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Abstract

The main objective of this study is to understahd turbidity behavior of an
Amazon Floodplain Lake. Observations of turbidityyde quantitative information
about water quality. However, the number of avddab situ measurements for water
guality determination is usually limited in timedaspace. Here, we present an analysis
of the temporal and spatial variability using twgpeoaches: (i) the first is based on
wavelet analysis of a turbidity time series meagirngan automatic monitoring system;
(ii) the second is based on turbidity samples meakin different locations and then
interpolated by an ordinary kriging algorithm. Thpace/time turbidity variability is
clearly related to the Amazon River flood pulseshia floodplain. When the water level
in the floodplain is rising or receding, the excharetween the Amazon River and the
floodplain is the major driving force in turbidityariability. At high water level, the
turbidity variability is controlled by the lake lbgimetry. Finally, when the water level
is low, the wind action and lake morphometry are tnain causes of turbidity
variability. The combined use of temporal and spatata showed a great potential for
understanding the turbidity behavior in a complepatic system, like the Amazon

floodplain.

Keywords. Turbidity; Amazon Floodplain; Geostatistics; Sphti Modeling;
Limnology.
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I ntroduction

Turbidity is an important optical parameter in aguaystems because it affects
aguatic organisms at every level of the food chixom microscopic algae to fish, by
preventing sunlight penetrating the water columurbidity essentially depends on the
amount of particulate material suspended in thewathich includes and is influenced
by phytoplankton, sediments from erosions, re-sudpeé sediments from the bottom,
waste discharge, algae growth and urban runoff (Bfah Rundquist, 1998; Wetzel,
2001). Because the suspended particles absorbfrioeatthe sunlight making turbid
waters become warmer, and so reducing the contientraf dissolved oxygen in the
water column is reduced (Kirk, 1983).

Turbidity is measured in nephelometric units (NTMhich refers to the type of
instrument (turbidimeter or nephelometer) used dstimating light scattering from
suspended particulate material. The well-known Biedepth (visual technique which
requires manually lowering a painted disk into weger) is the most common measure
of turbidity (Wetzel, 2001). However, this paramei® hard to map in dynamic and
complex environment such as floodplains, which quidally oscillates between
terrestrial and aquatic phases (Junk, 1997). Adacgrdo (Meade et al.,, 1985)
floodplains play a major role in the storage ofpsisled solids transported from the
Andes, with 80% of these suspended solids fromAtimazon River corridor entering
the floodplains being temporally deposited (Megeal., 1996).

The amount of suspended material in water massetaied to changes in flow and
the resulting turbidity affects the zooplankton ecoumity (De Leo and Ferrari, 1993) as
well as its composition (Wetzel, 2001) and phytagtan production. It eliminates the
most sensitive organisms (Miquelis et al., 1998)l amodifies competition between
zooplankton taxa (Wetzel, 2001).

Besides the actual level of turbidity, the duratiwinhigh turbidity events is also
important. Very high levels of turbidity for a sh@eriod of time may not be significant
and may even be less of a problematic than a loeeel that persists longer
(Newcombe, and Jensen, 1996). Algal turbidity \saseasonally and with depth in a
complex manner in response to physical, chemicadlaological changes in the water
body. Inorganic and detrital particles from the evahed vary largely in response to

hydrological events such as storms (Stech and kaeth, 1992; Tundisi et al., 2004).
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Moreover, the suspended sediment concentrationspéymajor role in turbidity
enhancement (Roozen et al., 2003).

The study of water quality in these environments b@en based mostly on datasets
obtained at different sites or along track linesupted during cruises (Jerosch et al.,
2006). Moreover, the number of in sioeasurements of water quality is limited and
especially the number of time series and of spatiaps of variables (Zhang et al.,
2003; George, 1997; Dekker et al., 2002; Tylerlgt2006) is scarce. To identify any
type of fast alteration suffered by systems vadsl{pulses), long term environmental
time series of continuously collected data are &mental to identifying and classifying
pulses and determining their role in aquatic systégtech et al., 2006, Pednekar et al.
2005).

With the availability of time series and the samglof variables at different places
wavelet analysis (Meyers et al.,, 1993; Kumar andféwa-Georgiou, 1997) can be
used to study the time localized frequency contehtthe signal. Geostatistics
(Bellehumeur et al., 2000; Hedger et al., 2001) banused to assess the spatial
variability patterns of variables.

Using geostatistical methods (Bellehumeur et @002 Isaaks and Srivastava, 1989;
Goovaerts, 1997; Burrough, 2001) some authors ghatvduring a hydrological cycle
the turbidity distribution change because of wageel dynamics, water flow regimes,
wind intensity, precipitation regimes and hydrodymzs (Alcantara et al., 2008).
Moreover, long-term high frequency time series a@ivinmental variables are
fundamental to identify and classify pulses or stemm variability in the data and to
determine their impact in aquatic systems (Meyeral.e 1993). Pulses are defined as
any type of fast change suffered by the systemabbes (Stech et al., 2006). Ideally,
time series of aquatic systems are collected bgnaatic stations with the capacity of
autonomous monitoring of limnological and meteogodal variables (Glasgow et al.,
2004; Stech et al., 2006). With the installationaof associated telemetric link the
constant surveillance provided by these systemseméakpossible to rapidly detect
changes and trends in critical indicators (Glasgval., 2004). The high frequency,
complexity and volume of the data generated byehetemetric monitoring systems
requires the use of efficient analytical tools sashwavelet analysis (Meyers et al.,
1993).

Here we show that the combination of high resolutione series and spatial data
allows for a better understanding of the turbidiggnamics in the Amazon floodplain.
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Based on this, in this paper the main objectivioisap the spatial distribution of the
turbidity along the hydrologic cycle and identifactors controlling its short time

variability.
Study Site and Background

The Curuai floodplain (Figure 1) covers an areayiva from 1340 to 2000 kfmat
the low and the high water levels, respectivelythvé maximum volume reaching 9.3
Km? (Martinez and Le-Toan, 2006). This floodplain,dted 850 km from the Atlantic
Ocean, near Obidos city (Para State, Brazil), isnéml by ‘white’ water lakes
characterized by high concentration of suspendddnsats, ‘black’ water lakes with
high concentration of dissolved organic matter kvad concentration of sediments and
‘clear’ water lakes fed by rainfall and rivers driaig from the surrounding ‘Terra
Firme’ (higher elevation terrain with no signifidatiooding, Barbosa, 2005; Novo et
al., 2006).

In early January (over the course of the 2001-208ater year), the Amazon River
dominated the mixture (64%). From this date urté beginning of April, the river
water contribution slightly decreased while conitibns from watersheds and direct
rainfall increased. By mid-April water from rainfaonstituted as much as 17% while
contributions from local upland watershed and fraatershed located in the aquatic-
terrestrial transition zone reached their maximaheyend of February, constituted 14%
and 15%, respectively. The groundwater reservaitrgmution was highest at the end of
December reaching 5% of the mixture (Bonnet e&i08).

The lakes are connected to each other and alslet@\mazon River. The Curuai
floodplain is controlled by the Amazon River flogdilse, which creates four water
level stages in the floodplain-river system. Wastorage in the floodplain starts
between November and January and lasts until Mag-Jlhe drainage phase starts in
July and lasts until November. The largest expostellime occurs from August to
October. On an annual basis, the floodplain repitsse source of water to the Amazon
River (Bonnet et al., 2008).
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Figure 1. (a) Location of Legal Amazon in Brazil, (b) Legaimazon limits, and (c)

Location of Curuai Floodplain (Para State, Braait)d the location of the automatic
environmental data collection buoy system SIMA hago Grande'. The arrows
indicate the main channels of connection AmazoreRiodplain.

The residence time of the riverine water within floedplain is 5+ 0.8 month, while
the residence time of water from all sources¥02 months (Bonnet et al., 2008). The
lowest and highest absolute water levels recordedeaCuruai gauging station during
the 1982-2003 period were 3.03 m and 9.61 m, réspéc

Sediment accumulates in the floodplain from DecembeApril, while during the
low water stage; it is exported to the mainstredihe mean average sediment storage
calculated for the floodplain varies between 558 8a&10° t yr* (Maurice-Bourgoin
et al., 2007). According to (Moreira-Turcq et &004) the Curuai floodplain is a
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sediment accumulation system, with high rate otdmtdeposition in some specific
lakes (i.e. Santa Ninha Lake, 1 cm‘yrOf the influx of suspended material from the
Amazon River into the floodplain, about 50% is dsifed. The author (Amorim, 2006)
shows that in general manner the suspended matenathe Curuai floodplain is

composed mainly of silt and clay (Figure 2).
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Figure 2: Average values of granulometric fractions forte&uruai floodplain lakes
(from Amorim, 2006).

The average annual precipitation in the Curuaidigiain is 2447 mm ye#r(Figure
3), compared to average potential evaporation 60IMm year (average obtained by a
time series from 1990 to 2001), with the wet sedasting from January to June and a
drier season from July to December (Barroux, 2006gse seasons modulate the water

level dynamics in Curuai floodplain.
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Figure 3: Average annual precipitation (mm) in Curuai floalpl (from Agéncia
Nacional de Aguas-ANA).

Another important parameter to turbidity generatiorfloodplain systems is water
level dynamics (Roozen et al., 2003). The wateellelynamics in Curuai floodplain is
modulated by the water level near the Obidos age(Figure 1) that characterizes the
water level dynamics. A theoretical exchange ofewdetween the floodplain and the

Amazon River is shown in Figure 4, based on (Baab2605).
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Figure 4: Theoretical water level dynamics at Curuai Eidain.

Closer to the maximum water level in the floodplaime exchange with the river is
very low and the surface water circulation is cdus®inly by wind (Alcantara et al.,
2008). In the receding state the exchange of wadtveen the river and the floodplain
is reversed, i.e., there is a flux is from the @plain to the river. When the water level
drops to the lowest water level, the exchange ofewvaetween the river and the
floodplain reaches its minimum. In summary, theoflplain stores water during the
rising stage of the Amazon River and releases inwthe river level is decreasing
(Maurice-Bourgoin et al., 2007).

The rate of inundation is influenced by floodplajaomorphology (Mertes et al.,
1995), density of floodplain channels and the rafidcocal drainage basin area to lake
area (Lesack and Melack, 1995). The floodplain gmts 93% of the flooded area
between 2-6 m of depth (considering the water lesfdrence of 936 cm). The deepest
lake is the ‘Lago Grande’ and the shallowest aee ‘fcai’ and Santa Ninha Lakes
(Figure 5). Almost 0.04% of the floodplain is bel@f the sea level (considering the

mean altitude of 9 m in the floodplain in relationsea level (Barbosa, 2005).
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Figure5: Curuai floodplain bathymetry in meters (from Bash, 2005).

The circulation in the floodplain in beginning oeEember to the end of January is
from west to east (Barbosa, 2005; Barroux, 20068 main flow channels from the
Amazon River to the Curuai floodplain are locatedliago Grande™ situated at east of
floodplain, Lake "Salé" at northwest, and Lake t&atinha" at northeast of floodplain
(see Figure 1 for location of Lakes). Also, at tber water level the main channel of
‘Lago Grande' is influenced by dynamic tide (Limale, 1995) and becomes the most
important channel for water flow from Amazon Riveto the floodplain (Barroux,
2006).

In situ Data
Temporal domain

The temporal variability of turbidity in the Curuéoodplain was studied using the
data collected by an anchored buoy system nameldanvental Monitoring System —
SIMA (Figure 6-a). SIMA was developed by INPE arahsists of an anchored buoy
(see Figure 1 for location) containing meteorolagiGatmospheric pressure, relative
humidity, air temperature, wind direction and irgi#yy incoming and reflected solar
radiation) and water quality (chlorophyll-a, pHrhidity, dissolved oxygen, electric
conductivity, nitrate, ammonia, water temperatuvater flow direction and intensity)
sensors (water quality YSI multi-parameter sonde fom meteorological from R.M.
Young) supported by data storage systems, battetryhe transmission antenna (Figure
6-a). The data are collected in preprogrammed tintervals (1 hour) and are
transmitted via satellite in quasi-real time to arser in a range of 2500 km from the
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acquisition point. In this work we analyzed the dirseries of turbidity measurements
from November 20, 2004 to April 26, 2005 (Figur®)6-The water depth at the SIMA
location was approximately 5.5 m in high water leged 1.38 m in the low water

regime (Alcantara, 2006).
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Figure 6: (a) Photo of SIMA installed at ‘Lago Grande’ iru@ai floodplain (See
Figure 1 for location); (b) Time series of turbid{NTU) collected by SIMA.
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Spatial domain

Turbidity measurements were carried out from 2@2004 at several stations (see

Figure 7 for location) at specific Curuai floodpidake water levels (Table 1) using a
HORIBA U-10 multi-sensor probe.

Table 1. Descriptive statistics of the in siturbidity data (NTU).

Water level Period of Number of Maximum  Average Minimum Standard
regime sampling samples value value

deviation
Receding 2003/Sep/23 208 375 163.06 12 58.61
water -
2003/0Oct/09
Low water 2003/Nov/19 202 1645 777.10 39 306.14
2003/Dec/01
Rising 2004/Feb/01 221 569 232.29 101 84.61
water -
2004/Feb/14
High water 2004/May/31 256 127 31.46 5 17.16
2004/Jun/21

This equipment provides turbidity measurements TUNNephelometric Turbidity
Unit) with a resolution of 1 NTU. The HORIBA caldgion was performed for each day
of sampling. Sampling locations were defined based hematic Mapper sensor image
onboard Landsat-5 satellite acquired during similaodplain stage (Barbosa, 2005).
The period of sampling by HORIBA and SIMA is diféeit because the SIMA was
installed at the end of 2004. The distribution wfbidity samples through the Curuai
floodplain (in standard deviation bins) are showirigure 7.

11
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Figure 7. Turbidity samples distribution grouped by stamdaleviation bins (the
numbers between parenthesis indicate the amowsanoples that possess one clustering
standard deviation): (a) receding water level,l@w water level, (c) rising water level
and (d) high water level.
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Methodological approach
Time series analysis
Fourier Power Spectrum

The turbidity time series was analyzed using theriéo power spectrum. The
function that implements the transform is given by:

N-1

X(k+1) = x(n+ DWW (1)

N=0

27

WhereWn = e_j(N), N is the number of points an¥ is the discrete Fast Fourier
Transform of the turbidity time series.

When performing the periodogram estimate the eféédeakage is very common
and data windowing is the solution to this probl@mess et al. 1992) Data windowing
modifies the relationship between the spectraheste at discrete frequencies and its
continuous (periodogram) spectrum at nearby fregesn There are many window
functions used to prevent spectral leakage, mositesh rising from zero to a peak and
then falling again, in this work we use Hanning d&f@mnming windows. The first was
used to prevent leakage while the last was usesimmoth the resulting spectra. The

Hanning and Hamming window coefficients are, reipely, given by:

= - S |
W(n)—0.5{1 cos{ZnN _J},n 1.N (2)

w(n) = 054— 0.4600{271L} n=1.N @3)

The smoothing of the power spectrum is employedethuce the variance and to
increase statistical confidence, or reduce confidelimits. A compromise must be
found between strong smoothing (more confidence sitdnger bias) and weak
smoothing (less confidence but less bias). Inwogk we run the smoothing using the
Hamming window at a variable length. The inferiodasuperior confidence limits for

the spectra area, respectively, given by:

13
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df

Cly =
a (4)
{X (df | ZH

CI-inf = d; —a
Aot K

Where yis the Chi square distributiondf is the number of degrees of freedom,

a=1-p/100 and pis the confidence level (95%).

Wavelet Analysis

The time frequency space of turbidity time seriemsvanalyzed using the wavelet
transform. Wavelet analysis is becoming a commanl for analyzing localized
variations of power within an environmental timeisg (Meyers et al., 1993; Kumar
and Foufoula-Georgiou, 1997; Massei et al., 20@8composing an environmental
time series into time-frequency space allows ferdetermination of both the dominant
modes of variability and how those modes varynmeti

We analyzed the turbidity time series obtained fr&WA data by continuous
wavelet analysis using the Morlet wavelet as refeeeanalyzing function (the so-called
“mother wavelet”). The Morlet wavelet is the mositanon wavelet transform, which
consists of a Gaussian-windowed complex sinusoithe® in the time and frequency

domains by:

1 _n
2

o) = 7 4 ®)

Where w, is the non-dimensional frequency, here taken to6b® satisfy the
admissibility condition (Farge, 1992); is a non-dimensional time parameter and

W, (n) is the wavelet function.

Wavelet spectral power at different scale)( and time location £) can be

calculated by:

14
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P,(@,7) = W(w,7, (1)’ (7)

WhereW is the wavelet transform described below.

The continuous wavelet transform of a discrete srge x, is defined as the
convolution of x, with a scaled and translated versionygf(r7 (TQrrence and Compo,

1998). The wavelet transforWlf for a given time seriesis calculated by:

W@ =23 xpd k-] ®

Where * indicates the complex conjugagkjs the uniform time stefk’ is an integer

from 1 toN (number of data points) anx], is the time series data. The scale-averaged

spectral-power-based wavelet analysis reflectsatrerage variance for different time
scales (frequency or period). The calculation pdaces ofcontinuouswavelet analysis
were coded in Matlab 6.5 (The MathWorks, Inc., BlatMA).

Cross wavelet and Coherence

To explain in more detail the importance of windtarbidity time series evidenced by
Alcantara et al. (2008 arid pres$ we apply the cross wavelet and wavelet coherence

in these two time series. The cross wavelet tramsfaf two time seriesx, and y, is

defined asv?¥ =W>*W"", where" denotes complex conjugation, so the cross wavelet

power could be defined eﬁﬁlxy

(Grinsted et al. 2004). The interpretation of pben

argument arg{/¥) can be interpreted as the local relative phasedsn x, and y, in
time frequency space. The cross wavelet power ¢tieal distribution of two time
series with background power spectd and R’ is given in Torrence and Compo

(1998) as:

X y*
D{’V\/n S (S)‘ < p} _ ZV\(/p) m ©)

0,0,

15
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Where Z,(p )s the confidence level associated with the prdltgbp for a pdf defined

by the squere root of the product of twd distributions. Cross wavelet power reveals

areas with high common power.

Another useful measure is how coherent the crosebegis in time frequency space.
The wavelet coherence could be defined followingdace and Webster (1998) as:

Re(s) = Sts™W, () o)
- ~ N 2 B 2
S(s™ Wy (9) )-S(s™ W (9)] )
Where Sis a smoothing operator. Notice that this defimt@osely resembles that of a
traditional correlation coefficient, and is usefalthink of the wavelet coherence as a
localized correlation coefficient in time frequengyace. The calculation procedures of

cross wavelet and wavelet cohereweere coded in Matlab 6.5 (The MathWorks, Inc.,
Natick, MA).

The high frequency turbidity time series have mag®ssible the study of bottom
resuspension episodes that cause turbidity incse&saticularly in shallow lakes, the
effects of wind inducing sediment resuspension Haen shown (Booth et al., 2000).
These wind-induced physical processes are impoitarsediment transport and can be
the dominant (Lou et al., 2000). We applied a metfiooth et al., 2000) for predicting

the wind-induced bottom resuspension in the SIM&atmn during the low water stage.
Predicting bottom resuspension events from winldied waves
Wind speed was measured by SIMA at 3 meters allwvevater surface (Figure 6),

and the data were normalized to 10 meters heigigu& 8-a) using (Justus and
Mikhail, 1976):

UlO :UZ(_j (11)

16
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Where U, is the wind velocity (m 'Y at 10 m heightU, is the wind velocity
measured by SIMA at heiglat z, is the height where the anemometer measures the

wind velocity (3 m) andh is:

037-0,088InU,
1-0,088In| =
10

(12)

Wind action at the surface of the lake injects gnento the water column and thus
generates surface and internal waves as well as pigaulation and turbulence, all of
which can lead to vertical mixing (Stevens and Ingbe 1996). The minimum wind

velocity (critical windspeedy .) needed to generate wave action reaching therbotto

sediment was calculated according to (Booth e2ab):
T3
U, = {1.2[412{%} 0813 (13)

WhereU _ is the critical wind speed (in s T, is the critical wave period anB is

the effective fetch (in m) calculated according@arper and Bachmann, 1984).
The basic assumption of this simple model is thatdffect of waves is felt down to

a depth of approximate%, where L is the wavelength of the surface waves.ifShe

water depth (d) is less tha;n there is a wave energy transfer to the bottomnsexlis

that can result in sediment resuspension.

The critical wave period (J is given by (CERC, 1984).

T = (ﬂjz (14)
g

17
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The spatial domain
Ordinary Kriging algorithm

Geostatistics is focused on the spatial contexttaadspatial relationships present in
the data (Money et al. 2009). It provides tools doiantification and exploitation of
spatial autocorrelation, and algorithms for dataenoolation and uncertainty
guantification (Isaaks and Srivastava, 1989; Godsael997). The autocorrelation
structure is used to estimate the variable valiuepoats not sampled in the field
(Bellehumeur et al., 2000). A central aspect of sggistics is the use of spatial
autocovariance structures, often represented bysimi)variogram, or its cousin the
autocovariogram, which differentiate different kéndf spatial variability (Burrough,
2001).

We used the ordinary kriging algorithm to intergela situ turbidity measurements
into a turbidity map. The calculation of the Krigirweights is based upon the

estimation of a semivariogram model, described as:

y(h) = %Var[ z(s+h) —z(9)] (15)

Where: y(h)is an estimated value of the semivariance forhlaghe estimation of a
semivariogram model relies on two important assionpt the quantityy(h )exists and

is finite for all choices oh ands, and that it does not depend ®he ordinary kriging

estimator is:

Z(xy) =YWz (16)

Where n is the number of measuremenisare the corresponding attributes values,

and wi are the weights (Isaaks and Srivastava, 1989).

The semivariogram was fitted with several theoattianodels (spherical,
exponential, Gaussian, linear and power) usingateighted least square method. The

theoretical model that gives minimum standard enas chosen for further analysis.
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Theoretical semivariogram models employ three neaigfficients scaling the fit to
experimental semivariograms: (ignge is a measurement of the curve’s horizontal
scale and corresponds to the maximum distanceatisplependence; (ifugget effect
is the y-intercept height and corresponds to aluasgivariation at the shortest sampling
interval, random and not spatially correlated;) @il is the remaining height of the
curve above its y-intercept (nugget), and corredpato the variance due to spatial
structure (Isaaks and Srivastava, 1989).

Semivariogram models often have different rangegaarsills in different directions.
For the case where only the range changes witlctdire the anisotropy is known as
geometric anisotropy If only the sill changes wdilection, the anisotropy is known as
zonal anisotropy. The anisotropy modeling (Isaaks$ @rivastava, 1989) usually starts
with determining the anisotropy axes by experimigntdetermining the directions
corresponding to the minimum and maximum rangeilor The parameters used to
realize the interpolation to turbidity samples acle water level are in summarized in
Table 2:

Table 2: Semivariogram parameters used to interpolatéuttioedity .

Water  Anisotropy Structure Nugget  Sill >range  <range Model

level direction
1° 114 16436 £

Rising 940 2° 619 7770 17924 16436 Gaussian
3° 1480 0 17924
1° 20.45 14637 £

High 100° 20 498 119.64 14637 12003 Gaussian
3° 8.2 0 12003
1° 229 12402 £

Receding 94° 20 401 3567 16424 12402 Exponential
3° 261 0 16242
1° 63595 9379 £

Low 940 20 8420 66885 9379 6140 Gaussian
3° 10430 0 9379

The equations representing the fitting models usednterpolate the turbidity
distribution during rising (equation 17), high (eqjon 18), receding (equation 19) and
low (equation 20) water levels are:
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_ oo \*, (o )’ he |1 ( o )
y(h)—619+114GaL(\/(j +[16436j )]+777QG""L(\/[17924] +[16436] o

(17)
16°
vasnoa (e [+ [" |y
_ thO’ 232 r-500° 233
y(h) = 498+20.45[Gau(\/( p j [14637J )]+119.64Gau(\/[12003J [14637J )]+
(18)
qoo
82 [Gau(\/(12003j ( 00 ])]
y(h) = 401+ ZZQEXF(\/(}BA)Z +( h e JZ)] 356‘,{Exp(\/( h,, I +( h,e Jz)]+
£ 12402 16424 12402
i i (19)
26TEXN e | e )]
16424 00
ha4° ? h216> ’ h94°° i h216’° i
y(h) = 8420+ 7140Gau ( j +(6140J )]+6688$GaL(\/(9379J +[6140J )]+ (20)

e[+

Where y(h) is the semivariance at lag, h, is the semivariance due to angles of

anisotropy,¢ is the range for the lower anisotropy an@eau andExp are the Gaussian

and Exponential models, respectively.

Results and Discussion
Time series analysis

The time series of turbidity collected by SIMA cmts of 3764 hourly samples
(standard deviation oft 176.5 NTU) with a minimum, mean and maximum of 1.6,
126.9 and 1091 NTU, respectively.

Before analyze the variability of turbidity timerss we will characterize and
summarize their time dependence. The highest valiuesbidity occur from November
to half of December (2004) and decrease from sebatfcf December to April (2005).
Moreover, the smallest values occur from March poilX2005, see Figure 8).
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Figure 8: Fitting the turbidity time series using eight-te@aussian series.

The Figure 8 shows also the time dependeri¢® of turbidity by an eight-term

Gaussian series:
2
f(t)=3866ex;{—(t_106]J+64z3ex{ (t 3087 J+( 4282)%{ t 3179 J
4457 9108 3599
2
486.Zex;{—(t_35’87j ]+102.4ex;{ (t 8025 ]+8017ex;{ t 1571 ] (14)
1052 325
2
aseexd —[ 287 | v g7aexg —(121485)
3391 2277

Due to high variability found during November anéde@mber the model fitting did

not capture all the variability. This could be seeFigure 8-b where the residuals is
more high during this period. From the second bélDecember to April the fitting
work very well. The overall fitting was R2=0,94E 0, &88d RMSE=36 18. This
pattern of variability will be analyzed by Fouremd wavelet analysis.

In general the time series of turbidity shows goese to flood pulses in Curuai
floodplain (Alcantara, 2006). The highest valuesuwbidity occurred in the low water

level regime, which can be attributed to sedime&suspension events generated by
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waves at sufficiently high wind intensity. To chetexize the main periods of variability
of the whole time series a Fourier power spectrulnbe applied.

The Fourier power spectrum show that for until b@@rs (from 20 to 24 November
2004) the power density is small and noised adidrstreasing the power. From 100 to
150 hours have an increase of power (from 24 tdN@Bember 2004). A second peak
occurs in 480 hours (10 December 2005) and thel thir630 hours (16 December
2005). From this point the power energy is constaigure 9).

en]

10 . : :

Power density (cph™1)

0 500 1000 1500 2000
Period(hour)

Figure 9: Fourier power spectrum of turbidity time seriebeTdashed lines represent

the confidence intervals limits.

All this peaks occur from November (2004) to Decem2005). This occurs due to
high variability of turbidity during this period (@ure8). This is a global analysis of
power energy and for a localized time-frequencycepmnalysis a wavelet analysis will
be making.

The wavelet analysis show in Figure 10 reveal ithddovember 2004 the period of
high variability is from 8 to 512 hours (~21 day$glow this the periods is not
significant at 95% confidence level (separatedh®ydone of influence). To December
2004 the periods increase until 2048 hours (~8%)layith peaks in the end of this
month between 16-64 hours (~2 days). From Januarlfebruary 2005 the period

22



INPE ePrint: sid.inpe.br/mtc-m17@80/2008,/04.29.12.58 v3 2009-04-23

increases until 4096 hours (~170 days). From M&vchpril 2005 the periods increase
again until 1024 hours (42 days) without periodséen than 128 hours (~5 days).

In fact the short periods showing in November araténber 2004 is due to high
variability of turbidity events. And in other hanlde greater periods from January to

April 2005 is due to small variations in turbidgyents.

Period (hour)

Power (NTU)?

Nov Dec Jan Feb Mar Apr

2004 2005

Figure 10: Wavelet analysis of turbidity time series. Crbsgehed regions on either
end indicate the “cone of influence,” where eddeat$ become important.

The high mean values and standard deviation ofidiybin the low water level
regime are caused mainly by wind action. In Cufieaidplain the wind speed can reach
10 m.§' (see Figure 11). The wind stress induces an etiengave-affected layer in
which both large-scale orbital movements and thesigated turbulent energy are
important. The proximity of the surface and bottboundaries in shallow lakes often
generates a completely mixed water column durimgrésuspension events (Booth et
al., 2000; Cézar et al., 2005). During the obséowal period winds acquired by SIMA
at ‘Lago Grande’ varied from 0.2 to 10 Twith a preferential direction from southeast

to northwest (Figure 11).
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Figure 11: Wind rose diagram of data collected by SIMA froravidmber 20, 2004 to
April 03, 2005.

To check the possibility of cause sediment resusiparduring the low water level
(November, December and January) we will apply ¢higtcal wave period (CERC,
1984). Our analysis of the suitability of wind tause resuspension in the high water
level was supported by (Novo et al., 2006) who shawate less than 0.2 cihlof water
level change.

We check this for November (2004), event E1, whnenvariability is more high than
the other months of the whole time series; Decen{B604), event E2, when the
variability is small than November and January &0@vent E3, where the peaks of
variability is more feasible to separate due taalsevents of high turbidity.

The first event (E1) corresponds to low water leted event E2 corresponds to the
flow of water from the floodplain to the Amazon Riy and the event E3 takes place
when the water level begins to rise in respongheonater flowing into the floodplain
from the Amazon River

The events E1, E2 and E3 can probably be attriioténe combination of high wind
intensity and the shallow water level. In agreemer{Carper and Bachmann, 1984) the
surface waves produced when wind blows across curveater cause the bottom
resuspension and temporarily increase the turbidity
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The event E1 has a minimum, mean and maximum wathakity of 2.75, 5.47 and 9.02
ms! and preferential wind direction from northwestsoutheast (Figure 12-a). The
event (E2) has a minimum, mean and maximum windoisi of 1.98, 4.5 and 5.75 ms

! with a preferential wind direction from northwest southeast, during 24-h (Figure
12-b). The E3 has a minimum, mean and maximum wahakcity of 0.34, 2.37 and 5.95

ms?, with a preferential wind direction from northe&ssouthwest, during 24-h (Figure
12-c).

w270 a0 E w270

180 180

(@) (b)

W 270

180

(©)

Figure 12: Compass wind roses of events E1 (a), E2 (b) &h(CE
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The critical windspeed (i3 for event E1 is 0.44 and 1.04 (Mdor E2 (Table 3).
For events E3 the critical wind speed is 1.14{m¥%Vind speeds above these values
make suitable the bottom resuspension in the Sldigation. In both, E1 and E2 is

suitable for the wind-induced bottom resuspension.

Table 3: Critical windspeed (mY limits to cause bottom sediment resuspension.

Depth (m) Events Fetch (m) Uc (m.sh)
1.38 El 33,000 0.44
1.60 E2 11,556 1.04
2.32 E3 10,300 1.14

In the Event E1 with peak of high turbidity and lawbidity marks an incident of
unusually low turbidity in the low water level, spite of the wind speed being above
the critical threshold at which sediment resuspgnsian occur. However, due to the
duration of the minimum wind speed (2.75 i) segistered by SIMA is low when
compared with the time series in this water st#gea consequence a decantation of
suspended solids occurs due to the end of the aatidn in the surface water.

In accordance to (Moreira-Turcq et al., 2004) thike and clay dominate the
suspended solids in Curuai floodplain (87-98%), anthe end of wind action and the
decrease of the current velocity would cause parsettling. In the low water stage the
depositional processes in lakes and channels arepted by the wind induced re-
suspension of sediments (Maurice-Bourgoin, 2007) aioturbation in shallow lakes
(Maia et al., 2008).

A cross-wavelet analysis and coherence will appteedegister the importance of
wind action on turbidity behavior.

Cross wavelet spectrum and wavelet coherence

The cross wavelet spectrum between turbidity amtdvimtensity time series shows a
high agreement in the first 500 hours (~20 daysmfr20 November 2004 to 10
December 2005) for periods from 4 to 200 hours ¢a8s) see Figure 13-a. These
results confirm our results about the importancevofd action on surface water to

enhance the turbidity during the low water level.
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The coherence is high for this first 500 hours ryain periods of 4, 8 and 19 hours.

This coherence in low time frequency is due to medit ressuspension caused by wind
shown in Table 3 (Figure 13-b).

Period (hour)

v ~ — e ] 0 =
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Figure 13: (a) Cross wavelet transform of the standardizebidity and wind intensity

time series. The 5% significance level againstm@de is shown as a thick contour. The
relative phase relationship is shown as arrowsh(witphase pointing right, anti-phase
pointing left); (b) Squared wavelet coherence betwthe standardized turbidity and

wind intensity time series. The 5% significanceeleagainst red noise is shown as a
thick contour.
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The agreement between turbidity and wind decreaststhe raising water level
when the wind doesn’t cause sediment resuspengignmeore. As pointed out by
Alcantara (2006) in high water level the turbiditglues are low due to fine sediment
decantation (see Figure 2). So the high agreemigmata for higher periods (Figure 13-
a) following the water level dynamics (see FigujeAind the coherence migrates too
(Figure 13-b). This influences of wind action andter level dynamics influenced not
only the time series domain but also in whole lake.

In order to investigate differences in turbiditytween the various lakes in the Curuai
floodplain, the spatial turbidity distribution ovére entire floodplain is determined by
applying the ordinary kriging on turbidity colledtén situ by a HORIBA U-10 multi-

sensor.
Spatial Analysis

Using a scatterplot the performance of ordinarygikg to interpolate the in situ
turbidity data was evaluated for each sampling aagmp(Figure 14). The performance
of all interpolated in situ turbidity data was sttally satisfactory and reliable. The
most accurate interpolation was the one made #od#ta in the high water level regime
(RMSE =3 NTU), while the interpolation for the lomater level regime was the least
accurate (RMSE =25 NTU).

This is a result of the water level stability amdvlstandard deviation in the high
water level regime (mean=31.46, see Figure 7-d)l @ne high standard deviation
(mean=771.11, see Figure 7-b) and sediment ressigpeavents in the low water level
regime (see Table 3).

All in situ turbidity data were interpolated usitige ordinary kriging algorithm to
assess the turbidity distribution and variabilityresponse to flood pulses (Figure 15).
According to (Bonnet et al., 2008) the water steragthin the floodplain started
between December and February, and lasted un&. Jenrom this time until the end of
the water year, water was exported from the floaitphto the river, with the maximum

water export occurring from August to September.
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Figure 14: Performance of each interpolated turbidity d4&): during rising water
level, (b) during high water level, (c) during rdogg water level and (d) during low
water level.

The semivariogram for turbidity data during risinggh and low water level was
best described by a Gaussian model, indicating @81ty varying pattern in turbidity
distribution. During receding water level the seamiggram was best represented by an
exponential function, suggesting a dataset withaial pattern characterized by gradual
transition among several patterns interfering \eglch other (Burrough and Mcdonnell,
1998), see Table 2.

In the rising water level regime (Figure 15-a), loev from the Amazon River to the
Curuai floodplain starts in a channel located & #astern border of the lake, then
migrating to small channels at the northwesterrdéofAlcantara et aln pres3. The
yellow circle 1 marks a region of high turbidityrfived by the water from the Amazon
River entering through the channel located at th&tezn border.The region of high
turbidity marked by the yellow circle 2 was formiegl water entering through the small
channels located on the northwestern side. Thewatircle 3 marks a region of low
turbidity, which is explained by the existence ohatural barrier as explained above
(see Figure 5).

In the high water level regime (Figure 15-b) theuhof water from Amazon River is
lowest and the turbidity tends to be spatially hgemeous (Alcantara et al. 2008). The

areas of high turbidity (marked 1 and 2) corresptmthe small channels connecting
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the floodplain with the Amazon River. Area 3 alswresponds to a connecting channel,
however the turbidity is low. This occurs probablgcause this channel is the first to
cease water input to the floodplain. Area 4 hasva turbidity due to the forest cover
favouring a decrease in flow velocity and partiskdtling (mainly clay and silt, see
Figure 2) because of lower hydrodynamics.

In the receding water level regime (Figure 15-@ pineferential direction of flow is
from west to east (Barbosa, 2005). As a resultreégeons marked 1 and 2 in Figure 12-
¢ show a high turbidity due to the friction of watg the channel borders. The high
turbidity in area 3 stems from suspended solidereg from the east channel
connected to the Amazon River. The receding wateglIstage causes a condition of
turbulent flow, leading to increased turbulence.

In the low water level regime (Figure 15-d), exaparbetween the Amazon River
and the Curuai floodplain reaches a minimum andtdneidity variability is mainly
wind-driven. As discussed above, the preferentiadwdirection is from southeast to
northwest (Figure 11), causing water to pile up gederate a dowelling near the
channel margins and an upwelling in the oppositectibn. These regions are marked
by the yellow circles 1 and 2.
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Figure 15: Ordinary kriging maps: (a) turbidity distributidfNTU) during rising water
level, (b) during high water level, (c) during rdogg water level and (d) during low
water level.

Conclusions

This result shows the importance of high frequeamcgt spatial data in limnological
studies in aquatic complex systems (i.e. Amazooditdain) in contrast to conventional
studies with only occasional sampling can lead isinterpretation of the turbidity
behavior.

1. The flood pulse that occurs with the rising waitaf the Amazon flood introduces
turbidity from 80 to 180 NTU. The wind effect atwowater stirring up the bottom
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sediments leads to turbidities exceeding 1100 NThekrefore, the highest turbidities
and the greatest variability are caused by winavirlg over shallow water. Major re-
suspension of sediment due to wind occurs and pesdturbidity far greater than the
initial turbid waters entering the lakes.

2. The analysis of turbidity samples spatially mlstted with ordinary kriging
algorithm showed the same dependence observed timb series.

3. Ordinary kriging maps show the spatial distridwtof high turbidity in the
floodplain for the different water level regimest law water level, wind stress is the
main driving force generating a high turbidity iretCuruai floodplain.

4. Wavelet analysis of the turbidity time seriesnfra moored station gives insight
the duration of re-suspension events due to wypdcally lasting 3 to 6 days.

Clearly, the integration of spatial-temporal datasha great potential for
understanding the turbidity dynamics in a complguatic system such as the Amazon

floodplain.
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