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Abstract. This present work describes the classification of the 
Phytophysiognomies present in the Brazilian Cerrado biome through the 
means Artificial Intelligence; data from remote sensing images and other 
sources served as input for these algorithms to generate the vegetation maps.  
The data acquired was of many types so that it fully described the various 
Phytophysiognomies present in biome and served as training data for the 
machine learning algorithms.  Various statistical and neuro-computation 
based algorithms were used for pattern recognition in the data so that we 
could build a good generalization model for the biome.  A vegetation map was 
successfully generated with each algorithm.  Finally a comparison among 
these algorithms was made so that we could find the best algorithm that fitted 
the problem of mapping this biome.  

keywords: Image classification, decision trees, maximum likelihood, neural network, Cerrado 
Phytophysiognomies  

1. Introduction 

The cerrado biome of tropical South America covers about 2 million km2, an area 
approximately the same as that of Western Europe, representing ca. 22% of the land surface 
of Brazil.  The biome was named after the vernacular term of its predominant vegetation 
type a fairly dense woody savanna of shrubs and smalls trees.  The term Cerrado 
(Portuguese for “half-closed,” “closed” or “dense”) was probably applied to this vegetation 
originally because of the difficulty of traversing it on horseback.  (Oliveira-Filho et al 
2002) The constant threat to the Brazilian Cerrado has lead to the necessity of strategies 
and measures to promote the monitoring and mapping of this biome.  The Cerrado has a 
large biodiversity but it’s fragmentation throughout the years has lead to the losses of 
exemplars from this biome.  This process can be noticed in the red books of fauna 
(Machado et al., 1998) and flora (Mendonça & Lins, 2000) of the Minas Gerais.   

The absence of a precise mapping occurs not only of this biome but to the others 
present in the state of Minas Gerais too.  This leads to difficulties in the environmental 
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management due to database deficiencies reflecting in other aresas management of the 
state. 

This can be noticed in the northern part of the Minas Gerais state, where the biome of 
Cerrado occurs very intensively.  In this region we can observe areas with big social 
problems that intensify by the lack of social and forest management that lead to a 
clandestine exploration of vegetable coal which is intensified by the product’s high market 
value.   

This work’s main objective is to develop an efficient methodology to generate the 
mapping of the various phytophysiognomies present in the Savanna biome region and to 
promote a comparison among the classification algorithms used to generate theses 
vegetation maps.  Precise vegetation mapping can help the monitoring and the 
environmental administration of such areas.  The main objective of this work is to propose 
a methodology based on machine learning algorithms that can help achieve this objective of 
precise mapping of the phytophysiognomies present in the Cerrado biome. 

2. Methods 

2.1. Field sampling of the phytophysiognomies. 

Initially the classification proposed by Ribeiro & Walter (1998) was used to promote the 
characterization and for the choice of division level of the phytophysiognomies in the 
Cerrado biome.   

Throughout qualitative analyses of images EMT+, during a low humidity period and a 
high humidity period, some areas were identified as representative areas of forest fragments 
and also components of the agricultural landscape (Louzada, 2000).   

Some field expeditions by air and land occurred for identification and analyses of the 
distribution of the remaining phytophysiognomies of the region; these were latterly used as 
samples of earth observation trueness.  

The phytophysiognomical levels were adapted from the original classification from 
Ribeiro & Walter (1998) because of the necessity to adequate the characteristics of the 
analyzing sensor that is not capable of resolving small forest fragments that are 
representative of one phytophysiognomy.  Valey-side marshy grasslands fragments are very 
small and tend to be found mixed among riverine forests.  Open grassland and grassland 
with scattered shrubs fragments are very associated to each other.  By the characteristics of 
the fragments just described, some of the fragments individually would not be captured 
because of their small size and the object’s size must be at least three times the size of the 
sensor’s resolution. 

Analyzing an individual date of remote sensing data to extract meaningful vegetation 
biophysical information is often of value.  However timing is a very important when 
attempting to identify different vegetation types or to extract useful vegetation biophysical 
information (e.g. biomassa, chlorophyll characteristics) from remotely sensed data (Jensen 
2000). The group of samples was initially established from the EMT image from a dry spell 
period/high humidity period.  From the entire group of samples, 30% were separated 
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randomly from each class of phytophysiognomies.  These samples were used as training 
data for the algorithms, accuracy data of the classification and latter as test data of the 
accuracy (Table 1).  This last one being only used on the decision tree algorithms.  By this 
way, was a compromise between stratified sampling and randomly chosen sampling was 
set. 

TABLE 1 - Total number of sampled pixels  

Forests

 

Savannic 

 

grassland

 

Eucalipte

 

plantation

 

pasture

 

cropland

 

Bair soil

 

Water

 

Shades

 

Samples

 

8237 67251 53956 18710 42396 1814 38487 5635 2104 

 

2.2. Image Processing 

With the goal of reducing the noise resulting form image fusion, and due to the atmospheric 
influence in the panchromatic image, the Lee filter with a 3x3 window was used so that it 
would reduce the texture resulting from the noise but not the image detail.  

Vegetation indices are dimensionless, radiometric measures that function as indicators 
of relative abundance and activity of green vegetation.  A vegetation index should: 
maximize sensitivity to plant biophysical parameters, normalize external effects such as 
Sun angle, normalize internal effects such as canopy background variations.  There are 
more than 20 vegetation indices in use (Jensen 2000). A NDVI (Normalized Difference 
Vegetation Index) was calculated in all of the images, making a relationship in the band 
that represents the red and infrared wavelengths bands, those bands correspond to the bands 
3 and 4 if the EMT+ images. 

  The Tasseled Cap transformation is a global vegetation index.  Theoretically, it may 
be used anywhere in the world to disaggregate the amount of soil brightness, vegetation, 
and moisture content in individual pixels in a Landsat MSS or Thematic Mapper image 
(Jensen 2000).  The coefficients necessary for the Tasseled Cap (Table 2) were only 
applied on the ETM+ images. (Crist & Cicone 1984) calculated these coefficients so that 
they can be applied on digital images. 

TABLE 2 - Coefficients of Tasseled Cap applied on Landsat images 

Indexes ETM+ 1  ETM+ 2 ETM+ 3 ETM+ 4 ETM+ 5 ETM+ 7 

Brightness 0,3037 0,2793 0,4743 0,5585 0,5082 0,1863 

Greenness -0,2848 -0,2435 -0,5436 0,7243 0,0840 -0,1800 

Wetness 0,1509 0,1973 0,3279 0,3406 -0,7112 -0,4572 

 

The mixture fractions were obtained taking into account the simplex theory (Correia, 
1983, Aguiar, 1991; Mather, 1999; Tso & Matter 2001, Schowengerdt, 1997), thus 
obtaining the pure pixels from the extremes of the distribution from the sampling space 
domain (Red X infrared). 
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According to (INPE 2002), there is no necessity to convert the digital pixels into values 

of reflectance when the values were obtained from the image itself. Thus it was decided to 
leave the values in digital numbers. 

The model was applied with some restrictions; the fractions of shades, vegetation and 
soil could not overcome 100% of total mixture found in a pixel. One image of 25 classes 
was generated by the ISODATA unsupervised classification method, applying 10 iterations 
with a minimum value of 10 pixels per class and gathering a number of six isolated pairs in 
the class.  This image was created with the intention of simplifying the information of the 
image, helping in this case the performance of classifying algorithms and the distinction of 
the each pixel in the classification.  This is helpful, once the classifiers work on every pixel 
individually. 

With altitude curves in the forms of vectors from IBGE institute, it was generated one 
image of the classes of altitude.  In this image the altitude was rearranged into a 0 to 255 
range, the lowest altitude being 0 and the highest altitudes of the region 255. 

For the river buffer it was necessary the extraction of the whole of the hydrography 
through a visual analyses of high resolution images.  The buffer ranges from 0 up 255, zero 
being the value where river stands and it gradually increases up to 255 as the distance 
increases from the river.  Values of 255 correspond to locations distant from a river pixel. 

The images of classes of altitude and hydrography are very important to this work since 
they establish import features and relationships that characterize the vegetation of the 
Cerrado biome.  

2.3. Image classification 

As commented earlier, the main objective of this work is to compare image classification 
algorithms among themselves.  For Moreira (2003) an automatic image identification and 
classification can be sought as the analyses and the manipulation of images through 
computational techniques, with the goal of extracting information regarding an object of the 
real world.  For this research, maps of the phytophysiognomies of the Cerrado biome were 
generated with the following algorithms: Decision trees, Maximum likelihood, Kohonen’s 
self Organizing maps with supervised learning, Multi layer perceptrons and Fuzzy ART 
maps Neural networks.   

2.3.1. Maximum Likelihood 

The Maximum likelihood is a statistical algorithm that necessitates some previous sampling 
before its operation (learning stage of the classifier), where it can be established a previous 
indication of the number and a specific pattern of a certain class. (Lillesland & Kiefer, 
2000). 

 This classifier is based in the Bayesian theory of probability; it uses an array of patterns 
and a covariance matrix from a Gaussian distribution sample set. (Lillesland & Kiefer, 
2000, Gonzáles e Woods, 2000 ; Tso & Mather, 2001). The classification is therefore 
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defined by the smallest number of standard deviation from sample set.  Thus each pixel is 
classified according to an average array and covariance matrix.  The maximum likelihood 
distinguishes from the other classifiers by having good overall performance for classifying 
Earth’s surface. (Carvalho, 2001 ; Marcelino et al., 2003 ; Oliveira et al., 2002).  30% from 
the total number of samples of earth trueness were used as training data set of the 
algorithms; these values are present in Table 1.  In the maximum likelihood it was 
considered that all the pixels had the same probability of belonging to each one of the 
present classes. 

2.3.2. Decision Tree 

The decision tree is a non parametrical classifier that is based in the inductive learning of a 
human being, where one can learn to separate the classes throughout training data (Quilan, 
1986).  From the training data, that can be describe as a set of attributes (e.g. altitude, 
reflectance, NDVI, etc), a binary rule can be established so that the samples set can be 
divided into two more homogenous data sets than the original set.  This procedure will 
occur until the divisions lead up to each desired class of attributes.  The decision rules are 
obtained by the definition the best discriminative function based on linear combinations of 
the certain attributes (Breinman et al., 1984). 

With the generation of all the described images it was obtained a set of attributes that 
were extracted from the training and testing data sets.   These sets were used to generate 
and choose the best decision trees, using the Gini algorithm. 

2.3.3. Neural Networks 

The neural networks are problem solving algorithms of the artificial intelligence that use 
methods and techniques inspired on historical facts and models of biological neurons and 
networks.  These biological inspired models are extremely efficient when the pattern of 
classification is not a simple and trivial one (Barreto 2002).  Theses networks have shown 
to be helpful in the resolution of problems of practical scope. Problems such as voice 
recognition, optical character recognition, medical diagnosis and other practical scope 
problems are by no means complex problems to the human brain and sensor as they are for 
a computer to resolve.  Theses problems however can be resolved computationally through 
an artificial network of neurons.   

Even though some researchers do not recognize the neural networks as being the 
general natural solution surrounding the problems of recognizing patterns on processed 
signals, it can be noticed that a well trained network is capable of classifying highly 
complex data (Kanellopolous et all 1997).  

According to (Wilkinson 1997) the use of neural networks in pattern recognition and 
classification has grown in the last years in the field of remote sensing.  A neural network 
needs to be capable of transforming spectral radiations into thematic maps that represent 
the reality. 

For the interest of this work we used different types of networks. A SOM (self 
organizing maps) Kohonen (1990), network was used for classifying the vegetation with 
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supervised learning.  The following described parameters used in this research on neural 
networks were reached through experiments and tests and limited computer power.  The 
networks were trained and re-trained several times.  Various tests were done with different 
network parameters aiming to reach the networks that best classified our problem of 
generating vegetation map.  The supervised SOM had the following parameters: 31 layers 
with 31 neurons per layer, with variable learning rate that went from 0.5 to 1.0.  The 
number of epochs required was of 20776 with a final quantification error of 0.1672. 

A multi layer perceptron was also used for this work with the following parameters: 
only one hidden layer, sigmoid activation function, initial neighborhood radius of   46.25, 
learning rate of 0.1 and momentum of 0.5.  The network was trained with 10000 iterations 
that lead out 95.11% of correct classifications in the training data set. 

2.3.4. Soft classifiers 

For (Mather 1999) the use of Fuzzy, or soft classifiers, is adequate when we want to avoid 
errors of classification due to ambiguity of the classes generated during the classification.  
When a pixel has characteristics that can include it in two or more classes, future errors of 
classification will occur due to this ambiguity.  Fuzzy maps allow a determined pixel to be 
in different classes at the same time depending on the pertinence level of the pixel to each 
class.  A fuzzy ArtMap can be generated based on the ART (Adaptavide Resonance 
Theory) (Carpenter et al, 1991) which is a theory that describes the biological cognitive 
learning of the living creatures.  The ART networks were specially developed to resolve the 
stability-plasticity dilemma and exhibit a high degree of stability in order to preserve 
significant past learning, but remains adaptable enough to incorporate new information 
whenever it might appear (Carpenter, 1989).  Fuzzy ART is a clustering algorithm that 
operates on vectors with fuzzy analog input patterns (real numbers between 0.0 and 1.0) 
and incorporates an incremental learning approach which allows it to learn continuously 
without forgetting previous learned states.  

2.4 Training and Classification  

The classification preceded as described earlier, using training samples which correspond 
to approximately 30 % of the total number as seen in Table 1.  The training phase must 
happen to each algorithm before it can be used for classification.  In the maximum 
likelihood algorithm training, it was considered that each pixel had the same probably of 
being in each class. 

It was used the same training data set for the maximum likelihood, the decision tree and 
the also in all the kinds neural networks and fuzzy ArtMaps.  For the test of theses decision 
trees a new set data was extracted from the original data set with values described in Table 
1, for which the set had the same number of pixels as the training data set. 

2.5 Accuracy and comparison of the generated images  

As commented earlier, the main objective of this work is to verify the accuracy of these 
classifiers comparing  them.  To accomplish this, a set of accuracy samples were used as 
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seen in Table 1.  With the accuracy samples a confusion matrix was generated, by which 
the Kappa coefficient (Colganton & Green, 1999; Tso & Mather, 2001) was extracted from. 
By doing this, we can compare statistically the quality of each algorithm to resolve this 
problem with its dataset. 

3. Results 

3.1. Data mining, image classification, analyses of the matrixes. 

After the training phase a multivariate decision tree with the lesser possible relative cost 
was chosen, that is, one that has smallest possible mixture of classes on the terminal leaves 
(Breiman et al., 1984). 

With the previous selection of the tree and its respective confusion matrix was 
generated using the accuracy samples.  These matrixes were also generated using the 
maximum likelihood and for each of the type of neural classifier. 

The set of temporal images obtained high Kappa coefficient values (table 3).  This can 
be explained by the fact that a temporal set of images captures the phonological cycle of the 
vegetation.  

TABLE 3 - Results of Kappa coefficient from the set of images Temporal Landsat 

Max likelihood Decision tree MLP Supervised SOM Fuzzy ArtMap classification 

Kappa Kappa Kappa Kappa Kappa 

Values 0,9190 0,9574 0,9465 0,8043 0,9635 

 

The classification of the Cerrado biome followed the previous steps which included 
classification with: MPL, Fuzzy ArtMap neural network, decision tree, and maximum 
likelihood from the set temporal EMT+ (Figures 1a, 1b e 1c). A confusion matrix was 
generated for the evaluation of the best Kappa coefficient Table 4 

After applying the Landis & Koch (1977) evaluation all the classifications were all 
defined as excellent. 

It was noticed that the Fuzzy ArtMap neural network obtained a better efficiency than 
all the others algorithms analyzed, thus assuring the better quality for this algorithm to 
classify the phytophysiognomies of the Cerrado biome. 
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TABLE 4 - Confusion matrix for Temporal Landsat with 96,98% of accuracy and  

0,9635 of Kappa Coenfficient 

Class Water

 
Cropland

 
Bare 
soil Shades

 
Pasture

 
Eucalipte 
plantation Savannic 

 
Grassland

 
Forests

 
Total

 

Water 1480

 

29

 

85

 

13

 

9

 

12

 

12

 

4

 

9

 

1653

 

Cropland 0

 

386

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

386

 

Bare soil 3

 

2

 

2953

 

0

 

5

 

11

 

0

 

1

 

24

 

2999

 

shades 2

 

0

 

0

 

469

 

0

 

9

 

11

 

0

 

0

 

491

 

pasture 2

 

1

 

1

 

0

 

4264

 

0

 

14

 

18

 

0

 

4300

 

Eucalipte 
plantation 3

 

0

 

23

 

8

 

0

 

2499

 

3

 

59

 

1

 

2596

 

Savannic 8

 

0

 

0

 

10

 

15

 

16

 

2184

 

72

 

1

 

2306

 

Grassland 2

 

0

 

7

 

0

 

26

 

83

 

96

 

7731

 

18

 

7963

 

Forests 0

 

2

 

41

 

0

 

1

 

0

 

0

 

15

 

3297

 

3356

 

Total 1500

 

420

 

3110

 

500

 

4320

 

2630

 

2320

 

7900

 

3350

 

26050

            

FIGURE 1 - Ordered results for the best classifications  
(a) Fuzzy ArtMap neural network, (b) Decision tree (c) MLP  
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4. Conclusions 

There are several artificial intelligence algorithms that can be used in remote sensed data to 
classify images and generate theme maps.  All these algorithms depend in some way to the 
operators experience in setting up parameters of the algorithms to reach their optimal 
performance.  When these parameters are set wisely all the algorithms work efficiently 
showing good overall performance, thus remembering that all these parameters should be 
readjusted to different data sets.  The algorithms: Max likelihood, Decision tree, Decision 
tree, Multi layer perceptron, Fuzy ART maps showed efficiency in classifying the 
phytophysiognomies in the Cerrado biome.  The supervised neural network using Fuzzy 
ARTmaps was the most efficient of the algorithms, followed by the decision tree, multy-
layer perceptron and maximum likelihood. 

The results show that machine learning algorithms are highly capable of mapping 
the Phytophysiognomies of the Brazilian Cerrado and should be highlighted that these 
techniques could be improved in future work so that influence of the operator should be 
diminished on the results.  
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