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A joint model for rainfall-runoff: The case of

Rio Grande Basin
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Abstract

We present an analysis of runoff and rainfall data from Rio Grande, a basin located

in the northeast of Brazil. The main challenges we face here are: (i) to model runoff

and rainfall jointly, taking into account their different spatial units, (ii) to use sto-

chastic models where all the parameters have physical interpretations, and (iii) to

model these processes in their original scale, without assuming any transformation

to attain normality of these variables.

The intrinsically uncertain nature of these hydrological processes makes Bayesian

analysis natural in this field. Our approach is based on dynamic models. The effect

of rainfall on runoff is modeled through a transfer function, whereas the amount of
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rainfall is obtained after fitting a spatio-temporal model and dealing with the change

of support problem. Besides the computational effort to implement the proposed

models, some methodological novelties are also implemented.

The data consist of monthly series from January 1984 to September 2004, at

a runoff station and nine rainfall stations irregularly located in a drainage area

of 37522.48 km2. Model assessment, spatial interpolation and temporal predictions

were part of our analysis. The results show that our approach is a promising tool

for rainfall-runoff analysis.

Key words: Bayesian paradigm, Dynamic Models, Transfer functions,

Spatio-Temporal, Spatial change of support.

1 Introduction

One of the challenges that hydrologists and operators of water resource systems1

face is to predict the runoff given the rainfall. The intrinsically uncertain nature of2

these hydrological processes makes Bayesian analysis natural in this field, whenever3

statistical problems are considered (Rios-Insua et al., 2002).4

∗ Address for correspondence: Alexandra M. Schmidt, Departamento de Métodos Es-

tat́ısticos, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, Rio de Janeiro,

RJ, Brazil. CEP 21945-970. Tel.: 0055 21 2562-7505 x 204. Fax: 0055 21 2562-7374.

E-mail: alex@im.ufrj.br. Homepage: www.dme.ufrj.br/∼alex
Email addresses: romy@dme.ufrj.br (Romy R. Ravines), migon@im.ufrj.br (Helio S.

Migon), camilo@dpi.inpe.br (Camilo D. Rennó).
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In this paper we present an alternative strategy for dealing with the spatial and5

temporal features of two of the most important hydrological variables: runoff and6

rainfall. Our goals are: (i) to model both variables jointly, taking into account their7

different spatial units, (ii) to use stochastic models where all the parameters have8

physical interpretations, and (iii) to model these processes in their original scale,9

without assuming any transformation to attain normality of these variables.10

Several types of stochastic models have been proposed for the rainfall-runoff rela-11

tionship, based on deterministic models or on classical time series analysis. Two12

important classes of stochastic models applied to river flow analysis are: transfer13

function and regime switching. Transfer function modeling is flexible and has been14

mainly used in the form of ARMAX models (see, for example, Sales (1989) and15

Capkun et al. (2001)). Markov Switching time series models, as in Lu & Berliner16

(1999) have been recently introduced. These approaches are not ideal, because data17

transformation is needed and the parameters do not have interpretation in physical18

terms. Also, in all the previous proposed models, the measurement errors and un-19

certainty associated with rainfall are not explicitly accounted for. This is because20

models must describe the rainfall-runoff process on a drainage catchment area ba-21

sis. However, in practice, precipitation is measured at more than one monitoring22

station within a basin, thus some procedure is needed in order to approximate the23

precipitation for the whole basin. There are some widely used methods that make24

use of polygons to determine the influence area of each station. The total basin’s25

precipitation is computed as a weighted mean of the precipitation measured at each26

3
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station. The problem with this kind of procedure is that the uncertainty of this27

estimation is not taken into account when modeling runoff as a function of rainfall.28

Here we propose a joint model for both variables: rainfall and runoff. For rainfall,29

we use spatio-temporal models, like in Sansó & Guenni (2000). For runoff, we use30

non-normal and non-linear Bayesian dynamic models. In particular, we extend the31

models presented by Migon & Monteiro (1997). Additionally, to approximate the32

basin’s rainfall, we solve the implicit change of support problem (see Cressie (1993)33

and Gelfand et al. (2001) for further details). The models presented here allow us34

to represent parsimoniously a complex system of physical processes, which fit and35

forecast rather well, without losing the physical interpretation of their parameters.36

Inference procedure is performed under the Bayesian paradigm. Markov Chain Monte37

Carlo (MCMC) methods are used to assess posterior distributions of the unknown38

quantities. Since the proposed models can be computationally intensive when fitted39

with MCMC techniques, we sought to use algorithms that perform thousands of40

iterations in a few minutes. In particular we focused in the runoff model, for which41

we used a sampling scheme recently proposed by Ravines et al. (2007). It combines42

the conjugate updating of West et al. (1985) for dynamic models in the exponential43

family, with the backward sampling of Frühwirth-Schnater (1994).44

This paper is organized as follows. In Section 2 we briefly describe the Brazilian data45

we used to illustrate our methodology. Section 3 is devoted to a general discussion46

of some particular individual models for runoff and rainfall previously proposed. In47

4
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Section 4 the joint model proposed here is described and the main aspects of the48

inference procedure are discussed. In Section 5 we present the results of the analysis49

of the Rio Grande basin data, and in Section 6 we offer some concluding remarks.50

2 Rio Grande Basin, Brazil: Runoff-Rainfall Data51

The Rio Grande basin is located in the northeast of Brazil, in Bahia State, a dry52

sub-humid area with tropical weather. The region under study is between the 11o
53

and 13o South parallels and 43o30′ and 46o30′ West meridians. This basin has a54

drainage area of 37522.48 km2. The available dataset consists of monthly recorded55

series from August 1984 to September 2004 (242 months), at one runoff station56

(Taguá), and nine rainfall stations irregularly located in the drainage area. Figure57

1(a) shows the location of each station and Figure 1(b) shows the data for the four58

monitoring stations marked in 1(a).59

From Figure 1(b) we observe that there are distinct wet and dry periods annually:60

the rainy season begins in November and lasts through March, with the average61

accumulated monthly rainfall over 275mm; while the dry season is from late April62

until October, when the average monthly rainfall rarely exceeds 10mm. Most of the63

basin is sparsely vegetated and relatively flat, meaning that altitude has no influence64

in the hydrological regime. Thus, it is not taken into account in our models.65

5
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Figure 1. Rio Grande Basin: (a) Locations of the monitoring stations; (b) Time series of

monthly runoff at Taguá, and rainfall at sites 1, 2, and 3 (marked in (a)).

3 Individual models for rainfall and runoff66

Two of the main features of the rainfall-runoff relationship are: it is basically non-67

linear and the current runoff depends on previous runoff plus current and past68

precipitation. It can be assumed that there is no feedback between runoff and rainfall,69

so a transfer function model seems to be a natural option for fitting and forecasting70

this phenomenon. Besides, runoff is a non-negative variable and its time series can71

be non-stationary. Thus, we propose the use of non-linear and non-normal dynamic72

models to handle this kind of data.73

Let Yt be the runoff and Xt be the precipitation at time t. The rainfall-runoff rela-

6
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tionship can be represented by

Yt ∼ p(Yt|µt, φt), t = 1, 2, . . . (1a)

g(µt) = f1(αt, Et) (1b)

Et = f2(Et−1, . . . , E0, Xt), (1c)

where p(Yt|µt, φt) is a density function for a non-negative random variable; µt is74

the expected value of Yt; φt represents other parameters of p(Yt|µt, φt); αt is a basic75

level and Et is the total effect of rainfall at time t; and g(·), f1(·) and f2(·) are76

known functions describing the dynamics of the hydrological process. Time varying77

parameters and stochastic variations affecting Et are particular cases of (1).78

3.1 A dynamic transfer function model79

Following the assumptions made in Migon & Monteiro (1997), the relationship be-

tween runoff and rainfall can be expressed as a transfer function model. The model

in (1) assumes that the expected value of the total runoff generated (streamflow),

µt, or a function of it, say g(µt), can be written as a baseflow αt, which depends on

the water table level, plus an effect of current and past precipitation Et, which is

µt = αt +Et. The effect of precipitation is expected to decay between time t−1 and

t by a rate ρt ∈ (0, 1). This parameter plays the role of a recharge or rainfall effect

memory rate and depends on the geomorphology and land-use/land-cover of the

basin. Therefore, it should be (almost) constant over time. Temporal changes in this

parameter can be explained by drastic changes in, e.g., soil and/or vegetation char-

7
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acteristics. Since Et−1 represents the effect of precipitation before time t, a fraction of

current rainfall, say γtXt, can be added to compute the rainfall effect at time t. The

parameter γt measures the instantaneous effect of rainfall and is mainly associated

with overland flow speed. This parameter has a particular temporal dynamic: it is

strongly related to the soil infiltration capacity and the rainfall interception by the

vegetation. After a rainy period, the soil is saturated and the overland flow will be

high. However, after a dry period, the soil absorbs a great part of water and the over-

land flow will decrease. Also, when vegetation grows, the leaf density becomes high,

increasing the rainfall interception and consequently decreasing its instantaneous

effect on the discharge. Alternatively, if ϑt is the maximum expected precipitation

effect, then ϑt > µt and the remaining possible runoff is ϑt− (αt +ρEt−1). Therefore

Et, in (1c), can be expressed as one of the following expressions:

Et = ρtEt−1 + γtXt (2a)

Et = ρtEt−1 + [1− exp(−κtXt)][ϑt − (αt + ρtEt−1)]. (2b)

Equations (2a) and (2b) support the hypothesis that the precipitation effect decays80

exponentially with time. In equation (2a), the greater the amount of rainfall, the81

greater is its returns to runoff. This hypothesis is known as proportional returns.82

On the other hand, in equation (2b), the greater the amount of rainfall, the smaller83

is its effect and, moreover, this effect has an upper limit. The latter is known as the84

diminishing returns hypothesis. Figure 2 illustrates these functions for some fixed85

values of their parameters.86

8
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Figure 2. Examples of the shapes of the transfer functions in (2a) and (2b).

3.2 Modeling rainfall87

Note that the input Xt in model (1) corresponds to the precipitation of a whole88

basin, that is, a unique measure of rainfall is needed at each time t. However, in89

many situations, precipitation is observed in more than one station within a basin.90

So, the total rainfall for time t, Xt, should be obtained from the solution of the91

spatial change of support problem. The change of support problem is concerned92

with inference about the values of the variable over areal units (block data) different93

from those at which it has been observed (Gelfand et al., 2001). Areal rainfall can94

be viewed as a sum over point rainfall data, because it is a continuous univariate95

spatial process.96

Let {Xt(s), s ∈ B ⊂ R2, t = 1, 2, . . .} be a spatial random field at discrete time t.

Here, Xt(s) ≥ 0 is a random variable that represents the amount of rainfall at time

t and location s. So, the rainfall for a given basin or region B, Xt, is given by

Xt =
∫

B
Xt(s)ds, (3)

where B is the basin’s domain. In particular, we assume Xt(s) follows a truncated

9
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normal distribution and, as suggested by Sansó & Guenni (2000), is represented by

the following spatio-temporal model:

Xt(s) =


wt(s)

β if wt(s) > 0,

0 if wt(s) ≤ 0

s ∈ B, (4a)

wt = Zt + νt νt ∼ GP (0, τ 2I), (4b)

Zt = F ′θt + εt εt ∼ GP (0, σ2V ), (4c)

θt = Gθt−1 + ωt ωt ∼ GP (0, W t), (4d)

where GP denotes a Gaussian process and τ 2I and σ2V are the covariance matrices97

of wt and Zt, respectively. Here I denotes the identity matrix. The term νt is a98

random error whose variance, τ 2, is known as the nugget effect (Cressie, 1993). The99

variance of each Zt(.) is denoted by σ2, and its correlation function is represented by100

%(‖si−sj‖, λ) = Vij, which depends on λ, and on the Euclidean distance, || si−sj ||,101

between the locations si and sj. In this case, F ′θt represents a polynomial trend102

and G is the evolution matrix of the parameters θt. An alternative way of modeling103

rainfall is to use a model derived from a mixture taking into account the excess of104

zeros (dry season), as in Velarde et al. (2004) and Fernandes et al. (2007) .105

Fitting Equations (1) and (3) jointly is our proposed approach. Our formulation106

covers a wide class of relationships. It is very flexible and all of its parameters have107

a clear interpretation. Moreover, all the uncertainty involved in the physical process108

is clearly taken into account, as rainfall is not considered as a known quantity.109

10
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4 A simultaneous model for rainfall-runoff110

Assume that we have runoff data from T time periods and rainfall data from S

locations over a basin B, observed during the same time period. Let Yt and Xt be

the basin’s runoff and rainfall at time t, respectively. Then, Y denotes the basin’s

runoff time series, that is, Y = (Y1, . . . , YT )′, and X denotes the basin’s rainfall time

series, that is, X = (X1, . . . , XT )′. Let Xt(si) denotes rainfall at time t and gauged

location si. Then, X t(s) = (Xt(s1), . . . , Xt(sS))′ is the rainfall observed at time t

over the S gauged locations (for each time t ), and X(si) = (X1(si), . . . , XT (si))
′ is

the rainfall time series observed at gauged site si (for each location). And, X(s) =

(X(s1), . . . ,X(sS))′, with s denoting the vector of gauged locations (s1, . . . , sS), is

the matrix of rainfall observed at the S locations over T time periods. The joint

distribution (see Appendix A for details) of Y , X and X(s) is given by

p(Y , X, X(s)|Θ) = p(Y |X, X(s),ΘY )p(X, X(s)|ΘX), (5)

where Θ = (ΘY ,ΘX), ΘY denotes the parameters in (1) and ΘX denotes the111

parameters in (4). Note that in (5) the joint distribution of runoff and rainfall112

is modeled through the conditional distribution of runoff given rainfall, times the113

marginal distribution of rainfall (Schmidt & Gelfand, 2003). Also,114

p(Y ,X,X(s)|Θ) =
T∏

t=1

p(Yt|Xt,Xt(s),ΘY )p(Xt,Xt(s)|ΘX)

=
T∏

t=1

p(Yt|Xt,Xt(s),ΘY )p(Xt|Xt(s),ΘX)
S∏

i=1

p(Xt(si)|ΘX). (6)

115
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Gelfand et al. (2001) proposed to approximate p(Xt, X t(s)|ΘX) by using Monte

Carlo integration. They proposed to sample a set of observations in SB locations,

independent and uniformly distributed over B, and compute

X̂t =
SB∑
i=1

X̂t(si) i = 1, . . . , SB, (7)

where X̂t(si) is the predicted value for rainfall at the i−th location from a regular116

interpolation grid (with locations s∗1, s
∗
2, · · · , s∗SB

) of SB points constructed inside the117

bounds of B. Consequently, (7) is a Monte Carlo approximation of (3).118

The predictive distribution needed for the spatial interpolation of Xt(si), at a new

set of locations, for instance, (Xt(s
∗
1), . . . , Xt(s

∗
SB

))′, is given by

p(X(s′)|X(s)) =
∫

p(X(s′)|X(s),ΘX)p(ΘX |X(s))p(ΘX)dΘX , (8)

where ΘX denotes all the parameters in (4).119

Following the Bayesian paradigm, model specification is complete after assigning120

the prior distribution of all the unknowns. From Bayes’ theorem we obtain the121

kernel of the posterior distribution, which does not have an analytical closed form.122

Samples from the posterior distribution can be obtained via Markov chain Monte123

Carlo (MCMC) methods (Gamerman & Lopes, 2006). Based on the expressions124

above, the inference procedure via MCMC can be done in the following steps:125

(1). Fit a spatio-temporal model for rainfall, X(s), observed at S gauged locations126

over B;127

(2). Build a regular grid over the domain and obtain a sample of the rainfall over128

12
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the basin, X, following equations (7) and (8). That is, first obtain a sample129

from the predictive distribution of X(s) (for each point of the interpolation130

grid), then use these values to approximate the rainfall over the basin using131

equation (7);132

(3). For each sampled value of rainfall over the basin, Xt, obtained in the previous133

step, fit the runoff model as in equation (1).134

In particular, we assume that runoff follows either a lognormal or a gamma distribu-135

tion. In the case of the lognormal distribution, we applied a log transformation and136

the algorithm forward filtering backward sampling (FFBS) of Frühwirth-Schnater137

(1994) was used to obtain samples of the posterior distribution of interest. In the138

case of the gamma distribution, we propose the use of a sampling scheme which139

combines the conjugate updating of West et al. (1985) for dynamic models in the140

exponential family, with the backward sampling of Frühwirth-Schnater (1994). This141

algorithm is called conjugate updating backward sampling (CUBS); details are found142

in Ravines et al. (2007). We note that in non-normal transfer function models CUBS143

significantly reduces the computing time needed to attain convergence of the chains,144

and is also very simple to implement.145

5 Modeling in practice: Inference procedure146

We applied the approach described in Section 3 to the rainfall data from the nine

stations and the runoff series observed at Taguá station in the Rio Grande basin.

13
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Specifically, we used the function in (2a) for Et in (1c) and a multivariate dynamic

linear model (see West & Harrison (1997, Chapter 16)) for the temporal evolution

of the parameters in (4). For a better explanation, we reproduce our whole, general,

model in (9).

Yt|Xt ∼ p(µt, φ) t = 1, . . . , T (9a)

log(µt) = αt + Et (9b)

Et = ρEt−1 + γtXt + wt wt ∼ N(0, σ2
E) (9c)

αt = Gααt−1 + wα,t wα,t ∼ N(0, σ2
α) (9d)

γt = Gγγt−1 + wγ,t wγ,t ∼ N(0, σ2
γ) (9e)

Xt =
SB∑
j=1

X̂t(sj) j = 1, . . . , SB (9f)

Xt(si) =


wt(si)

β se wt(si) > 0

0 se wt(si) ≤ 0

i = 1, . . . , S (9g)

wt = zt + νt νt ∼ NS(0, τ 2I) (9h)

zt = F ′θt + εt εt ∼ NS(0, σ2V t) (9i)

θt = Gθt−1 + εt εt ∼ Nk(0, W t) (9j)

θ0 ∼ N(0,100I), (9k)

where p(µt, φ) is the log-normal or gamma distribution and φ corresponds to the147

precision parameter of the former and the shape parameter of the latter. In (9g)–148

(9k), S is the number of monitoring sites and SB is the number of points in the149

interpolation grid. Xt(si) denotes the rainfall at time t = 1, . . . , T and site si =150

14
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s1, . . . , sS, wt(si) is a latent Gaussian variable, β is an unknown power, wt is a vector151

of dimension S that stacks the S observations made at time t, τ 2 is a nugget effect,152

σ2 > 0 and V t is a spatial correlation matrix of dimension S. Here we assume that153

Vsi,si′
= exp(−λdsi,si′

), that is, an exponential decay correlation where λ controls154

the decay rate, λ > 0 and dsi,si′
is the Euclidean distance between sites si and si′ ,155

i, i′ = 1, . . . , S. In (9i)–(9k), F ′ is an S × k matrix, G is a k × k matrix and θ is a156

vector of dimension k. The elements of θ are such that θt = (θt1, θt2)
′, where θt1 is157

a sub-vector that describes the spatial trend and θt2 describes the seasonal effects.158

Equations (9d) and (9e) represent possible time evolutions of α and γ, respectively.159

In practice, just one of these equations is considered and depends on the features of160

the basin under study.161

5.1 Prior distributions and full conditional distributions162

In general, we used fairly vague prior distributions. However, since all the involved163

parameters have physical interpretations, an elicitation procedure could be done. For164

the parameters of the spatio-temporal model in (9g)-(9k), we set p(θ0, σ
2, ς2, λ, β) =165

p(θ0)p(σ2)p(ς2)p(λ)p(β), where ς2 = τ 2/σ2, p(θ0) is an S−variate normal distri-166

bution with mean 0 and an identity covariance matrix, NS(0, I) and p(σ2) is an167

improper distribution, 1/σ2. On the other hand, p(ς2), p(λ) and p(β) are gamma168

densities with parameters (0.001, 0.001), (2.00, 6/1.86) and (12, 4), respectively. The169

hyper-parameters for λ were selected according to the premise that at half of the170

maximum distance between the observed points, the spatial correlation is almost171
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zero. The hyper-parameters for the prior of β were chosen such that its expected172

value was 3, representing the cubic root transformation recommended in the hydro-173

logical literature (Sansó & Guenni, 2000).174

Following Bayes’ Theorem, the posterior distribution is proportional to the likelihood

times the prior distribution. For the spatio-temporal model in (9g)-(9k), the posterior

distribution is given by

p(σ2, ς2, λ, β,z,θ|X) ∝
( 1

σ2

)ST ( 1
ς2

)ST/2
|V (λ)|−T/2

exp
(
− 1

2σ2

T∑
t=1

1
ς2
‖wt − zt‖2 + (zt − F ′θt)′V (λ)−1(zt − F ′θt)

− 1
2

T∑
t=1

(θt −Gθt−1)′W−1
t (θt −Gθt−1)

)( ∏
xit>0

x
1/β−1
it

β

)
p(θ0, σ

2, ς2, λ, β). (10)

From (10), we have the following full conditional distributions (f.c.d.): σ2 and ς2
175

are inverse gamma, z is multivariate normal, and wij < 0 is a univariate truncated176

normal. The f.c.d. of λ and β do not have a known closed form. Since θt are the177

state parameters of a normal dynamic model, their f.c.d. are multivariate normals.178

For the dynamic models in (9a)-(9c) we also set independent priors to all the para-179

meters. In particular, we considered normal prior distributions with zero mean and180

variance 103 for E0, α and γ and a uniform distribution over [0, 1] for ρ. For all the181

variance terms, (σ2
Y , σ2

E, σ2
W ), we assigned inverse gamma distributions with both182

hyper-parameters equal to 0.01. When the gamma distribution is used to model183

the runoff, a gamma distribution with both parameters equal to 0.01 was used as a184

prior for φ, the shape parameter in (9a). In this case, the f.c.d. of the unknowns in185

(9a)-(9c) depend on the distribution assumed for Yt and the hypothesis for σ2
E, σ2

α186
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and σ2
γ. In particular, if p(µt, φ) is a gamma distribution and σ2

α = σ2
γ = 0, the f.c.d.187

of γ and σ2
E are normal and inverse gamma, respectively, and the f.c.d. of α, ρ and188

φ do not have a known closed form.189

5.2 Some computational details190

In order to sample from the posterior distribution, we used a hybrid Gibbs sam-191

pling algorithm (Gelfand & Smith, 1990). Samples from the f.c.d. of λ, β, α and ρ192

were obtained through the slice sampling algorithm (Neal, 2003). We made use of193

a Metropolis-Hastings step to sample φ. Samples from θt were obtained with the194

forward filtering backward sampling (FFBS) procedure (Frühwirth-Schnater, 1994).195

Following Sansó & Guenni (2000), we used discount factors for W t: δT = 0.90 for196

the spatial trend and δS = 0.95 for the seasonal effects. Finally for σ2
α and σ2

γ we197

used a discount factor of 0.95, whenever these parameters were considered in the198

model.199

The MCMC algorithm for the spatio-temporal model was iterated 70 000 times after200

a burn-in of 10 000 steps, for two parallel chains. We stored every 10th iteration.201

For the runoff models we ran two chains for 60 000 iterations, after a burn-in period202

of size 10 000. The samples were taken at every 5th step. All the algorithms were203

written in Ox version 3.20 (see Doornik (2002)). The convergence of our chains was204

checked with the tests available in the CODA package, developed by Plummer et al.205

(2005), for the software R version 2.40.206
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5.3 Results207

Taking advantage of the factorization of the likelihood in p(Yt|Xt)p(Xt), we used208

the computational routines for fitting the model in (3) with some different cases of209

polynomial trend, and then fitting several particular cases of the model in (1).210

Our final model for rainfall has an intercept and a linear effect of longitude. Al-211

ternative models had shown that latitude has no significant effect in this region.212

The seasonal pattern was represented via two Fourier harmonics, which were chosen213

through an exploratory analysis of the periodogram of the series. Therefore matrix214

F t in (9i) has row components: (1, longitude(si), 1, 0, 1, 0)′ and G = diag(G1, G2),215

where G1 is an identity matrix of order 2, and G2 has diagonal blocks216

G2r =


cos(2πr/12) sin(2πr/12)

− sin(2πr/12) cos(2πr/12)


, r = 1, 2.217

Figure 3 shows the estimated paths of θt. We observe that the intercept clearly218

varies over time and seems to have an inter-annual cycle. The effect of longitude219

is negative and varies smoothly over time. The first harmonic has a very regular220

pattern, however the effect of the second harmonic exhibits two periods of different221

behaviors: before and after 1992. Table 1 presents the main summaries of the pos-222

terior samples obtained for the static parameters in equations (9g)-(9k). Note that223

we made inference about ς2 = τ 2/σ2. The posterior mean of β is 1.73, suggesting224

that the data is smoothly skewed, probably because we are working with monthly225
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data. In Table 1 we also observe that the R̂ statistics (Gelman & Rubin, 1992) take226

values close to 1, suggesting that the convergence of our chains was reached.227

In order to illustrate the fitted values produced by our spatio-temporal model, Figure228

4 displays the mean of the predictive posterior distribution of rainfall for two selected229

months. Note that different patterns are obtained for a rainy month (like December)230

and a dry month (like June).231
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1.
5

2.
0

2.
5

3.
0

3.
5

(a) Intercept

1985 1990 1995 2000−
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Figure 3. Estimated path of the state parameters for the rainfall model in (9k). Solid lines

correspond to the posterior mean and dashed lines to the 95% posterior credible intervals.

The basin’s rainfall was obtained by means of the spatial interpolations of rainfall232

over a grid of 63 points selected from a regular grid constructed over the whole233
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Table 1
Posterior summaries associated with the parameters in equations (9g)-(9k)

Parameter mean sd 2,5% 25% 50% 75% 97,5% R̂

β 1.732 0.016 1.701 1.722 1.732 1.743 1.764 1.001

λ 0.045 0.007 0.033 0.040 0.044 0.050 0.061 1.001

ς2 0.719 0.040 0.644 0.691 0.718 0.746 0.798 1.001

σ2 1.100 0.044 1.015 1.070 1.098 1.128 1.191 1.003
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Figure 4. Posterior mean for rainfall for two different months. Dots mark the location of

the rainfall monitoring stations. Darker values indicate higher rainfall values.

basin under study. This grid is exhibited in Figure 1(a). The integral in (9f) was234

approximated by summing the 63 predicted values at each iteration of our MCMC235

algorithm. The resulting areal rainfall series, posterior mean and 95% credible inter-236

vals are displayed in Figure 5. This figure also shows the mean areal precipitation237

estimated by the Thiessen method, a widely used deterministic method. It consists238

of assigning an area, or weight, called a Thiessen polygon, to each site. Then the239

individual weights are multiplied by the observed station and the values are summed240

up to obtain the areal average precipitation. Figure 5 warrants attention because241

under the Bayesian framework we take into account the uncertainty involved and242
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Figure 5. Panel (a): Areal rainfall (solid line corresponds to the posterior mean and dashed

lines to the 95% credible interval. + corresponds to the Thiessen method estimation). Panel

(b): QQ plot between the estimated rainfall over the basin obtained via the Thiessen’s

method and the posterior mean of the predictive distribution, as in equation (7).

have a credible interval for each time. Therefore, this uncertainty will naturally be243

taken into account during the fitting of the runoff part of the model. Notice also that244

the estimated rainfall under the Thiessen method seems to be close to the upper245

limit of the posterior predictive interval. This suggests an overestimation of rainfall246

for some instants in time. This is also clear from the QQ plot presented on panel247

(b) of Figure 5.248

We used our posterior sample of the basin’s rainfall to fit several particular cases249

of equations (9a)-(9c). Specifically, for p(Yt|Xt), we considered the two distribution250

mentioned above: log-normal and gamma. We also considered the following five251

specifications:252

(a) The basic level, the transfer function and the instant rainfall effect are static;253
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that is: σ2
α = σ2

γ = σ2
E = 0,∀t.254

(b) The basic level and the instant rainfall effect are static. The transfer function255

is stochastic: σ2
α = σ2

γ = 0 and σ2
E > 0,∀t.256

(c) The basic level follows a random walk. The transfer function and the instanta-257

neous rainfall effect are static: αt = αt−1 + wα,t, σ2
α > 0 and σ2

γ = σ2
E = 0,∀t.258

(d) The basic level is static, the transfer function is stochastic and the instantaneous259

rainfall effect follows a random walk: γt = γt−1 + wγ,t, σ2
γ > 0, σ2

α = 0 and260

σ2
E > 0,∀t.261

(e) The basic level is static, the transfer function is stochastic and the instantaneous262

rainfall effect varies over time following a constant trend and a seasonal pattern:263

γt = Gγγt−1 + wγ,t, σ2
γ > 0, σ2

α = 0 and σ2
E > 0,∀t. Gγ = diag(1, G2,γ), where264

G2,γ =

 cos(2πr/12) sin(2πr/12)

− sin(2πr/12) cos(2πr/12)

 , r = 1, 2.265

It is worth pointing out that we also fitted the function in (2b), however the results266

were less satisfactory than those under (2a) in terms of goodness of fit (to this267

particular dataset). Model comparison was performed using the following criteria:268

(i) Deviance Information Criterion (DIC), proposed by Spiegelhalter et al. (2001);269

(ii) Expected Predictive Deviation (EPD), proposed by Gelfand & Ghosh (1998);270

(iii) Mean Square Errors (MSE); and (iv) Mean Absolute Errors (MAE). In all cases,271

smaller values indicate the best model among those under study.272

Table 2 (columns 4, 7, 8 and 9) shows the values of DIC, EPD (both considering273

a quadratic loss), MSE and MAE, computed for each of the five specifications de-274
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scribed above. Two conclusions can be drawn from this table: first, all the criteria275

suggest that the gamma distribution should be chosen (this is no longer valid for276

columns 10 and 11); and second, in this case, specification (e) provides better results277

in terms of goodness of fit. It is worth mentioning that when using the rainfall time278

series obtained through the Thiessen’s method as input (Xt) in the selected model,279

the values of DIC and EPD are 1817.6 and 90343, respectively. More specifically, as280

expected, the penalty term of both criteria is smaller, however the goodness of fit281

term is poorer. In other words, our joint model produces better results (fitted values)282

than the individual model that assumes rainfall as known. A similar conclusion is283

obtained when using just the posterior mean of the areal rainfall obtained from the284

spatio-temporal model.285

Our final runoff model, therefore, assumes a gamma distribution with a static basic286

level, a stochastic transfer function and an instant rainfall effect varying across time287

following a constant trend and a seasonal pattern. In Figures 6(a) and 6(b) we288

show the histograms of the samples from the posterior distributions of α and ρ,289

respectively. Figure 6(a) shows the posterior mean of α is 4.84, indicating that the290

mean basic level in that region, during the observed time period, was 126.46 m3/s.291

Figure 6(b) shows that the mean of the regional recharge is 0.64 and varies between292

0.57 and 0.71, which corresponds to the 95% posterior credible interval. Figure 6(c)293

shows the evolution of the rainfall’s instant effect, γtXt. Remember that in the294

selected model, γt is a vector with five components where the first one corresponds295

to the constant trend and the last four correspond to the two harmonics used. Panel296
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Table 2
Model comparison criteria for three alternative specifications of (9a)-(9c): Deviance Infor-
mation Criteria (DIC), Expected Predictive Deviance (EPD), Mean Square Error (MSE)
and Mean Absolute Error (MAE).

Model D̄ pd DIC Fit Penalty EPD MSEa MAEa MSEb MAEb

Log-normal distribution for Runoff (Yt)

(a) 1917.6 27.7 1 945.3 103 475 94 948 198 423 429.1 14.9 1 366.9 27.5

(b) 1733.0 99.9 1 833.0 58 577 33 096 91 674 149.9 7.4 1 359.3 26.8

(c) 1799.8 50.0 1 849.9 65 485 64 745 130 231 292.1 10.3 2 058.4 27.5

(d) 1757.5 86.3 1 843.9 62 068 40 870 102 939 186.5 8.4 1 588.6 25.7

(e) 1887.2 120.1 2 007.3 125 683 60 749 186 433 274.2 9.7 1 596.4 26.2

Gamma Distribution for Runoff (Yt)

(a) 1917.8 16.8 1 934.6 103 157 94 412 197 570 427.5 14.8 1 398.6 26.5

(b) 1718.6 110.5 1 829.1 55 038 29 476 84 514 134.3 7.0 1 119.6 26.0

(c) 1810.7 27.3 1 838.1 73 879 61 528 135 407 280.2 10.0 2 078.2 28.0

(d) 1722.9 108.6 1 831.6 56 077 30 525 86 602 139.0 7.2 1 434.8 26.8

(e) 1679.5 138.3 1 817.9 50 692 19 764 70 457 88.8 5.6 1 583.0 26.5
a With fitted values: in the sample, (221 months),

b With predicted values: out-of-sample. (21 months).

6(d) shows the trajectory of the first component of γt. In this panel we observe that297

the rainfall’s instant effect (without the seasonal effects) is always greater than zero298

and its value varies between 0.03 and 0.05. We also observe a decreasing trend for299

the last months.300

One of the advantages of the Bayesian approach is that at the end of the inference301

procedure we have a sample from the posterior distributions of all the unknowns in302

the models. Therefore, it is straightforward to make inferences about functions of303
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Figure 6. Parameters in (9a)-(9c), with specification (e) and gamma response.

these quantities. The impulse-response function is probably one of the most impor-304

tant results of the class of models we proposed for runoff. This function indicates305

the intensity of the runoff response and how many periods the effect of a impulse306

of rainfall persists. Based on the posterior samples of γ and ρ, we constructed the307

impulse-response function presented in Figure 7(a). In this case, we considered that308

there is no precipitation during 26 months, except at time t = 5. In Figure 7(b)309

we considered the first values of rainfall as inputs or impulses. In both figures, gray310

points correspond to the posterior samples of each function, and dotted lines corre-311
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spond to the 95% posterior credible intervals.312

(a) Single pulse at t = 5 (b) Real pulse - Rainfall

Figure 7. Runoff Impulse-Response Function. Solid line represents the mean and dotted

lines represent the 95% posterior credible interval.

Figure 8(a) shows the fitted values obtained for the 221 months in the runoff series.313

Note that the observed runoff values are within the limits of the 95% interval of the314

posterior predictive distribution, indicating an acceptable overall fit. However, it315

can be observed that the higher observed values (over 300 m3/s) are near the upper316

limit, suggesting the use of an extreme value distribution to model them. This lack317

of fit at the upper tail is also revealed by the Q-Q plot among observed values and318

posterior predictive means displayed in Figure 8(b).319

5.4 Temporal predictions and spatial interpolations320

An important issue to be considered here is that fitted and forecast values obtained321

from Bayesian rainfall-runoff models can be used in synthetic hydrology. As pointed322

out by Rios-Insua et al. (2002), the sample of the predictive distributions can be323

used to simulate sequences of observations that mimic some behavior phenomenon324

for engineering design or analysis. Therefore, good interpolated and forecast values325
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Figure 8. Runoff fitted values, under Model (9a)-(9c). The solid line corresponds to the

posterior mean and dashed lines to the limits of the 95% credible interval. + corresponds

to observed data.

are important to support other areas of hydrological research.326

In order to evaluate the interpolations and predictions obtained with our models,327

we left the last 21 observations out of the sample. The predictive distribution of328

rainfall was used to forecast the precipitation at each monitoring station. Also, as329

we stated in Section 4, at each iteration of the MCMC algorithm, we used the330

predictive distribution of rainfall to compute the areal one and then we forecast the331

runoff.332

From columns 10 and 11 of Table 2, we conclude that the selected model (gamma333

distribution and specification (e)) does not exhibit the smallest out-of-sample MSE334

and MAE. However, we used that model to make our temporal predictions because335

the MAE values are very similar among the considered models. Figure 9(a) shows336

the temporal predictions obtained for three of the nine rainfall stations, the temporal337
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areal prediction for the areal rainfall is presented in Figure 9(b), and the predicted338

series for runoff is displayed in Figure 9(c). Note that almost all of the true values339

are within the limits of the 95% posterior credible interval provided by our approach.340

m
m

2003.0 2003.4 2003.8 2004.2 2004.6

0
50

15
0

25
0

35
0

45
0

1

m
m

2003.0 2003.4 2003.8 2004.2 2004.6

0
50

15
0

25
0

35
0

45
0

2

m
m

2003.0 2003.4 2003.8 2004.2 2004.6

0
50

15
0

25
0

35
0

45
0

3

(a) Predicted rainfall at some stations (1,2,3 marked in Figure 1(a))

m
m

2003.0 2003.2 2003.4 2003.6 2003.8 2004.0 2004.2 2004.4 2004.6

0
50

10
0

20
0

30
0

40
0

Spatio−Temporal model: mean
Spatio−Temporal model: IC 95%
Thiessen's method

(b) Predicted rainfall for the basin

 

m
3

s

2003.0 2003.2 2003.4 2003.6 2003.8 2004.0 2004.2 2004.4 2004.6

10
0

14
0

18
0

22
0

26
0

30
0

Transfer function model: mean
Transfer function model: IC 95%
Observed Runoff

(c) Predicted runoff

Figure 9. Rainfall-Runoff forecast values. Mean (solid lines) and 95% credible interval

(dashed lines) of predictive distributions. x: in (a) and (c) correspond to the observed

data, in (b) corresponds to the values obtained with the Thiessen method.

6 Concluding remarks341

In this paper we proposed a joint model for rainfall and runoff, by taking into account342

all the uncertainty associated with both stochastic processes and considering their343

different spatial units. We used some previously established individual models whose344

parameters have natural physical interpretations. We also fitted the data in their345
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original scale. Under a Bayesian framework we proposed to fit non-normal (gamma)346

transfer function models using the CUBS sampling scheme that significatively re-347

duces the computational time and is easy to implement. We were also careful with348

the implementation of the MCMC algorithm. Although it is not shown here, missing349

data are naturally handled as parameters of the models. We believe our approach is350

a promising tool for runoff-rainfall analysis.351

A natural extension of the model proposed here is the inclusion of a variable that352

represents the region’s vegetation. Vegetation controls the evapotranspiration and353

interceptation processes, two components of the water balance.354

Natural alternatives to the models used here are to consider other transfer func-355

tions for the runoff and to consider other spatial correlation functions in the spatio-356

temporal model for rainfall. An interesting extension is the use of hierarchical dy-357

namic models (like Gamerman & Migon (1993)), to model a set of runoff series358

from different basins but with similar geological and climate characteristics. Also,359

linear models can be considered for both parameters of the biparametric gamma360

distribution used for runoff, as in Capkun et al. (2001).361

Finally, the results obtained with our approach provide an important input to the362

decision problem of reservoir operations (see Rios-Insua et al. (1997)), which is just363

one of the topics of our current research.364

29

INPE ePrint: sid.inpe.br/mtc-m17@80/2007/09.28.19.36 v1 2008-04-01



Acknowledgments365

The work of Romy R. Ravines was supported by Coordenação de Aperfeiçoamento366

de Pessoal de Ensino Superior (CAPES-Brazil). Alexandra M. Schmidt and Helio367

S. Migon were supported by Conselho Nacional de Desenvolvimento Cient́ıfico e368

Tecnológico (CNPq-Brazil). The authors thank the Laboratório de Hidrologia of the369
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83.431

A Likelihood and Spatial Change of Support432

Here we present in more detail the computations for the change of support problem.

Let Y = (Y1, . . . , YT )′, X = (X1, . . . , XT )′, and X(si) = (X1(si), . . . , XT (si))
′. Also,

consider X t(s) = (Xt(s1), . . . , Xt(sS))′ and X(s) = (X1(s), . . . ,XT (s)) an S × T

matrix, where s = (s1, . . . , sS). The joint distribution of Y and X(s) is given by

p(Y ,X(s)|Θ)︸ ︷︷ ︸
observed data

=
∫

p(Y ,X|X(s),Θ)p(X(s)|Θ) dX︸︷︷︸
latent process

(A.1)

=
∫

p(Y |X,X(s),ΘY ) p(X,X(s)|ΘX)︸ ︷︷ ︸
Monte Carlo approximation

dX,

where Θ = (ΘY ,ΘX). Actually, the joint distribution of the observed data is433

given by p(Y , X(s)|Θ), then X plays the role of a latent variable. Since one of the434

advantages of the use of MCMC methods is that we can sample p(Y , X, X(s)|Θ)435

and consider that samples from p(Y , X(s)) belong to the marginal joint distribution436

of both variables, we are concerned with p(Y , X, X(s)|Θ), which for a fixed t is437

given by438

p(Yt, Xt, X t(s)|Θ) = p(Yt|Xt, X t(s),ΘY )p(Xt, X t(s)|ΘX). (A.2)

Now, we focus on p(Xt, X t(s)|ΘX). Recall that

Xt =
∫

B
X t(s)ds, (A.3)
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that is, Xt is a “function” of X t(s) and the predictive distribution of Xt is

p(Xt|X t(s))︸ ︷︷ ︸
predictive

=
∫

p(Xt|X t(s),ΘX) p(ΘX |X t(s))︸ ︷︷ ︸
posterior

dΘX . (A.4)

The moments of p(Xt|X t(s)) in (A.4) involve integrals with respect to s. For in-

stance, assuming that the joint distribution of Xt and X t(s) is normal, we have

E(Xt|ΘX) =
∫

B
E(X t(s)|ΘX)ds. (A.5)

Gelfand et al. (2001) proposed to approximate those moments by means of Monte

Carlo integration. They showed that

p̂
(
(Xt, X t(s))′|ΘX

)
= p

(
(X̂t, X t(s))′|ΘX

)
, (A.6)

where ˆ denotes a Monte Carlo integration and

X̂t =
SB∑
i=1

X̂t(si) i = 1, . . . , SB. (A.7)

According to Gelfand et al. (2001), (A.6) implies that the approximated joint density439

of Xt and X t(s) is equal to the joint density of X̂t and X t(s), so, in practice, X̂t is440

the one to be sampled. The authors stated that X̂t→P Xt if X t(s) is almost surely441

a continuous process.442
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