500-6500; 7: >6500 
5 1: 0 -250; 2: 250-750; 3: 750-1250; 4: 1250-2250; 5: 2250-3250; 6: 3250-4250; 7: > 4250 
6 1: 0 -250; 2: 250-500; 3: 500-750; 4: 750-1000; 5: 1000-1500; 6: 1500-2500; 7: > 2500 
7 1: 0 -250; 2: 250-500; 3: 500-750; 4: 750-1000; 5: 1000-1250; 6: 1250-1500; 7: > 1500 

Likewise the preceding period (1962-1985), the transition “non-urban to residential use” 

largely depends on the previous existence of residential settlements in their 

surroundings, because this implies the possibility of extending existing nearby 

infrastructure. It also depends on the available accessibility to such areas. In the same 

way as the former simulation period, the implementation of large institutional areas 

(“nu_inst”) takes place near peripheral roads and previously existent institutional areas, 

since they grow as extensions of already established institutional zones.  

The expansion of industrial districts requires the proximity to previously existent 

industrial zones and the availability of road access. This transition also supposes the 

nearness to the labor force supply centers (peripheral residential areas) and also a 

location not too distant from commercial zones, since industrial areas depend on 

commercial activities for logistical support. And finally, the arguments used in the 

former simulation period to explain the conversion of non-urban use into leisure and 

recreation zones are also valid for the current simulation period. 

The maps of estimated transition probabilities surfaces, generated by DINAMICA upon 

basis of the values of the positive weights of evidence (W+), together with their 

respective land use transition maps are seen in FIGURE 6.51.  The black color in the 

maps to the left correspond to areas of null probability, the blue refers to areas of low 

transition probability, whereas the red color accounts for areas with the highest 

transition probabilities. In the maps to the right, the blue color refers to areas where the 

considered land use transition took place, and the green color, to areas where the origin 

land use remained as such or changed to other uses. The black color in these maps 

relates to areas with an origin use different from the one of the transition under 

consideration. 
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Transition Probabilities Maps from 
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Land Use Transition Maps              
Piracicaba: 1985-1999 
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FIGURE 6.51 – Estimated transition probability surfaces and land use change - Piracicaba. 
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The three best simulation results produced for the period 1985-1999 are presented in 

FIGURE 6.52. The internal DINAMICA parameters associated with these optimal 

simulations are seen in TABLE 6.58, whose statistical validation tests for windows size 

of 3x3, 5x5 and 9x9, and k = 0.5 are listed on TABLE 6.59. 

TABLE 6.58 – DINAMICA internal parameters for the simulation of urban land use  

                             change in Piracicaba: 1985–1999. 

 

Land Use 
Transition 

Average Size of 
Patches 

Variance of 
Patches Size 

Proportion of 
`Expander´ 

Proportion of 
`Patcher´ 

Number of 
Iterations 

NU_RES 300 30 0.85 0.15 10 

NU_IND 150 1 0.45 0.55 10 

NU_INST 75 1 1.00 0 10 

NU_LEIS 20 0 1.00 0 10 

 

TABLE 6.59 – Goodness-of-fit tests for the best land use change simulations of 

                         Piracicaba: 1985-1999. 

 

Simulations Multiple Resolution Goodness-of-Fit (F) 

S1 F = 0.862682 

S2 F = 0.864872 

S3 F = 0.864644  
 
 

 
 
 
 

areas where land use transitions occurred  P=0         null probability 

(increasing ranking) areas  where  no  transitions  occurred 

areas not considered for transition analyses 

Legends:

     maximum probability  P=1 
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Land Use 1999 

 

 
Simulation 1 

 
 
 
 
 
 
 
 
 
 

 

 
Simulation 2 

 

 
Simulation 3 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 

 

FIGURE 6.52 – The best simulations compared to the actual land use in Piracicaba in 

                             1999. 
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Services use 

Water bodies 

    Leis./recreat. use    Residential use 
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6.2.3 Yearly Simulations: 1962 – 1999 

According to Equation (5.69) in Section 5.3.1, the global matrix of transition can be 

decomposed in annual transition probabilities by the principal components method. This 

has been done separately for each simulation period (TABLES 6.60 and 6.61). The 

yearly simulation outputs can be seen in FIGURES 6.53a, 6.53b, 6.53c, 6.53d and 

6.53e. 

TABLE 6.60 – Matrix of yearly transition probabilities for Piracicaba: 1962–1985. 
 

Land Use Non-Urban Residential Commercial Industrial Institutional Services  Water B. Leis./Recr. 

Non-Urban 9.9210*10-1 6.4258*10-3 0 1.6166*10-3 7.8241*10-4 4.2635*10-5 0 1.2184*10-4 

Residential 0 9.8105*10-1 1.4547*10-2 0 0 4.4082*10-3 0 0 

Commercial 0 0 1.00 0 0 0 0 0 

Industrial 0 0 0 1.00 0 0 0 0 

Institutional 0 1.3608*10-3 0 0 9.9889*10-1 0 0 0 

Services  0 0 5.8574*10-2 0 0 9.4143*10-1 0 0 

Water B. 0 0 0 0 0 0 1.00 0 

Leis./Recr. 0 0 0 0 0 0 0 1.00 

 
 

TABLE 6.61 – Matrix of yearly transition probabilities for Piracicaba: 1985–1999. 
 

Land Use Non-Urban Residential Commercial Industrial Institutional Services  Water B. Leis./Recr. 

Non-Urban 9.8723*10-1 1.1639*10-2 0 8.7816*10-4 2.1349*10-4 0 0 4.2532*10-5 

Residential 0 1.00 0 0 0 0 0 0 

Commercial 0 0 1.00 0 0 0 0 0 

Industrial 0 0 0 1.00 0 0 0 0 

Institutional 0 0 0 0 1.00 0 0 0 

Services  0 0 0 0 0 1.00 0 0 

Water B. 0 0 0 0 0 0 1.00 0 

Leis./Recr. 0 0 0 0 0 0 0 1.00 
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Yearly Simulation Outputs for Piracicaba: 1962 - 1999 
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FIGURE 6.53a – Yearly simulation outputs for Piracicaba: 1962 - 1969. 
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 Yearly Simulation Outputs for Piracicaba: 1962 - 1999 
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FIGURE 6.53b – Yearly simulation outputs for Piracicaba: 1970 - 1977. 
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 Yearly Simulation Outputs for Piracicaba: 1962 - 1999 
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FIGURE 6.27c – Yearly simulation outputs for Piracicaba: 1983 - 1990. 
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 Yearly Simulation Outputs for Piracicaba: 1962 - 1999 
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FIGURE 6.53d – Yearly simulation outputs for Piracicaba: 1986 - 1993. 
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 Yearly Simulation Outputs for Piracicaba: 1962 - 1999 
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FIGURE 6.53e – Yearly simulation outputs for Piracicaba: 1994 - 1999. 
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6.2.4 Short-Term Forecasts: 2000 – 2004 

The land use changes considered for forecasts were those observed in the last simulation 

period (1985-1999), excluding the transitions “non-urban to institutional (nu_inst)” and 

“non-urban to leisure (nu_leis)”, for they are deemed to be stabilized, and hence, not 

occurring in subsequent years. In the next sections, the transition matrices as well as 

simulation outputs for stationary (Markovian) and non-stationary forecasts of land use 

change will be presented. 

6.2.4.1 Stationary Forecasts 

A stationary transition matrix for the year 2004 was obtained using the Markov chain 

(Equation 5.66) upon basis of the global transition matrix 1985-1999, in which the 

transitions “nu_inst” and “nu_leis” were purposely set to zero. These stationary 

transition probabilities are shown in TABLE 6.62. 

 

TABLE 6.62 – Matrix of stationary transition probabilities for Piracicaba: 2000-2004. 
 

Land Use Non-Urban Residential Commercial Industrial Institutional Services  Water B. Leis./Recr. 

Non-Urban 9.9367*10-1 4.4801*10-3 0 1.8538*10-3 0 0 0 0 

Residential 0 1.00 0 0 0 0 0 0 

Commercial 0 0 1.00 0 0 0 0 0 

Industrial 0 0 0 1.00 0 0 0 0 

Institutional 0 0 0 0 1.00 0 0 0 

Services  0 0 0 0 0 1.00 0 0 

Water B. 0 0 0 0 0 0 1.00 0 

Leis./Recr. 0 0 0 0 0 0 0 1.00 

6.2.4.2 Non-Stationary Forecasts 

Non-stationary forecasts of land use change have been built with the aid of linear 

regression models relating the area of certain land uses with demographic data and 

economic indicators, as previously mentioned in Section 5.3.2.6, where the destination 

uses of land use transitions were regarded as the dependent variable. 

 



 284

As in the case of Bauru, the destination land uses had to be estimated for the 

quinquennia where the data on population and economic performance (see Section 

4.2.2) were also available, i.e. for 1970, 1975, 1980, 1985, 1990, 1995 and 2000. This 

has been enabled by the yearly simulation outputs generated by means of the principal 

components method (Section 6.2.3). The simulation outputs produced inside 

DINAMICA were exported in TIFF format, and then imported in IDRISI. Inside 

IDRISI, the areas of the thematic classes corresponding to the land uses of interest were 

assessed. The areas of these destination land uses together with the demographic and 

economic data used in the linear regression models are seen in TABLE 6.63. 

TABLE 6.63 – Areas of destination land uses, urban population, total and sectorial  

                              GDPs (US$): Piracicaba – 1970-2000. 

 

Years Dest. Area:  
Residential 

(ha) 

Dest.Area:  
Industrial 

(ha) 

Urban 

Population 

Total GDP 

(US$ 1998) 

Rural GDP 

(US$ 1998) 

Indust. GDP 

(US$ 1998) 

Comm. GDP 

(US$ 1998) 

Services GDP 

(US$ 1998) 

1970 8,579 1,487 73,153 666,029.934 60,056.683 314,733.774 95,101.568 291,239.467 
1975 11,329 2,304 115,960 1,312,284.818 39,437.798 853,930.964 121,743.828 418,916.047 
1980 13,912 3,086 158,708 2,126,207.943 66,581.222 1,307,157.079 147,927.333 752,469.633 
1985 14,714 3,906 198,407 1,704,037.322 68,131.878 1,075,191.585 128,818.571 560,713.867 
1990 19,982 4,297 218,590 2,424,143.275 96,842.165 1,615,544.478 289,475.481 432,548.144 
1995 24,923 4,662 236,687 3,251,245.119 24,907.799 2,108,284.969 491,681.220 277,346.390 
2000 28,667 4,958 317,374 3,335,315.985 17,102.944 2,170,367.463 494,371.845 492,749.832 

 

SOURCE: Adapted from IPEA (2001, 2003a, 2003b) and FUNDAÇÃO SEADE (2002). 

6.2.4.2.1 “Non-Urban to Residential Use (nu_res)” Linear Regression Model 

Likewise the linear regression models of Bauru, the tests for verifying the independence 

of observations regarding the outcome variable Yi  (“residential use area in Piracicaba – 

destarea”) showed partial acceptance for the autocorrelation function and total 

acceptance for the partial autocorrelation function (FIGURE 6.54). The observations of 

residential use area throughout time were judged to be independent events for the same 

reasons exposed in Section 6.1.5.2.1. 
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FIGURE 6.54 – ACF and partial ACF tests for the residential use area (destarea). 

Still in the exploratory analysis, the independent variables “urban population (urbpop)”, 

“total GDP (totgdp)”, “industrial GDP (indgdp)” and “commercial GDP (comgdp)” 

show a high correlation with the response variable “residential use area (destarea)”. 

Since these four independent variables are highly correlated amongst themselves 

(TABLE 6.64), only the variable “total GDP” remains in the final regression model. The 

scatter plots concerning the correlation matrix for the “nu_res” model are seen in 

FIGURE 6.55. 

The final equation for this univariate model is the following: 

 

,                                  (6.4) 

whose R2 is 0.989, and the p-value of the 95% confidence interval for β1 is 0.000 (p < 

0.05). Since β0 did not pass the significance test, it was removed from the model. 

In the analysis of variance (ANOVA), the sum of squares reflects to which extent Y is 

divergent from Y.  In this sense, for well fit models it is expected that the regression sum 

of squares >>> residual sum of squares, and therefore that the regression sum of squares 

accounts for the majority of the total sum of squares (TABLE 6.65). 

^

Y  =   β 1  X

Y  =   0 .008081  .  t o t gdp
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TABLE 6.64 – Correlation matrix for the “nu_res” model: Piracicaba, 2000-2004.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6.55 – Correlation matrix scatter plots for the “nu_res” model:  

                                        Piracicaba, 2000-2004.  

TABLE 6.65 – Analysis of variance for the “nu_res” model: Piracicaba, 2000-2004.  
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Concerning the analysis of residuals, when the model is satisfactorily fit, the 

standardized residuals (see Section 5.3.2.5) and the studentized residuals (adjusted to a 

t-distribution) must lie within the interval [-2,+2]. For the current model, these values 

are –1.535; +1.500 and –1.638; +1.509 respectively for the standardized and studentized 

residuals. Plots of the standardized residuals versus the independent variable (“totgdp”) 

and versus the adjusted predicted value  Yi are seen in FIGURE 6.56. As stated in 

Section 5.3.2.5, these plots should not present any kind of correlation pattern. 

 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6.56 – Analysis of residuals for the “nu_res” model: Piracicaba, 2000-2004.  

 

6.2.4.2.2 “Non-Urban to Industrial Use (nu_ind)” Linear Regression Model 

In the same manner as the “nu_res” model, the tests for verifying the independence of 

observations regarding the outcome variable Yi  (“industrial use area in Piracicaba – 

destarea”) showed partial acceptance for the autocorrelation function and total 

acceptance for the partial autocorrelation function (FIGURE 6.57). The observations of 

industrial use area throughout time were deemed to be independent events for the same 

reasons exposed in Section 6.1.5.2.1. 

 

 

 

^
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FIGURE 6.57 – ACF and partial ACF tests for the industrial use area (destarea). 

The independent variables “urban population (urbpop)”, “total GDP (totgdp)” and 

“industrial GDP (indgdp)” show a high correlation with the response variable 

“industrial use area (destarea)”. Since these three independent variables are highly 

correlated amongst themselves (TABLE 6.66), only the variable “industrial GDP” 

remains in the final regression model. Although its correlation with the response 

variable is not the highest, it was judged to be the one which best explains the increases 

in the industrial area in the city in the latest three decades. The scatter plots concerning 

the correlation matrix for the “nu_ind” model are presented in FIGURE 6.58. 

The final equation for this univariate model is the following: 

 

,                                      (6.5) 

whose R2 is 0. 882, and the p-value of the 95% confidence interval for β0 is 0.053 and 

for β1  is 0.002 (p < 0.05).  

In the analysis of variance (ANOVA), the sum of squares reflects to which extent Y is 

divergent from Y.  In this sense, for well fit models it is expected that the regression sum 

of squares >>> residual sum of squares, and therefore that the regression sum of squares 

accounts for the majority of the total sum of squares (TABLE 6.67). 

^

Y =  β 0  +  β 1  X

Y =  1 ,105 .895  +  0 .001795  .  indgdp
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TABLE 6.66 – Correlation matrix for the “nu_ind” model: Piracicaba, 2000-2004.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6.58 – Correlation matrix scatter plots for the “nu_ind” model:  

                                        Piracicaba, 2000-2004.  

TABLE 6.67 – Analysis of variance for the “nu_ind” model: Piracicaba, 2000-2004.  
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As to the analysis of residuals, when the model is satisfactorily fit, the standardized 

residuals (see Section 5.3.2.5) and the studentized residuals (adjusted to a t-distribution) 

must lie within the interval [-2,+2]. For the current model, these values are –0.757; 

+1.793 and –0.817; +1.969 respectively for the standardized and studentized residuals. 

Plots of the standardized residuals versus the independent variable (“indgdp”) and 

versus the adjusted predicted value Yi are seen in FIGURE 6.59. According to what was 

stated in Section 5.3.2.5, these plots should not contain any kind of correlation pattern. 

 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6.59 – Analysis of residuals for the “nu_ind” model: Piracicaba, 2000-2004.  

Likewise Bauru, heuristic projections were made for the values of the independent 

variables concerning economic indicators of Piracicaba upon basis of their past trends.  

Two types of non-stationary forecast scenarios of land use change were formulated: an 

optimistic and a pessimist one, with respectively slight over and underestimations of the 

independent variable, as previously defined in Section 5.3.3. In the first case, the value 

of X concerning total GDP was US$ 3,623,190.199 for the “nu_res” model and US$ 

2,320,949.861 regarding industrial GDP for the “nu_ind” model. In the pessimist 

scenario, X assumed the values of US$ 3,574,805.098 for the “nu_res” model and US$ 

2,210,211.052 concerning industrial GDP for the “nu_ind” model. Using these values of 

X, transition probabilities were calculated for both scenarios in the short-term (TABLES 

6.68 and 6.69), employing the conversion equations presented in Section 5.3.2.6. 

^
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TABLE 6.68 – Matrix of optimistic transition probabilities for Piracicaba: 2000-2004. 

 

Land Use Non-Urban Residential Commercial Industrial Institutional Services  Water B. Leis./Recr. 

Non-Urban 9.8808*10-1 7.8788*10-3 0 4.0443*10-3 0 0 0 0 

Residential 0 1.00 0 0 0 0 0 0 

Commercial 0 0 1.00 0 0 0 0 0 

Industrial 0 0 0 1.00 0 0 0 0 

Institutional 0 0 0 0 1.00 0 0 0 

Services  0 0 0 0 0 1.00 0 0 

Water B. 0 0 0 0 0 0 1.00 0 

Leis./Recr. 0 0 0 0 0 0 0 1.00 

 

TABLE 6.69 – Matrix of pessimist transition probabilities for Piracicaba: 2000-2004. 

 

Land Use Non-Urban Residential Commercial Industrial Institutional Services  Water B. Leis./Recr. 

Non-Urban 9.9567*10-1 2.8451*10-3 0 1.4805*10-3 0 0 0 0 

Residential 0 1.00 0 0 0 0 0 0 

Commercial 0 0 1.00 0 0 0 0 0 

Industrial 0 0 0 1.00 0 0 0 0 

Institutional 0 0 0 0 1.00 0 0 0 

Services  0 0 0 0 0 1.00 0 0 

Water B. 0 0 0 0 0 0 1.00 0 

Leis./Recr. 0 0 0 0 0 0 0 1.00 

 

6.2.4.3 Forecasts Simulation Outputs 

Taking into account the same sets of independent variables selected for the last 

simulation period (1985-1999) and their respective weights of evidence, indicated in 

TABLE 6.57, stationary, optimistic and pessimist simulation outputs were generated for 

Piracicaba in the short-term (2004), using TABLES 6.62, 6.68 and 6.69 to respectively 

set the total amount of land use change. These simulation outputs are presented in 

FIGURE 6.60. 
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FIGURE 6.60 – Stationary, optimistic and pessimist simulations for 2004 compared to 

                            the actual land use in Piracicaba in 1999. 

It is observable from the above forecast simulations that there is no increase in the 

services areas. This does not imply that there will be no economic growth in the services 

sector in the near term, but simply that the areas sheltering services are likely to go 

through densification processes. 

The main areas where new residential settlements arise are located in the northern and 

western sectors of Piracicaba, whereas the increase in industrial area takes place mostly 

Non-urban use Commercial use 

Industrial use 

Institutional use 

Services use 

Water bodies 

    Leis./recreat. use    Residential use 
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in the southern district. This expansion pattern complies with trends observed in a recent 

official city map of Piracicaba, issued in 2003 (SEMUPLAN, 2003). 

As previously explained in Sections 5.3.3 and 6.1.5.3, just smooth variations in the 

projections of population and economic data were introduced. This is due to the fact 

that, in view of the administrative continuity trend demonstrated by the current federal 

government as well as of steadfastly decreasing population growth rates, the 

demographic and macroeconomic scenarios of Brazil in the latest years are expected to 

reproduce themselves in the current decade.  

6.2.5 Medium-Term Forecasts: 2000 – 2007 

6.2.5.1 Stationary Forecasts 

A stationary transition matrix for the year 2007 was obtained using the Markov chain 

(Equation 5.66) upon basis of the global transition matrix 1985-1999, in which the 

transitions “nu_inst” and “nu_leis” were purposely set to zero. These stationary 

transition probabilities are shown in TABLE 6.70. 

TABLE 6.70 – Matrix of stationary transition probabilities for Piracicaba: 2000-2007. 
 

Land Use Non-Urban Residential Commercial Industrial Institutional Services  Water B. Leis./Recr. 

Non-Urban 9.7237*10-1 2.4872*10-2 0 2.7550*10-3 0 0 0 0 

Residential 0 1.00 0 0 0 0 0 0 

Commercial 0 0 1.00 0 0 0 0 0 

Industrial 0 0 0 1.00 0 0 0 0 

Institutional 0 0 0 0 1.00 0 0 0 

Services  0 0 0 0 0 1.00 0 0 

Water B. 0 0 0 0 0 0 1.00 0 

Leis./Recr. 0 0 0 0 0 0 0 1.00 

6.2.5.2 Non-Stationary Forecasts 

The same linear regression models used for short-term predictions have been used in the 

medium-term forecasts. For the optimistic scenario, the value of X concerning total 

GDP was US$ 3,824,481.866 for the “nu_res” model and US$ 2,426,242.340 regarding 
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industrial GDP for the “nu_ind” model. In the pessimist scenario, X assumed the values 

of US$ 3,751,365.720 for the “nu_res” model and US$ 2,238,071.080 concerning 

industrial GDP for the “nu_ind” model. Using these values of X, transition probabilities 

were calculated for both scenarios in the medium-term (TABLES 6.71 and 6.72), 

employing the conversion equations presented in Section 5.3.2.6. 

TABLE 6.71 – Matrix of optimistic transition probabilities for Piracicaba: 2000-2007. 
 

Land Use Non-Urban Residential Commercial Industrial Institutional Services  Water B. Leis./Recr. 

Non-Urban 9.6471*10-1 2.8824*10-2 0 6.4708*10-3 0 0 0 0 

Residential 0 1.00 0 0 0 0 0 0 

Commercial 0 0 1.00 0 0 0 0 0 

Industrial 0 0 0 1.00 0 0 0 0 

Institutional 0 0 0 0 1.00 0 0 0 

Services  0 0 0 0 0 1.00 0 0 

Water B. 0 0 0 0 0 0 1.00 0 

Leis./Recr. 0 0 0 0 0 0 0 1.00 

 
 

TABLE 6.72 – Matrix of pessimist transition probabilities for Piracicaba: 2000-2007. 
 

Land Use Non-Urban Residential Commercial Industrial Institutional Services  Water B. Leis./Recr. 

Non-Urban 9.7666*10-1 2.1216*10-2 0 2.1242*10-3 0 0 0 0 

Residential 0 1.00 0 0 0 0 0 0 

Commercial 0 0 1.00 0 0 0 0 0 

Industrial 0 0 0 1.00 0 0 0 0 

Institutional 0 0 0 0 1.00 0 0 0 

Services  0 0 0 0 0 1.00 0 0 

Water B. 0 0 0 0 0 0 1.00 0 

Leis./Recr. 0 0 0 0 0 0 0 1.00 

6.2.5.3 Forecasts Simulation Outputs 

Taking into account the same sets of independent variables selected for the last 

simulation period (1985-1999) and their respective weights of evidence (TABLE 6.57), 

stationary, optimistic and pessimist simulation outputs were generated for Piracicaba in 

the medium-term (2007), using the TABLES 6.70, 6.71 and 6.72 to respectively set the 
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total amount of land use change. These simulation outputs are presented in FIGURE 

6.61. 
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FIGURE 6.61 – Stationary, optimistic and pessimist simulations for 2007 compared to 

                            the actual land use in Piracicaba in 1999. 
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6.3 Conclusions 

For both cities under analysis, the driving forces determining land use change remained 

practically constant throughout the time series, with slight differences from one 

simulation period to another. Upon basis of the generated simulation outputs, it was 

possible to infer that new residential settlements tend to occur in the vicinities of already 

existent settlements and in areas with good accessibility conditions. Industrial zones are 

likely to expand surrounding former industrial districts and/or close to main roads. 

Services corridors usually arise along main roads and close to residential and 

commercial areas. Institutional zones follow the same growth logic of industrial zones, 

and not rarely are located closed to the latter, in view of the need of large and cheap 

plots for their expansion.  

Mixed use zones, on their turn, require the availability of good accessibility as well as 

the existence of higher population densities, what ensures a feasible consumers market, 

and hence, economic sustainability. And finally, leisure and recreation zones take place 

in regions with good accessibility, close to residential areas and usually along low and 

flat riverbanks, since these areas are floodable and therefore unsuitable for sheltering 

other urban uses. 

It becomes thus evident that the land use transitions comply with economic theories of 

urban growth and change, grounded on the key concept of utility maximization (Black 

and Henderson, 1999; Medda et al. 1999; Papageorgiou and Pines, 2001; Zhou and 

Vertinsky, 2001), in which there is a continuous search for optimal location, able to 

assure: 

- competitive real estate prices; 

- good accessibility conditions; 

- rationalization of transportation costs, and  

- a strategic location in relation to suppliers and consumers markets. 
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In both case studies, Bauru and Piracicaba, the natural environment (soil, vegetation, 

relief, conservation areas) has not been regarded as a decisive driver for land use 

change. In other words, natural characteristics of the physical environment, excluding 

the Piracicaba river in the city of Piracicaba, have not been considered as impedances to 

urban growth at a more generalized level. The cities sites are relatively flat, with mild 

slopes, and present no outstanding condition regarding soil, vegetation and conservation 

areas constraints. 

Although the current work does not concern agent-based simulation experiments, all the 

information regarding the behavior of social actors and shapers of urban form is 

implicitly aggregated in the models input variables. That is to say that the preferences 

and options adopted by local administrators, entrepreneurs and real estate landlords and 

investors in the decision-making processes affecting the urban structure are reflected in 

the way infrastructural and socioeconomic factors guide urban land use change. 

As previously mentioned in Section 5.6, the simulation outputs provided by the weights 

of evidence and the logistic regression methods presented comparatively similar results 

(Section 6.1.2). In any case, the weights of evidence should be given preference of 

application in view of its transparency and operational simplicity, what together concur 

for a faster and more consistent model calibration. 

Considering the simulation results produced for both cities, it is observable that in 

longer simulation periods, the modeling performance is reduced. This is due to the fact 

that a greater number of transitions take place in the meantime, and even for the same 

type of land use change, drivers may suffer slight alterations throughout time, with 

which longer simulation periods cannot cope. 

As to the forecast scenarios, it can be acknowledged that the stationary ones 

overestimate current trends of land use change. This can be ascribed to the fact that both 

cities witnessed sharp decreases in urban growth rates in the present decade, and the 

transition probabilities for the short- and medium-terms (respectively 2004 and 2007) 

have been established upon basis of growth trends experienced in the late 1980s and 

1990s, when the experiments regarding the last simulation periods were carried out. 
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It is worth restating here that as a means to conceive realistic optimistic and pessimist 

predictions, only slight variations were introduced in the projections of population and 

economic data meant to parameterize non-stationary forecasts of land use change. This 

can be justified by the fact that the demographic and macroeconomic scenarios of Brazil 

in the latest years are expected to reproduce themselves in the current decade, in face of 

steadfastly decreasing population growth rates as well as of the administrative 

continuity trend demonstrated by the current federal government. 

And finally, some remarks concerning the DINAMICA transition algorithms are worthy 

of mention. Shifts from non-urban areas to residential use represented the most 

challenging category of land use transition in the modeling experiments of the present 

research. The reasons for the difficulties in detecting their shapes have been already 

noted in Section 6.1.1 but it should be highlighted here that 65% of this type of 

transition occur through the expander algorithm. An evident shortcoming of this 

algorithm which is being tackled at present by the CSR-UFMG team lies in the fact that 

after the random selection of a seed cell for transition, all neighboring cells are subject 

to transition regardless of their transition probability values, and this is too blunt an 

instrument to accurately mirror the prioritization of development in real situations 

(Almeida et al. 2003). 

Another inherent drawback of the transition algorithms refers to their sequence 

arrangements. For instance, supposing that a certain non-urban cell presents a transition 

probability for the industrial use of 0.95, and of 0.89 for the residential use. In the case 

that the transition “non-urban to residential use” is set to be executed first, this cell will 

be converted to residential use, even though its suitability to shelter the industrial use is 

higher. Devices to overcome this limitation ought to be developed. Further 

improvements to enhance the performance of such algorithms, like the incorporation of 

fractal parameters in the transition functions as well as the possibility to separately 

define patches average sizes and variances for the expander and patcher should be also 

envisaged. 
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Albeit all the aforementioned technical and methodological difficulties, the land use 

change simulation experiments undertaken for Bauru and Piracicaba proved to be 

consistent both in terms of “goodness-of-fit” tests and of adherence to the logic of 

economic theories on urban growth and development. This confirms the first research 

hypothesis. 

The input data – digital maps, remote sensing images and digital aerial photos – used in 

the modeling experiments were able to provide information on spatial variables driving 

land use change in the cities under analysis, what confirms the second hypothesis. The 

employment of the weights of evidence and logistic regression methods to assess the 

relative contribution of these variables for the land use transitions observed in the two 

cities, and the thereof generated maps of transition probability surfaces confirm the third 

and forth hypotheses. The comparative effectiveness of these methods has been 

presented in Section 5.6. 

And lastly, the knowledge on transition trends gained with the simulation experiments 

carried out for long time series (of approximately thirty-five years) was crucial for 

conceiving forecast scenarios of land use change. The adoption of the Markov chain to 

generate stationary scenarios, and of linear regression models to develop non-stationary 

scenarios of future land use transitions validates the fifth and last hypothesis. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



 300

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 301

CHAPTER 7 

FINAL REMARKS AND CONCLUSIONS 

7.1 Dealing with Spatial Dynamic Models 

It is unquestionable the advance brought by the incorporation of space representation in 

land use change models as well as by the evolution of static into dynamic models (see 

Section 2.2.3), particularly with respect to urban land use change models. 

Departing from the elementary early generation of urban models, experiments in this 

field attempted to progressively add the spatio-temporal dimension in a wise and 

consistent manner. The first spatial models could not have their outputs spatially 

visualized, and the spatial aspect was approached in the form of spatial units (zones, 

census districts, etc.) designed for numerical information processing (Batty, 1971, 1976; 

Allen et al. 1981, 1986). The evolution of static into dynamic models was not a one-step 

process, and static models (Clark, 1951; Alonso, 1960; Lowry, 1964) firstly yielded 

place to recursive models (Butler, 1969), comparative statics (Perraton and Baxter, 

1974) and quasi-dynamic models (Boyce, 1977; Coelho and Williams, 1978; Leonardi, 

1981) before being converted into fully dynamic models (Beaumont et al. 1981; 

Wegener et al. 1986). 

Effective advances in the spatial representation of urban models occurred only by the 

end of the 1980s, when cellular automata (CA) models started to be extensively applied 

(Couclelis, 1985, 1987; Deadman et al. 1993; Batty and Xie, 1997; Benati, 1997; Clarke 

et al. 1998; Papini et al. 1998; White et al. 1998; Portugali et al. 1999; White and 

Engelen, 2000). GIS, whose raster data can be easily associated with CA models, 

offered new possibilities in spatial modeling, including spatial data analysis tools.  

The usage of the weights of evidence statistical method to parameterize the urban land 

use change simulation experiments of the present research could have not been able 

without the aid of GIS, which are crucial to provide the contingency tables figures 
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derived from cross-tabulation operations (Bonham-Carter, 1994). In the same way, the 

pre-processing of the input variables maps, like maps of distances, Kernel points density 

estimator and other procedures were accomplished using GIS. Even the empirical 

logistic regression technique, which is not a spatial method in principle, was 

successfully applied in the simulation experiments due to facilities available in the GIS 

environment. 

Although all the above-mentioned advances represented by the advent of CA models 

and the facilities resulting from their coupling with GIS, one cannot deny the limitations 

and shortcomings implicit in current traditional implementations of CA. They mainly 

concern premises of space and time discretization, like space regularity, neighborhood 

stationarity and universality of transition functions. Further limitations ought to be 

mentioned, like the artificial order imposed to the different types of land use transition 

(when they actually take place simultaneously in reality), the generalizations applied to 

the land use maps in order to render them computationally workable, and lastly, the 

current standards of computational processing capacity which directly limit the spatial 

resolution of CA models. Most efforts to tackle such constraints still lie in the 

theoretical realm (see Section 2.3.2.1). 

Yet spatial dynamic models, of which CA is one of the best representatives, are still the 

most promising means for rendering land use change simulation outputs communicable 

and transparent to politicians, planners and decision-makers in particular, and to the lay 

public in general. 

7.2 Recent Advances and Potential New Paths for Models of Urban Land Use 

Change 

As already stated in Section 2.3.2.2, successive refinements have been introduced to 

urban CA models in the latest decade, mainly derived from related advances in the 

fields of Artificial Intelligence (AI) and complex systems. Examples in this sense are 

the works based on contemporary pattern-fitting tools such as neural nets (Wu, 1998; 

Xia and Yeh, 2000) and evolutionary learning (Papini et al. 1998). Still along with this 

line of research, studies dealing with topics in complexity like chaos, fractals and self-
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organized criticality are worthy of mention (Couclelis, 1988; Batty and Longley, 1991; 

White and Engelen, 1993; Batty and Longley, 1994; Portugali et al. 1997; Portugali et 

al. 1999; Sobreira and Gomes, 2001; Batty, 2003). 

As exposed previously in Section 2.3.2.1, urban CA-based modeling moves towards a 

relaxation of any or all assumptions embedded in standard cellular automata. In this 

respect, instead of homogeneous cells, space could be subdivided into irregular 

structures (polygons) representing more realistic administrative or political divisions, 

like census districts, communes, origin-destination zones, etc. Neighborhoods could 

vary in view of the functionality associated with them, and transition functions could be 

selectively applied considering their effective extent context. For Couclelis (1997), 

variable time steps could be used to fit some external schedule, like seasonal variations 

in the growth rate of a certain type of land use.  

A new thematic trend in urban CA models concerns the focus shift from issues related 

to the urban framework expansion to more subtle transformations held in intra-urban 

structures, like densification processes (Rabino, 2002; Yeh and Li, 2002). This 

represents an attempt of modelers and planners to cope with more pressing matters in 

the urban environment. In fact, there is an ongoing decline drift in the growth rates of 

cities nearly everywhere, and urban growth is bound to become a zero-sum game 

(Prud´Homme, 1989).  

Urban growth is considerably decreasing in developed countries, but this decline has 

started to be experienced in many developing countries. The implications of this change 

are numerous and will certainly affect the dynamics of real estate markets, and 

consequently, the nature of urban policies. According to Prud´Homme (1989), 

competition between cities will probably be enhanced, and “each urban area will have to 

fight to retain people and jobs, and to be innovative and attractive to suit that purpose.” 

For him, even in the developing world, the management of urban areas, in contrast to 

planning, will gain in importance, and the scarcity of resources will drive policy-makers 

to search for flexible, low-cost, innovative, alternative, and temporary answers to the 

problems raised by urban growth. 



 304

7.3 Main Contributions of this Research 

Technological innovations as well as scientific advance in a general way occur in a 

gradual form, step by step. Individual contributions in this sense are often not structural, 

but of secondary character, which when assembled all together produce meaningful 

increments to the theoretical and technological bodies of Science in the long run. 

It can be stated that the original idea of CA was innovative, but its application for urban 

modeling purposes represents a mere secondary scientific contribution, since the branch 

of urban studies simply imported a theoretical resource and its technological counterpart 

already available in another field of knowledge. 

In the context of CA modeling, there is a sort of library of scientific-technological tools, 

some of which were originally conceived for CA, and some others not. The latest 

contributions within the scope of urban CA models concern basically new manners of 

assembling such devices in inedited ways into the modeling process. For instance, fuzzy 

sets theory, AHP, neural nets and evolutionary learning are all innovative theoretical 

and methodological approaches proceeding mostly from the Computer Sciences, and all 

of them have been recently embedded into CA models dealing with urban topics (Wu, 

1996, 1998; Xia and Yeh, 2000; Papini et al. 1998). 

Along with this line of action, this research is mainly committed to explore the 

dynamics of land use change in two real medium-sized cities by employing two 

different empirical statistical methods for the estimation of cells transition probabilities: 

the weights of evidence and logistic regression. Considering the fact that the models 

handle a detailed categorization of urban land uses (eight categories of land use were 

taken into account for the simulation experiments), this work aims at opening up new 

methodological paths for further investigations in alike lines of research. 

Urban land use change simulation experiments dealing with real cities and diverse types 

of land uses have been conducted by White and Engelen (1997, 2000) and White et al. 

(1998), but their parameterization is based on empirical multivariate linear regression 

methods. While their forecasts are generated upon exploratory techniques (by answering 
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“what if” questions), the forecasts in the present research are based upon linear 

regression models calibrated upon long time series. Similar simulation experiments 

handling with real cities and several land uses have also been carried out by Papini et al. 

(1998), but in opposition to the methods employed in the present thesis, their transition 

rules are set upon basis of evolutionary learning algorithms and Boolean logic.  

In brief, the current work is entrusted with providing methodological guidance for 

future scientific investigations that deal with data-driven modeling experiments applied 

to real case studies, in which a detailed categorization of land uses is at issue. 

7.4 Possible Applicability of this Work 

The urban land use dynamics models demonstrate to be useful for the identification of 

main urban growth vectors and their general land use tendencies, what enables local 

planning authorities to manage and reorganize (if it comes into question) city growth 

according to the environmental carrying capacity of concerned sites and to their present 

and envisaged infrastructure availability.    

The urban expansion forecasts provided by such models also help local authorities in 

general, like sub-majors, districts administrators and municipal ministers, to establish 

investments goals in terms of technical and social infrastructure equipments, such as the 

extension of roads, the enlargement of the water supply and sewerage catchment areas, 

the creation of new bus lines, the construction of kindergartens, schools, hospitals and 

health centers, etc. 

Decision makers from the private sphere can as well benefit from the modeling output 

data, since companies of transportation, conventional and mobile phones, cable TV and 

internet, and others will have subsidies for defining priorities as to where and how 

intense to invest.  

Also the organized civil society, either through NGOs or local associations, can profit 

from the modeling forecasts in order to enhance, by legal means, social movements 

demanding the implementation of social and technical infrastructure, since their 



 306

requests and respective arguments shall be based on realistic short- and medium-term 

urban growth trends. 

And as final words, Batty (1976) concisely exposes the key ideas lying behind the 

applications and purposes of urban modeling when he says: 

“There are many reasons for the development of such models: their role in 

helping scientists to understand urban phenomena through analysis and 

experiment represents a traditional goal of science, yet urban modelling is 

equally important in helping planners, politicians and the community to predict, 

prescribe and invent the urban future (Batty, 1976, p. xx).” 
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