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Abstract

The identification of natural groups in a dataset is reduced to an optimum-path forest

problem in a graph. We define a graph whose nodes are data samples and whose arcs
connect adjacent samples in a feature space. The nodes are weighted by their probability
density values and different choices of a path-value function lead to effective solutions for
data clustering. The method identifies a root node for each cluster and finds the samples
which are “more strongly connected” to each root than to any other. The output is
an optimum-path forest whose trees (clusters) are the influence zones of their roots.
This framework extends the image foresting transform from the image domain to the
feature space, revealing important theoretical relations among relative fuzzy-connected
segmentation, morphological reconstructions, watershed transforms, and clustering by
influence zones. It also provides a more general and robust implementation for the
popular mean-shift algorithm. The results are illustrated in image segmentation.

1 Introduction

A fundamental problem in pattern recognition is the identification of natural groups in a
dataset, namely data clustering [1]. These groups are composed by samples with similar
patterns, which are usually represented by feature vectors (measurement or observation
sets) whose similarity depends on a distance function.

Classical approaches interpret the samples as nodes of a complete graph (every pair
of samples is connected by an arc), whose arc weights are the distances between samples.
They build a neighborhood subgraph, such as a minimum spanning tree [2] or a Gabriel
graph [3], and remove inconsistent arcs based on some graph-partition criterion, being the
results sometimes hierarchical (e.g., the single-linkage algorithm [4]).

In image analysis, the graph is usually sparse with the pixels being the nodes and the
arcs being defined by a small adjacency relation in the image domain (e.g., 4-neighborhood).
The arcs are weighted by similarity values and the problem of clustering pixels becomes

∗School of Electrical and Computer Engineering, State University of Campinas, Campinas, SP, Brazil.

Email: {leorocha,meloni}@decom.fee.unicamp.br.
†Institute of Computing, State University of Campinas, Campinas, SP, Brazil. Email: afal-

cao@ic.unicamp.br.

1

INPE ePrint: sid.inpe.br/mtc-m17@80/2007/10.01.19.56 v1 2007-10-02



an image segmentation problem, whose solution is obtained by optimum graph partition.
Different graph-cut measures have been used in this context. The first was the sum of arc
weights along the cut [5], but its tendency to create small clusters led to other measures:
average cut [6], mean cut [7], average association [8], normalized cut [9], ratio cut [10], and
cut by energy functions [11, 12].

Other approaches for data clustering exploit the probability density function (pdf),
which can be computed by Parzen Window [1]. Some of these approaches assume either
explicitly or often implicitly that the pdf has a known shape, and try to estimate its pa-
rameters [13–15]. Given that the shapes may be far from hyperelliptical, which is the clas-
sical assumption, several other methods aim to obtain clusters with arbitrary shapes [16–
19]. Among them, the mean-shift algorithm seems to be the most popular in the last
years [17, 20–25].

We propose a hybrid framework for data clustering which combines graph partition by
optimum-path forest with probability density function. The samples are the nodes of a
non-complete graph, whose the arcs are defined by an adjacency relation. This relation
may consider k-nearest neighbors (a k-nn graph) or a maximum distance between samples
in the feature space. For pixel clustering, it also considers some connectivity constraint
in the image domain. The weights of the arcs are the distances between samples and the
nodes are also weighted by their probability density values, which are computed using the
arc weights. A path is a sequence of adjacent nodes and a path-value function evaluates the
strength of connectness between its terminal nodes. That is, it assigns to the terminus s of
each path the minimum among the density values along the path and an initial handicap
value. The handicap values work as filtering parameters on the pdf, reducing the numbers
of clusters which is usually higher than the desired number. The maximization of the path
values for each sample s, irrespective to its starting node (root), partitions the graph into an
optimum-path forest. The roots of the forest form a subset of the maxima of the pdf. Each
root defines an optimum-path tree (cluster or influence zone of the respective maximum)
composed by its most strongly connected samples.

The method extends the image foresting transform (IFT) — a tool for the design of im-
age processing operators based on connectivity [26] — from the image domain to the feature
space. By doing that, it reveals relations among the mean-shift algorithm [17], the skeleton
by influence zones in the feature space [18, 19], morphological reconstructions [27–29], wa-
tershed transforms [30–33] and relative fuzzy-connected segmentation [34]. It also provides
a more general and robust implementation for the popular mean-shift algorithm [17]. The
results are illustrated in image segmentation.

Section 2 presents pdf estimation from a weighted graph and defines optimum path
forest. Graph partitions based on optimum-path forests are described in Section 3. The
method is then applied to image segmentation in Section 4 and Section 5 discusses its main
results. Conclusions are stated in Section 6.
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2 Weighted graph, pdf, and optimum path forest

Let N be a dataset such that for every sample s ∈ N there is a feature vector ~v(s). Let
d(s, t) be the distance between s and t in the feature space (e.g., d(s, t) = ‖~v(t) − ~v(s)‖).
Figure 1a shows an example of N in which ~v(s) is a two-dimensional feature vector. The
fundamental problem in data clustering is to identify natural groups in N . In this case,
there are two groups (clusters) with some overlap and a distinct label must be assigned to
the samples of each group.

We define a graph (N ,A) where A is a set of arcs (s, t) between samples of N , which
satisfy some adjacency relation in the feature space and are weighted by d(s, t). For example,
we may say that a sample t is adjacent to a sample s — i.e., (s, t) ∈ A or t ∈ A(s) — if
d(s, t) ≤ df . The graph is also weighted on its nodes s ∈ N by a probability density value
ρ(s).

ρ(s) =
1√

2πσ2|A(s)|
∑

∀t∈A(s)

exp

(−d2(s, t)

2σ2

)

(1)

This is equivalent to the Parzen-window estimation using an isotropic Gaussian kernel [1].
Given that the most samples in a Gaussian function is below d(s, t) = 3σ and the maximum

distance between adjacent samples is df , we may define σ =
df

3 to guarantee that all
adjacent samples will be considered inside the kernel. The bandwidth df of the kernel can
be estimated as proposed in [35–38]. However, we exploit in this work a new option where
A(s) is the set of the k-nearest neighbors of s in the feature space.

t ∈ A(s) if t is k-nearest neighbor of s. (2)

Equation 1 is used with σ =
df

3 , where

df = max
∀(s,t)∈A

{d(s, t)} (3)

to be consistent with the above explanation. As a result, we have a k-nn graph for a given
value of k, whose node weights ρ(s) by Equation 1 are illustrated in Figure 1b.

A path π = 〈s1, s2, . . . , sn〉 in (N ,A) is a sequence of adjacent nodes and two samples
are connected if there is a path between them. We assign a value f(π) to any path π in the
graph. A path π is trivial if π = 〈s1〉 and it is optimum if f(π) ≥ f(τ) for any other path
τ with the same terminus of π.

The IFT algorithm can reduce the data clustering problem into an optimum-path forest

problem in (N ,A) [26]. The optimum-path forest is a predecessor map P with roots in a set
R ⊂ N — i.e., a function with no cycles that assigns to each sample s /∈ R its predecessor
P (s) in the optimum path from R or a marker nil when s ∈ R. Any optimum path P ∗(s)
with terminus s can be easily obtained by following P (s) backwards up to its root in R.

By choice of f , the IFT can identify one root in each maximum of the pdf, assign to
each root a distinct label, and compute the influence zone (cluster) of each root as an
optimum-path tree in P , such that the nodes of the tree receive the same label of its root

3
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Figure 1: (a) A 2D-feature space where black dots indicate samples. (b) The weight (hue
from blue to red) of each sample is a probability density value ρ(s) by Equation 1. (c) The
clusters are defined from the maxima of the pdf. (d) The clusters are defined from seeds
obtained by thresholding the pdf.

(Figure 1c). Another option is to compute the influence zones from seed samples obtained
by thresholding the pdf (Figure 1d). In any case, considering all possible paths πs with
terminus s, for any s ∈ N , the IFT computes

V (s) = max
∀πs∈(N ,A)

{f(πs}, (4)

where V (s) = f(P ∗(s)), but f must be smooth. That is, for any sample t ∈ N , there is an
optimum path P ∗(t) which either is trivial, or has the form πs · 〈s, t〉 (a prefix πs extended
by arc (s, t)) where

(C1) f(πs) ≥ V (t),

(C2) πs is optimum,

(C3) for any optimum path τs, f(τs · 〈s, t〉) = V (t).

Solutions for data clustering with different choices of smooth path-value functions are pre-
sented next.
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3 Data clustering by optimum-path forests

Root identification is a key task to eliminate irrelevant maxima of the pdf in cases where
the number of clusters is higher than the desired number (unnecessary in Figure 1). This
can be done by two general procedures of defining path-value functions. The first procedure
filters the pdf and defines the influence zones of non-eliminated maxima (Section 3.1). The
second procedure selects a seed set S ⊂ N , which can merge the influence zones of some
maxima by assigning a same label to them (Section 3.2). In both cases, each sample s ∈ N
receives the label L(s) of its corresponding cluster (root in R).

Different choices of k lead to different optimum-path forests, whose labeled trees repre-
sent distinct cuts in (N ,A). The best value of k is then the one whose optimum-path forest
minimizes a graph-cut measure (Section 3.3).

3.1 Influence zones from maxima

The path-value function f1 defines an optimum-path forest with roots in all maxima of ρ(s).

f1(〈s1, s2, . . . , sn〉) = min
∀si,i=2,3,...,n

{h(s1), ρ(si)} (5)

for a handicap value h(s1) given by

h(s1) = ρ(s1)− δ, (6)

δ = min
∀(s,t)∈A|ρ(t)6=ρ(s)

|ρ(t)− ρ(s)|.

In practice, a maximum may be a connected component in (N ,A) where the samples have
the same density value. In order to assign a distinct label for each maximum, a single
arbitrary root must be selected per maximum. This can be done by choosing path-value
function f2.

f2(〈s1〉) =

{

ρ(s1) if s1 ∈ R
h(s1) otherwise

f2(〈s1, s2, . . . , sn〉) = min
∀si,i=2,3,...,n

{f2(〈s1〉), ρ(si)} (7)

where the roots in R are identified on-the-fly and h(s1) is given by Equation 6.
The number of maxima can be reduced by either increasing δ in Equation 6 or by

computing an anti-extensive morphological operation on ρ such that h(s1) < ρ(s1). The
choice of δ can be facilitated if we scale the values of ρ within an interval [1,K] of real
numbers, where K is a maximum constant. In the second case, we may use morphological
opening or connected filters [27, 28], such as area and volume openings, as anti-extensive
operators. The filtered density is then subtracted by δ = 1 to guarantee h(s1) < ρ(s1).

The first case removes domes in ρ with height below δ. The second case takes into
account other criteria, such as a minimum area or volume for these domes. In the image
domain, these filters use the set of pixels, a spatial adjacency relation, and a gray-scale
image [29, 33]. We are substituting the set of pixels by N , using the k-nn relation A
(Equation 2), and ρ (Equation 1) as gray-scale function.

5
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Algorithm 1 presents the IFT algorithm modified for the graph (N ,A) and path-value
function f2. It identifies a single labeled root for each non-eliminated maximum and com-
putes the optimum paths from the roots in P by following a non-increasing order of value,
the path values in V , and the labels of the roots in L. It outputs the label map L with the
result of the data clustering operation.

Algorithm 1 – Clustering by Optimum Path Forest

Input: Graph (N ,A) and functions h and ρ, such that h(s) < ρ(s) for all s ∈ N .
Output: Label map L.
Auxiliary: Path-value map V , predecessor map P , priority queue Q, variables tmp and l← 1.

1. For all s ∈ N , set P (s)← nil, V (s)← h(s), and insert s in Q.

2. While Q is not empty, do

3. Remove from Q a sample s such that V (s) is maximum.

4. If P (s) = nil then set L(s)← l, l← l + 1, and V (s)← ρ(s).
5. For each t ∈ A(s) and V (t) < V (s), do

6. Compute tmp← min{V (s), ρ(t)}.
7. If tmp > V (t), then

8. Set L(t)← L(s), P (t)← s, and V (t)← tmp.
9. Update position of t in Q.

Line 1 initializes maps and inserts all samples in Q. At each iteration of the main loop
(Lines 2–9), a path P ∗(s) of optimum value V (s) is obtained in P when we remove its last
sample s from Q (Line 3). Ties are broken in Q using first-in-first-out (FIFO) policy. That
is, when two optimum paths reach an ambiguous sample s with the same maximum value,
s is assigned to the first path that reached it. The test P (s) = nil in Line 4 identifies P ∗(s)
as a trivial path 〈s〉. Given that the optimum paths are found in a non-increasing order of
values, trivial paths indicate samples in the maxima. By changing V (s) to ρ(s), as defined
by Equation 7 and indicated in Line 4, we are forcing a first sample in each maximum to
conquer the rest of the samples in this maximum. Therefore, s becomes root of the forest
in Line 4 and a distinct label l is assigned to it. The rest of the lines evaluate if the path
that reaches an adjacent sample t through s is better than the current path with terminus
t and update Q, V (t), L(t) and P (t) accordingly.

The computation of P was shown to faciliate the description of the algorithm. However,
it is not needed for data clustering. One may initialize L(s) ← nil in Line 1, remove
P (t)← s in Line 8, and replace P (s) = nil by L(s) = nil in Line 4.

Algorithm 1 runs in Θ(|A| + |N | log |N |) if Q is a balanced heap data structure [26].
This running time may be reduced to Θ(|A|+ |N |K) if we convert ρ and h to integer values
in the range of [0,K] and implement Q with bucket sorting [39]. We are using the heap
implementation with real path values in this work.

3.2 Influence zones from seeds

A seed set S ⊂ N can merge the influence zones of some maxima, reducing the number of
clusters. The set S may be defined by thresholding the pdf: s ∈ S if ρ(s) > T , for some

6
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threshold 1 < T < K and 1 ≤ ρ(s) ≤ K. The connected components in (N ,A), which
are above T , are labeled by consecutive integer numbers from 1 to c in order to obtain c
clusters. In this case, each cluster is a forest whose optimum-path trees are rooted in the
samples of the respective connected component.

Let function λ be this labeling function. That is, λ(s) = λ(t) when s and t belong to a
same connected component, and λ(s) 6= λ(t) otherwise. The IFT algorithm will propagate
the labels of the connected components to the remaining samples when the path-value
function is defined as

f3(〈s1〉) =

{

h(s1) if s1 ∈ S
−∞ otherwise

f3(〈s1, s2, . . . , sn〉) = min
∀si,i=2,3,...,n

{h(s1), ρ(si)} (8)

where h(s1) = K. If h(s1) < ρ(s1) then the influence zones of some connected components
may disappear. This will be desirable in some cases, as discussed in Section 5. Algorithm 2
presents the IFT algorithm modified for the graph (N ,A) and path-value function f3.

Algorithm 2 – Clustering by Optimum Path Forest with Seed Constraint

Input: Graph (N ,A), function ρ, h, S, and λ.
Output: Label map L.
Auxiliary: Path-value map V , predecessor map P , priority queue Q, and variable tmp.

1. For all s ∈ N\S, set V (s)← −∞.

2. For all s ∈ S, set P (s)← nil, L(s)← λ(s), V (s)← h(s), and insert s in Q.

3. While Q is not empty, do

4. Remove from Q a sample s such that V (s) is maximum.

5. For each t ∈ A(s) and V (t) < V (s), do

6. Compute tmp← min{V (s), ρ(t)}.
7. If tmp > V (t), then

8. If V (t) 6= −∞ then remove t from Q.

9. Set L(t)← L(s), P (t)← s, and V (t)← tmp.
10. Insert t in Q.

Most comments for Algorithm 1 are applied to Algorithm 2. They essencially differ in
the following aspects. All seeds s ∈ S become roots of the optimum-path forest P , when
h(s) = K. The labels of these seeds are propagated in L during the algorithm. Line 2
inserts only seeds in Q. Therefore, when the test V (t) < V (s) in Line 5 is true, t might be
in Q or not. The test V (t) 6= −∞ in Line 8 identifies when t ∈ Q and removes it, before
updating maps (Line 9) and reinserting t again in a better position (Line 10). If t has never
been reached by any path, then V (t) = −∞. In this case, Lines 9 and 10 set the maps for
t and insert it in Q for the first time. Note that, the samples s removed from Q in Line 4
never return to Q. The same is valid for Algorithm 1 in Line 3.

It is also possible to create variants of the IFT algorithm with seed constraint by choice
of other smooth path-cost functions (Section 5).
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3.3 Estimation of the best k-nn graph

The clustering results obtained by Algorithms 1 and 2 will also depend on the choice of A
(i.e., the value of k in the case of a k-nn graph). Considering the influence zones from all
maxima of the pdf by Algorithm 1 as a cut in the graph (N ,A), we wish to determine the
value of k which optimizes some graph-cut measure.

Clustering validity measures could be used but they usually assume compact and well
separated clusters [40–43]. The measure should be also independent of the shape of the
clusters. On the other hand, graph-cut measures are usually designed to separate the
samples into two parts only [6–11]. We use the graph-cut measure for multiple clusters as
suggested in [9].

Let 1/d(s, t) be the arc weights in a k-nn graph (N ,A). Algorithm 1 can provide in L
a graph cut for each value of k ∈ [1, (|N | − 1)]. This cut is measured by C(k).

C(k) =
c

∑

i=1

W ′
i

Wi + W ′
i

, (9)

Wi =
∑

∀(s,t)∈A|L(s)=L(t)=i

1

d(s, t)
, (10)

W ′
i =

∑

∀(s,t)∈A|L(s)=i,L(t)6=i

1

d(s, t)
, (11)

(12)

The best cut is defined by the minimum value of C(k), where W ′
i considers all arc weights

between cluster i and other clusters, and Wi considers all arc weights within cluster i =
1, 2, . . . , c.

The curve C(k) usually decreases values until a minimum at some value of k and then
increases values after that minimum. The exhaustive computation within the entire interval
k ∈ [1, (|N | − 1)] is impractical, but fortunately it is unnecessary in most cases because the
minimum usually occurs for k � |N|−1. It is also possible that the curve presents multiple
minima being the desired one a local minimum, because multiple reasonable solutions may
exist depending on the scale.

The estimation of df (Equation 3) based on the best k-nn graph usually provides good
results for density estimation (Equation 1). However, the best value of k sometimes connect
distinct clusters and the problem may occur even when they are separated in the feature
space. Figure 2a shows an example of three clusters with arbitrary shapes. Figure 2b shows
that the influence zones from all maxima connect the two smaller clusters for a best value
of k = 143 (green and blue dots). This suggests that a reduced adjacency relation may be
required to compute influence zones in the feature space. By reducing adjacency to k = 25,
the same pdf (computed with k = 143) results in influence zones from all maxima as shown
in Figure 2c, where the clusters are disconnected. However, the desired solution requires to
eliminate irrelevant maxima. Mean-shift approaches usually do that by merging influence
zones afterwards [17]. We do by choosing the handicap value of the path-value function f2.
Figure 2d shows the result when we set h(s1) = ρ(s1)− 400 for ρ within [1, 1000].

8
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Figure 2: (a) A 2D feature space with three separated clusters of arbitrary shapes. (b)
Result of Algorithm 1 for the best k-nn graph. The two smaller clusters are connected with
the best value of k = 143 (green and blue dots). (c) We can disconnect them by reducing
k = 25, but the desired solution in (d) is obtained by setting handicap values.

4 Application to image segmentation

Consider an image Î as a pair (I, ~I) where I ⊂ Z2 is the image domain and ~I(s) =
{I1(s), I2(s), . . . , Im(s)} is a vectorial function, which assigns a set of image properties to
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each pixel s ∈ I. For example, {I1(s), I2(s), I3(s)} may be the red, green and blue values
of s in a colored image Î. One may define ~I(s) = ~v(s) or compute feature vectors based
on some transformation applied to Î. We have obtained interesting results with multiscale
image filtering (Section 4.1).

The graph (N ,A) is defined by pixel set I = N and the adjacency relation A must
be defined such that pixel groups with similar properties form relevant objects or at least
divide these objects in a few regions, which can be easily merged afterwards. However,
distinct objects may have similar properties and the cardinality of I forbids dense graphs
due to the excessive computational cost. As a consequence of that, the techniques usually
consider adjacency relations with connectivity constraint in the image domain [9, 11, 17].

We define A as follows.

t ∈ A(s) if d(s, t) ≤ df and ‖t− s‖ ≤ di, (13)

where di is the maximum Euclidean distance between pixels s and t in the image domain.
The probability density function ρ is computed by Equation 1, and Algorithms 1 and 2 can
be directly applied to the resulting image graph (I,A). Larger values of di provide more
nodes for better estimation of the pdf (with less irrelevant maxima), but alone it connects
distinct objects. A good estimation of df is important to avoid that connection.

We have shown in Section 3.3 how to find the best k-nn graph according to Equation 9.
Then, df is obtained by Equation 3. Given that the excessive computational cost forbids
us to consider a k-nn graph whose nodes are all pixels in I, we subsample the pixel set
and consider a k-nn graph (N ′,A′), where N ′ ⊂ I and A′ is given by Equation 2 over the
samples of N ′. The set N ′ can be defined by subsampling the nodes and feature vectors
of I from 4 to 1, 8 to 1, or 16 to 1, horizontally and vertically, such that the samples still
represent all objects.

4.1 Multiscale features

Consider a Gaussian function Gσ with standard deviation σ. The convolutions between Gσ

and each image component Ii, i = 1, 2, . . . ,m, for S increasing values of σ create a feature
vector ~v(s) with mS feature values for each pixel s ∈ I. This idea follows the standard
procedure of multiscale image filtering [44]. Another idea is to use the convolutions with a
Laplacian kernel σ2∇2G [45]. Both approaches present good results with low values of σ,
but object border shifting is noticeable as we increase the scale due to the linear filtering
(Figures 3a and 3b).

On the other hand, connected operators can simplify images without creating false
borders [27–29]. Alternate sequential filters (ASF) by reconstruction, for example, can
be used to create multiscale features without border shifting [46]. We use a closing by
reconstruction followed by an opening by reconstruction as ASF in the examples of this
paper. The structuring element is a disk with radius r and the scales are created by varying
r = 1, 2, . . . , S. The filter is applied to each image component creating mS feature values
for each pixel. Border shifting does not occur even for larger scales (Figures 3c and 3d).
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(a) (b)

(c) (d)

Figure 3: The interior and exterior of the contour over the input gray-scale image indicate
two clusters. These results were obtained with Algorithm 1, di = 5, h created by eliminating
domes of ρ with area less than 10,000 pixels, and multiscale feature vectors created by: (a)
Laplacian filter with 5 scales, (b) Laplacian filter with 15 scales, (c) ASF by reconstrunction
with 5 scales, and (d) ASF by reconstrunction with 15 scales. The bandwidth df was
computed by Equation 1 for the best k-nn graph using 16 to 1 sub-sampling.

5 Results

The proposed method with Algorithm 1 reduces the data clustering problem to the choice
of h in function f2 (Equation 7). In the case of image segmentation, we also need to specify
di in Equation 13 (e.g., di = 5 pixels) and the sub-sampling rate for the estimation of
df (e.g., from 16 to 1). The proposed method with Algorithm 2 requires the choice of S
(e.g., a threshold T ) for data clustering and, additionally, di and sub-sampling rate for the
estimation of df in image segmentation.
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The influence zones from all maxima, which can be obtained by Algorithm 1 with f2 and
h(s1) given by Equation 6, can also be obtained by the mean-shift algorithm [17]. The main
difference is that the mean-shift algorithm computes the influence zones by following, for
each sample s ∈ N , the direction of the gradient of the pdf towards the steepest maximum
around s. The pdf is never explicitly computed then. Each maximum defines an influence
zone composed by samples that achieve it. The algorithm computes the gradient of the pdf
on-the-fly, by shifting the kernel to a next position. It is not difficult to see that it may
present problems if the gradient vector is poorly estimated or has magnitude zero. It should
be clear that it is more robust to define the influence zones after detecting the maxima, as
done by Algorithm 1. In this case, the regions with gradient zero (plateaus of the pdf) are
equally shared among the maxima that achieve them, due to the FIFO tie-breaking policy
in Q. Besides, if a maximum is represented by some neighboring points with the same
density value, the mean-shift algorithm may break the influence zone of this maximum into
multiple influence zones. This problem is solved with f2.

The choice of h in f2 also makes Algorithm 1 more general than the mean-shift algorithm.
It is equivalent to the computation in V of the inferior morphological reconstruction of a
mask function ρ from a marker function h [26]. That is, V is a filtered function which
has eliminated maxima from ρ by reconstruction. In the image domain, it has been shown
that this IFT operator also produces the influence zones from all maxima of the filtered
image [29] — i.e., the dual of the IFT-watershed transform from gray-scale marker [33].

The IFT-watershed transform from gray-scale marker can provide similar results to those
obtained with Algorithm 1, using less parameters but being more constrained in the choice
of di. Figure 4a illustrates an MR-image of a wrist, containing bones and vessels. In order
to provide similar results with the IFT-watershed transform from gray-scale marker, we use
the magnitude g(s) = K|~g(s)| of a gradient vector ~g(s) computed for each pixel s ∈ I as
follows.

~g(s) =
∑

∀t∈A8(s)

mS
∑

i=1

(vi(t)− vi(s))~st (14)

where vi is the i-th feature value of ~v, A8(s) is the set of the 8-adjacent pixels of s, and
~st is the vector that connects s to t in the image domain. The IFT-watershed transform
from gray-scale marker is implemented by minimizing the path-value function f4 for the
following adjacency relation in the image domain: t ∈ A(s) if ‖t− s‖ ≤ di.

f4(〈s1〉) =

{

g(s1) if s1 ∈ R
h(s1) otherwise

f4(〈s1, s2, . . . , sn〉) = max
∀si,i=2,3,...,n

{f4(〈s1〉), g(si)} (15)

where h(s1) > g(s1) and R are the roots of the forest, which are subset of the minima of g.
If di =

√
2 and h(s1) = g(s1) + 1, then the result is the over segmentation of the classical

watershed transform from all minima of g (Figure 4b). By computing h as a volume closing
on g and di = 2.5, we can obtain the result shown in Figure 4c, where most bones and
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(a) (b)

(c) (d)

Figure 4: (a) An MR-slice of a wrist with bones and vessels. (b) The over segmentation
of the classical watershed transform. (c) Most objects are correctly segmented using the
IFT-watershed transform from gray-scale marker with volume closing and di = 2.5, but
some vessels and background get connected with di > 2.8. (d) Algorithm 1 provides similar
result with volume opening, 16-to-1 subsampling to estimate df , and di = 5.

vessels are correctly segmented. If di > 2.8, then the IFT-watershed transform from gray-
scale marker connects some vessels and background. A similar result can be obtained by
Algorithm 1, with volume opening on ρ, di = 5.0 and 16-to-1 subsampling to estimate df

(Figure 4d).

The method of influence zones from seeds (Algorithm 2) can incorporate the approaches
proposed in [18, 19] by simple choice of seeds and path-value function. Indeed they find S
by thresholding ρ, as we did, and propose watershed transforms from markers in the feature
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(a) (b)

(c) (d)

Figure 5: (a) A colored image of a house in the woods. (b) Labeled seeds estimated with
sub-sampling from 4 to 1 and Algorithm 1 on the best k-nn graph. (c) Result of Algorithm 2
with the labeled seeds. (d) The best result of Algorithm 1.

space. Their solution can be expressed in terms of path-value functions f5 and f6.

f5(〈s1〉) =

{

0 if s1 ∈ S
+∞ otherwise

f5(〈s1, s2, . . . , sn〉) = max
∀si,i=1,2,3,...,n−1

{w(si, si+1)} (16)

f6(〈s1〉) =

{

0 if s1 ∈ S
+∞ otherwise

f6(〈s1, s2, . . . , sn〉) =

n−1
∑

i=1

w(si, si+1) (17)

They differ in the computation of the arc weights w(si, si+1) which should be low inside
the clusters and high between clusters. The IFT algorithm should then minimize these
path-value functions rather than maximize them. It is also known that the IFT-watershed
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transform from labeled markers [32] and relative fuzzy-connected segmentation [34] are
equivalent operations [47], with dual path-value functions (e.g., f5 and its dual, respectively)
in the image domain [26]. Therefore, Algorithm 2 can also extend these approaches to the
feature space.

(a) (b)

(c) (d)

Figure 6: Colored images and their respective segmentation results with Algorithm 1.

Figures 1c and 1d show a comparison between influence zones from all maxima and
influence zones from seeds, where the first provides a slightly better result. Figure 5 illus-
trates another example, where the method of influence zones from seeds performs better
than the method of influence zone from non-eliminated maxima. Figure 5a shows a colored
image of a house in the woods. We wish to reduce as much as possible the number of
segmented regions inside the house. The idea exploits a different procedure to create seeds
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for Algorithm 2. We sub-sample the image from 4 to 1 in order to estimate df . The optimal
partition of the corresponding k-nn graph by Algorithm 1 from all maxima of ρ is used to
label the sub-samples as seeds for Algorithm 2 (Figure 5b). These seeds are initialized with
handicap values h(s1) = ρ(s1)− 1 for ρ within [1, 1000] in f3. The result of Algorithm 2 is
shown in Figure 5c. Figure 5d shows the best result we could get with Algorithm 1.

(a) (b)

(c) (d)

Figure 7: Gray-scale images and their respective segmentation results with Algorithm 1. (a)
Two cells are separated in a microscope image. (b) Soft tissues and bones are segmented in
a CT-slice of a knee. (c) Lateral ventricles and caudade nuclei are segmented in an MR-slice
of a brain.(d) License plate segmentation in the photography of a car.

Figures 6 and 7 show more examples of clustering with Algorithm 1, where the object of
interest is correctly segmented or at least divided into a few regions. In all cases we needed
an area or volume opening to compute handicap values, which shows the importance of our
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more general solution as compared to the mean-shift algorithm.

6 Conclusions

We have proposed two algorithms for data clustering based on optimum-path forest and
pdf function. The results also include a robust approach to estimate pdf functions based
on k-nn adjacency relations, a method for multiscale feature vector estimation without
border shifting, a method for gradient computation based on the feature vectors, and image
segmentations, where the objects can be either correctly delineated or divided into a few
regions.

Algorithm 1 improves computation of the mean-shift algorithm with a more general
solution, which allows to reduce the number of clusters by handicap value estimation in
the path-value function f2. Algorithm 2 incorporates other clustering approaches based on
influence zones. They both extend the image foresting transform from the image domain to
the feature space, revealing the relation among several segmentation and clustering methods.

Future works include applications of the methods for video and medical image seg-
mentation, content-based image retrieval, and possible extensions to supervised pattern
classification.
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