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Abstract: Better remote sensing based information on the global distribution of croplands and pastures is 
urgently needed. Without reliable cropland-pasture separation it will be impossible to retrieve high-quality 
information on agricultural expansion or land use intensification, and on related ecosystem service provision. In 
this context, the savanna biome is critically important but information on land use and land cover (LULC) is 
notoriously inaccurate in these areas. This is due to pronounced spatial-temporal dynamics of agricultural land 
use and spectral similarities between cropland, pasture, and natural savanna vegetation. In this study, we 
investigated the potential to reliably separate cropland, pasture, natural savanna vegetation, and other relevant 
land cover classes employing Landsat-derived spectral-temporal variability metrics for a savanna landscape in 
the Brazilian Cerrado. Spectral-temporal variability metrics were derived from 344 Landsat images across four 
footprints between 2009 and 2012. Our results showed a reliable separation between cropland, pasture, and 
natural savanna vegetation achieving an overall accuracy of 93%. There is great potential for expanding our 
approach towards large parts of the Cerrado biome and to other savanna systems which still suffer from 
inaccurate LULC information.  
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1. Introduction 
Food security is of global concern, and land-based production has to meet the demands of an 
estimated 9 billion people in 2050 (Godfray et al., 2010). To define an optimum trade-off 
between agricultural expansion and intensification on the one hand, and sustainable 
ecosystem service provision on the other hand, reliable information about the global 
distribution of croplands and pasture areas is required (Fritz et al., 2013; Garnett et al., 2013). 
In this context, the savanna biome is critically important because it suffers from enormous 
land conversions and spatially explicit mapping of land use and land cover (LULC) is 
notoriously challenging and inaccurate in this area, which hampers monitoring of ecosystem 
changes (Herold et al., 2008). 
So far, the majority of remote sensing studies in Brazil focused on the Amazon biome, 
including governmental programs like the annual deforestation monitoring (PRODES), the 
real time system for detection of deforestation (DETER), and the program for land use 
classification in deforested areas (TerraClass) (INPE, 2008). First attempts to build similar 
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knowledge for the Cerrado region are conducted by the remote sensing department of the 
Federal University of Goiás, who created a Systematic Monitoring of Deforestation in the 
Cerrado Biome (SIAD) since the year 2006 (LAPIG, 2014). However, no program has been 
established for monitoring general land use in the Cerrado biome and remote sensing faces 
numerous challenges there. 
Besides the strong seasonality of natural vegetation and the diversity of crop types in space 
and time (Sano et al., 2007), spectral similarities between cropland, pasture, and natural 
savanna vegetation complicate differentiating LULC in the Brazilian Cerrado (Sano et al., 
2010; Grecchi et al., 2013). This confusion results from spectral similarity between - as well 
as a high spectral heterogeneity within each land cover type (Brannstrom et al., 2008). Due to 
these spectral ambiguities, most classification approaches predominantly rely on dense 
temporal information, such as time series data obtained from the Moderate Resolution 
Imaging Spectrometer (MODIS) for separating natural savanna vegetation, cropland, and 
pasture areas (Adami et al., 2011; Arvor et al., 2011a). However, MODIS-based analyses 
cannot monitor LULC before 2000 (when satellite became operational) and often do not 
capture fine-scale patterns in heterogeneous savanna ecosystems such as the Brazilian 
Cerrado or South-African savannas (Munyati and Mboweni, 2013). Recent approaches 
therefore include Landsat imagery (30m resolution) to overcome the limitation of the MODIS 
spatial scale (250m resolution) and temporal extent in heterogeneous savanna regions 
(Grecchi et al., 2013).  
So far, most Landsat-based time series have been created on an annual basis to monitor forest 
cover dynamics (Kennedy et al., 2012; Griffiths et al., 2012). We therefore hypothesize that 
identifying complex LULC classes within agricultural systems will profit from intra-annual 
information to capture phenological characteristics as well. However, due to Landsat's 16-day 
repeat cycle, cloud contaminations, and long term acquisition plans, regular spacing of intra-
annual acquisitions is difficult and direct quantification of phenological metrics is 
challenging. To overcome these limitations, interpolation and curve fitting methods have been 
successfully employed for regions with high data availability, notably in North America 
(Zhong et al., 2014). However, it is questionable whether single dates of phenological 
characteristics in regions of low observation density should be extracted, given the degree of 
generalization involved in bridging large temporal data gaps. Less specific but more robust 
phenological indicators can be derived by simply calculating mean, range, and standard 
deviation of available reflectance observations for one or for multiple years (Griffiths et al., 
2013a; Hansen et al., 2013). These spectral-temporal variability metrics (from now on 
“spectral-temporal metrics”) capture important phenological information and can be analyzed 
on a seasonal, annual or multi-annual basis, allowing for a wide range of applications for 
characterizing land use systems in space and time. 
 
In this study, we employ Landsat-derived spectral-temporal metrics to reliably separate 
cropland, pasture, natural savanna vegetation, and forest in a heterogeneous savanna 
landscape. In order to profit from temporal information we used a dense Landsat time series 
of 344 Landsat scenes across four footprints between 2009 and 2012. 
 

2. Data and methods 
2.1 Study area and description of LULC classes 
To evaluate the potential of the Landsat-derived spectral-temporal information for 
distinguishing LULC classes in the Brazilian Cerrado, we conducted a case study in the Rio 
das Mortes watershed, a tributary of the Araguaia River that drains into the Tocantins River 
The watershed boundaries were derived from a digital elevation model with 90m spatial 
resolution (SRTM, 2008) and delineate an area of about 18,000 km² (Fig. 1). The regional 
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climate exhibits a distinct dry season from May to September and corresponds to a tropical 
savanna (Aw), according to the Köppen climate classification (Moreno et al., 2005).  
The watershed has undergone significant LULC change between the 1970 and 2005 becoming 
one of the major agricultural production centers of Mato Grosso. After 2005, cropland 
expansion stopped, which is important in context of our classification approach because our 
approach requires a high stability of land use between 2009 and 2012. This assumption is 
supported by field interviews, existing literature and agrarian statistics (IBGE, 2010; Grecchi 
et al., 2013). Within our study period, the main sowing season for soy starts with the wet 
season between September and October. Sowing and harvesting practices differ for individual 
rotation systems (“single-“ or “double-cropping”) and crop type (e.g. cotton, corn), but the 
production cycle usually ends with the last harvests at the beginning of the dry season in July 
(Arvor et al., 2011b).  
 

 
Figure 1: Left: Distribution of the predominant biomes in Brazil and Mato Grosso state. 
Right: Close-up of the study area based on Google Earth imagery. 

To characterize the predominant LULC classes in the study region, we differentiate forest, 
savanna, cropland, pasture and water bodies and non-vegetated land. The “non-vegetated 
land” class includes the built-up environment, open soils and rock outcrops. The savanna 
class comprises woody grassland (Campo Cerrado), woodland Cerrado (Cerrado sensu 
stricto) and wooded Cerrado (Cerradão). Croplands include both “single” and “double-
cropping” systems for soy, corn and cotton. During our field visits it was apparent that these 
systems can also include fallow cycles with grassland and temporary cattle ranching. Pasture 
areas consist of planted grasslands used exclusively for cattle ranching. These areas are often 
characterized by scattered residuals of woody savanna vegetation, indicating the absence of 
large-scale mechanized agriculture. 
 
2.2 Satellite imagery, atmospheric correction and cloud masking 
Satellite imagery was obtained from all available Landsat acquisitions within a three-year 
period, from January 2nd 2009 to February 28th 2012. We used TM and ETM+ Landsat data 
exclusively in precision terrain corrected (L1T) format resulting into 344 images across four 
footprints. To ensure comparability of input data across different Landsat sensors, footprints, 
and acquisition dates, all imagery was converted to surface reflectance using the Landsat 
Ecosystem Disturbance Adaptive Processing System (LEDAPS) atmospheric correction 
algorithm (Masek et al., 2006). Cloud and shadow masks were calculated for all imagery 
using FMask (Zhu and Woodcock, 2012). The FMask algorithm uses textural and spectral 
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information to detect cloud and cloud shadows on a probabilistic basis. To capture as many 
clouds and cloud shadows as possible, the cloud probability threshold was set to a highly 
conservative value (1%). All scenes from different UTM zones were reprojected to WGS 84 
UTM 21 South. 
 
2.3 Extraction of spectral-temporal variability metrics 
To capture most phenological characteristics of the investigated LULC classes, five statistical 
metrics (mean, median, standard deviation, 75% quartile, and interquartile range) were 
computed from all cloud/cloud shadow-free observations between 2009 and 2012, using the 
composing approach described by Griffiths et al. (2013b). To include all spectral information, 
the five statistical metrics were calculated for each spectral band individually (Table 1). We 
also calculated a SWIR-Index as the sum of SWIR/NIR reflectance normalized over the 
number of clear observations. The SWIR-Index serves as an integrated measure which 
potentially supports the separation of pasture and cropland areas.  
 
Table 1: Overview of the 31 spectral-temporal variability metrics. 

No. of 
variables 

 
Metric 

 
Spectral bands 

6 Mean 1-5, 7 
6 Median 1-5, 7 
6 Standard deviation 1-5, 7 
6 75% Quantile 1-5, 7 
6 Interquartile range (25%-75%) 1-5, 7 
1 SWIR-Index 4, 5, 7 

 
2.4 Land cover mapping and validation 
LULC mapping was performed using a random forest (RF) classifier (Breiman, 2001). Model 
calibration and prediction was carried out using the statistical software CRAN R (R 
Development Core Team, 2011) and the “randomForest” package (version 4.6-7 by Liaw and 
Wiener, 2002). We employed the random forest model for all further analyses, using a 
standard parameterization for the number of trees (500), the number of training data for each 
tree (63% of sample size per class), and the number of predictor variables tried at each split 
(5, approximated by the square root of 31 predictor variables).  
For training of the RF model, we randomly selected 626 training points with a minimum 
distance of 350m. The final LULC map was validated using a stratified random sampling of 
470 validation points with a minimum distance of 350m. To classify the training and 
validation points, we utilized very high-resolution imagery of Google Earth from 2009 to 
2012 (Quickbird, GeoEye). If recent Google Earth imagery was not available, Landsat images 
and calculated variability metrics were used as reference data. To account for the stratified 
random sampling design, overall accuracies and area estimates were adjusted after Olofsson et 
al. (2013). In addition, confidence intervals for the adjusted overall accuracy were calculated 
to report uncertainty of the accuracy estimates introduced by the number of validation points 
(Congalton and Green, 2009). 
 
3. Results  
Cropland was identified as the dominant land use class, covering approximately 51% (9,096 
km²) of the study area (Figure 2). Savanna areas were ranked as the second largest land cover 
type (24%, 4,298 km²) and can be found in the indigenous reserve, along gallery forests and 
within the extensively managed eastern and northern parts of the watershed. The savanna 
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areas form a mosaic with spots of cattle farming which cover 15% (2,682 km²) of the study 
site. Forests are dominantly located along river streams and account for 9% (1,737 km²) of the 
total land cover. Non-vegetated land was identified in the cities of Campo Verde, Primavera 
do Leste and Santo Antônio do Leste. In addition, this class was detected in close proximity to 
cropland and pasture areas representing 0.8% of the study area.  

 

 
Figure 2: Classification results of the Rio das Mortes watershed. 

 
The LULC classification achieved an adjusted overall accuracy of 93% with a 95% 
confidence interval margin of ±2%. Highest reliability was observed for the forest, savanna 
and water classes that revealed user`s and producer`s accuracies greater than 90% (Table 3). 
No commission error was observed for the cropland class.  
 
Table 3: User`s and producer`s accuracy of validation results, normalized between 1 (100%) 
and 0 (0%). User`s and producer`s accuracy translate into omission and commission error as 
follows: omission error = 1-producers accuracy, commission error = 1-user`s accuracy. 
 Forest Savanna Cropland Pasture Water Non-veg. land 

       
User`s accuracy 0.97 0.98 1 0.70 1 0.84 

Producer`s accuracy  
(error adjusted) 

0.97 
(0.91) 

0.93 
(0.97) 

0.80 
(0.89) 

0.94 
(0.99) 

0.99 
(0.92) 

0.98 
(0.67) 

 

Main class confusion arose from the overestimation of pasture at the expense of cropland. 
This effect resulted in a commission error of 30% for the pasture class and an omission error 
of 11% for the cropland class after error adjustment. A minor omission error of 1% for 
pasture originated from the overestimation of non-vegetated land on pasture areas, leading to 
a commission error of 16% for the non-vegetated land.  
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4. Discussion and conclusions 
The LULC classification achieved an overall accuracy of 93% and class-wise uncertainty was 
generally low, including the target classes of cropland and pasture. We therefore conclude that 
our spectral-temporal classification approach provided a reliable separation between cropland, 
pasture, and natural savanna vegetation. Remaining errors mainly relate to the slight 
overestimation of the pasture class and can be explained by two factors: Firstly, we labeled 
our training data in favor of a conservative estimation of the cropland class, as it is the most 
dominant and heterogeneous land use class in the study area. Therefore, the commission error 
of the cropland class is generally low at the expense of a slightly overestimated pasture class. 
Secondly, there are extensively managed cropland areas that are used as pastures during one 
or two rotational cycles. These mixed systems appear as croplands in the validation data but 
are most likely classified as pastures. Land conversions during our observation period could 
also hamper the explanatory power of our spectral-temporal variability metrics. However, 
such land conversions are unlikely, given our analysis period compared to knowledge on 
recent land use dynamics (section 2.1).  
To our best knowledge, this is the first study employing Landsat-derived, spectral-temporal 
information for classifying LULC in the heterogeneous Brazilian Cerrado. In a regionally 
comparable Landsat-based study, Grecchi et al. (2013) reported an overall accuracy of 85% 
when including MODIS data and pre-existing land cover maps, and not separating forest and 
savanna areas. This supports our finding that multitemporal information is important in such a 
setting to separate spectrally similar classes reliably. Other studies that exclusively employed 
Landsat data reached overall accuracies of above 80% only when fusing cropland and pasture 
into an agro-pastoral class (Jepson, 2005; Brannstrom et al., 2008). Such aggregation, 
however, limits linking remote sensing based results with ecological or management 
processes of great importance, e.g. how pastoralism versus intensive cropping alters savanna 
ecosystems. Our results therefore emphasize the potential of employing high-resolution 
spectral-temporal variability metrics for identifying LULC in heterogeneous savanna regions.  
So far, it is a great challenge to operationally observe LULC in savanna landscapes on a large 
spatial scale. Sano et al. (2010) used a monotemporal wall to wall mosaic for manual 
interpretation of 170 Landsat images for the entire Cerrado Biome and reported high class 
confusion between croplands and pastures (OA= 71%). These results suggest great potential 
for improvement by using multitemporal Landsat data. A preliminary screening of the 
Landsat archive showed that 80% of the entire Cerrado biome has a similar Landsat coverage 
compared to our study area (+-20% scene availability in 2009-2012), rendering our 
multitemporal classification approach highly applicable over large spatial extents.  
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