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Abstract. Historically, visual display has always played a very important role 

in GIS applications. However, visual exploration tools do not scale well when 

applied to huge spatial data sets. More recently, faster processing hardware 

and more sophisticated computer graphics has been used to improve user 

experience for geospatial data visualization. Some applications have recently 

introduced the concept that the user should be able to navigate through the 

data in a smooth and continuous way without being blocked waiting for data 

to be loaded, even if this means seeing incomplete data for some time. Google 

Earth and NASA World Wind are recent examples of this concept. This paper 

describes an architecture incorporated in the TDK (TerraLib Development 

Kit) open source API to provide support for applications that want this kind of 

user interaction with Terralib geographical data. 

1. Introduction 

In a Geographic Information System (GIS) data visualization plays a fundamental role in 

the system user experience. From a location based application to a more sophisticated 

spatial data manipulation graphic tool the user wants to have a pleasant interaction with 

the data visualization interface in place. 

 If we consider the dualism of GIS data models where thematic and spatial data 

are together [Oosterom 1988, Longley et al 2001] we can understand the particularity of 

the user visual experience in a GIS scenario. The spatial data component requires a 

special paradigm for visualization in order to give the user a realistic interaction with the 

system.  

 Another consideration is the requirement for an efficient processing of data for a 

pleasant user experience. In terms of data scaling factors GIS definitely falls into one of 

major high scale heavy databases. So while visualizing a GIS database information the 

data requests are not as easy to be addressed as in the majority of other fields.  

 For the past several decades the user experience with GIS data visualization has 

been restricted to a simple “geographic map like” paradigm. In this legacy model the 

user navigates over the data by panning over the data with the visualization window. 

This user interface model was inherited from the standards brought by modern 
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Graphical User Interfaces solutions [Mesa 1998] from the 80s. The inventors of this 

GUI paradigm were definitely not aware of the particularities involved in a GIS data 

visualization application. As a consequence of this non predictable usage of the standard 

two dimensional window oriented paradigm the GIS data visualization suffers of several 

potential drawbacks: (i) the data navigation as a blocking prone experience; (ii) the 

system is not responsive all the time. 

 One major evolution experienced by the game development technology has been 

the usage of computer graphics techniques to give the user a navigation experience more 

realistic. These techniques have been adopted in the GIS community by systems such as 

Google Earth [Google 2007] and World Wind [NASA 2007] to improve user 

experience. These systems have implemented what we define here as continuous 

interaction as opposed to discrete interaction. 

 By discrete interaction we mean that the user clearly sees that the visualization 

area “jumps” from one point to another which is perceptively away. On the other side 

we call continuous interaction [Faconti et al 2000, Smith et al 1999] when the user sees 

the visualization area moving in a smooth way so that the user does not perceive any 

discontinuity in the visualization area trajectory. For a truly rich navigation experience 

we consider the use of continuous interaction fundamental. 

 The objective of this work was to provide the open source project TDK 

(TerraLib Development Kit) [Tilio and Vera 2005, TDK 2007] with support for 

continuous interaction. TDK is an API build on top of Terralib [Câmara et al 2000] with 

the purpose of providing components and services to make it easier to implement GIS 

applications using Terralib. Terralib is a GIS C++ library, available from the Internet as 

open source, devoted to the development of multiple GIS tools. Its main aim is to enable 

the development of a new generation of GIS applications, based on the technological 

advances on spatial databases. The architecture presented here was implemented and 

incorporated into TDK (in version 2.1). 

 We followed two strategies to reach the objective: (i) development of a spatial 

data responsive cache using spatial access methods for taking the spatial proximity in 

consideration for efficiency and fast data feedback; (ii) absorption of Computer 

Graphics high performance navigation techniques applied currently to flight simulators 

and gaming in general. These techniques aim to make full use of all the resources 

available in the Graphics Processing Unit (GPU) of modern personal computers. 

 The GPU is a single-chip processor and dedicated graphics rendering device 

used in a personal computer or game console. Modern GPU’s such as the ATI Radeon 

[ATI 2002] and GeForce [nVIDIA 2002] are designed to handle well 3D computer 

graphics and since they are optimized for graphics, they make use of parallelization and 

are extremely fast for operations such as texture mapping, rendering triangles, color 

operations and interpolation, coordinate system transformation and vector and matrix 

operations. 

 The contributions of this paper lie in exploring how data preprocessing and data 

storage in cache in a format close to the one required by the graphics toolkit (which is 

OpenGL [OpenGL 2007] in this project) may become a viable strategy for rendering 

maps quickly and make the whole system more user-responsive. We also describe an 
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implementation effort that was carried out to test the ideas described in this paper and 

prove that it is possible to provide continuous interaction with data provided by 

Terralib. 

 The paper is organized as follows. Section 2 describes in detail the system 

architecture proposed in the paper. Section 3 discusses experimental results obtained 

with an implementation of the system. Finally, Section 4 contains conclusions and 

future work. 

2. System Architecture 

This section shall begin with some definitions followed by the description of all the 

steps of the rendering process and finally presents the general system architecture. 

2.1 Definitions 

Terralib defines the concept of theme, which was absorbed by TDK. In the context of 

this paper, a theme is a set of geographic objects of the same nature plus all style 

information needed to render each object. Each object has its own geometries (such as 

points, lines and polygons) and alphanumeric attributes. A visual style can be defined 

for all objects in a theme, for a group of objects (based on conditions on their attributes) 

or for an individual object. Every theme will have all its objects grouped into data 

blocks by spatial proximity. It allows spatial indexing with more efficiency as compared 

to treating each object individually. We also call map the image created by rendering a 

vector of themes in a given visualization window. 

2.2 The Rendering Process 

The Figure 1 shows the dataflow process that begins with the geographic data stored 

initially in a Terralib database. This data is requested according to map rendering 

demands. When loaded, every piece of data is preprocessed into a format friendly to the 

graphics toolkit. After that the preprocessed data is stored in a visualization cache to be 

used by the rendering routines and sent to the GPU. 

 

Figure 1. Rendering Process. 
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As it was already mentioned, a memory cache is needed in order to render maps quickly 

and make the whole system more user-responsive and interactive. A number of 
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 Our approach was consider that data should be stored in memory in a format as 

close to the graphics API format as possible in order to improve rendering performance. 

That’s why the data is preprocessed before being stored in the cache.  This preprocessing 

step includes: (i) geographic projection conversion; (ii) polygon tessellation (breaking 

them in triangles) and (iii) style grouping (putting together geometries that will be 

drawn with the same style).  

 The reason for projection conversion is that converting geometries between two 

geographic projection systems may involve quite complex calculations and it is very 

costly compared to the total rendering time, therefore converting the geometries in 

advance and only once helps improving rendering performance. The polygon 

tessellation process consists in generating a triangle mesh that will cover exactly the 

same area as the original polygon. Although it is costly, the tessellation is necessary to 

make full use of all the GPU features such as parallelization and pipelining since its 

architecture is more prepared to handle triangles. Lastly, style grouping is also an 

optimization for the GPU because it allows rendering the same data with less state 

changes, such as changes in the current color, line width, textures and so on.  

 By doing all preprocessing in advance, every time the system needs to render a 

map it will do it in the fastest possible way if the data is in the memory cache. But what 

should happen if it is not? From the user point of view, it is highly desirable that the 

system is responsive and that it gives the most feedback as quickly as possible. This 

way, in this situation, the system renders whatever is in memory and starts loading the 

missing parts without blocking the user interaction. The system was designed as 

multithreaded exactly to handle this case: load data while interacting with the user. 

  

 

Figure 2. Functional Diagram. 
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 There are currently two threads in the system: the loader thread loads data from 

the database to the cache and the render thread renders maps and handles user input. 

These two threads communicate through the cache: the render thread reads from the 

memory cache and the loader thread puts data in it. Besides that, when the render 

thread needs data that is not in memory, it queues a request to the loader thread using a 

request queue. The loader thread continuously checks the request queue looking for 

new requests. 

 The functional diagram (Figure 2) shows the main components of the system. 

The process starts when the render thread requests a data block to the cache manager, 

who checks whether the block is already in the memory repository. If it is, just return it. 

If it is not, check if it is in the disk repository. If it is, load it to the memory repository 

and return it. If it is not, load it from the database to the memory repository and return it.  

 Whenever the memory repository is full and a data block needs to be loaded, the 

cache manager should pick one other block in memory chosen by some heuristics (e.g. 

the block that is not used by the largest period) and save it in the disk repository. If the 

disk repository is full, then it needs to pick a block and just delete it to free some space. 

This way the cache is composed by a three-level hierarchy [Matos et al. 1998] that 

should, by the use of good heuristics, optimize the whole process of data visualization 

by using all resources available in an efficient way. 

2.4 Immediate Response 

In some cases, especially when continuous interaction is desired, the render thread 

cannot wait for the loading process to finish, even if it consists of just one block. In this 

case, it should put a flag named “immediate response” in its request. This flag will make 

the cache return a block only if it is already in memory. If it is not, it will queue a 

request for the loader thread and return a null block. This is how a behavior like Google 

Earth or NASA World Wind can be achieved with this cache system. By always 

returning the request call immediately, the user interaction is guaranteed not to stop, 

even if all data needed to render the map has not been loaded yet. In this case, the user 

will see an incomplete map while the rest of the data is being loaded. 

2.5 Hints from the Render Thread 

Imagine the following scenario: the user starts navigating through some path in a faster 

way than the cache can load all the data along it. Using a naïve strategy, what will 

happen is that, when the user stops navigating, he will wait for the system to load all 

data along the path because a lot of requests were queued in the way, even if only a 

small part of all this data is still visible to him. 

 The render thread can give hints to the cache to help it optimize the loading 

task. For instance, it can provide the information of a rectangle, inside which is all the 

data the user is currently visualizing. This information can be extremely interesting to 

the cache because, if it has not started loading a data block and this block is not within 

the visualization area anymore it does not have to be loaded. In the scenario just 

mentioned above, after the user stops moving, only the data visible to him will be 

loaded. 
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2.6 Points of Flexibility: Data Format and Indexing 

The system architecture offers two great points of flexibility (hot spots): the data block 

and the theme strategy components. 

 The data block is a class that defines the format in which the geospatial data will 

be stored in memory plus the preprocessing functions. Any application can write its own 

data block class by implementing a common interface and provide a factory [Gamma et 

al 1995] of data blocks to the cache manager. This way the cache engine can hold 

spatial data in any format. This is very convenient for fast rendering because the data 

can be stored in the most convenient format for the graphics toolkit. 

 The other flexibility point is the theme strategy. This class implements a 

common interface and is responsible for the blockage and spatial indexing of a theme 

and the loading method. By blockage of a theme we mean the way the objects of a 

Terralib theme will be grouped into blocks (usually by some way that takes spatial 

proximity into consideration). The spatial indexing strategy is a data structure used to 

spatially query the data blocks in memory, more specifically it answers questions like, 

for example, which blocks intersect a window query. The default structure provided is a 

R-Tree [Oosterom, P.V.,1999], but any application can implement other strategy. The 

loading method is simply a method that loads a block. This flexibility is important 

because it allows the use of indexed persistence formats in an efficient way. It also 

allows any application to load data from data sources other than a Terralib database. 

3. Results 

The VIPE [TDK 2007] application is built on top of TDK and was used to test the 

results of the architecture proposed in this paper. This section presents experimental 

results we have obtained with three distinct versions: VIPE v0, VIPE v1 and VIPE v2, 

this last one was built especially to test the concepts and architecture proposed in this 

paper. The others versions are explained in better detail later in this section. 

 Since VIPE v2 could successfully reproduce the user experience of systems like 

Google Earth and World Wind in terms of rendering speed and system responsiveness, 

it would be very interesting to compare it with them. However, we found no direct way 

to make a full comparison between these systems. 

 There are basically three measurable factors critical to systems like these: 

database loading performance, disk loading performance and rendering performance. 

The database loading performance cannot be compared because Google Earth and 

World Wind cannot access a Terralib database. A disk loading performance comparison 

could be unfair since in our system the data on disk is already preprocessed and 

efficiently blocked while the other systems would have to access a common file format 

like shape files [ESRI 1998] or GML[OGC 2007]. Finally, a rendering performance 

comparison could also be unfair since the other systems render data in a 3D 

environment while ours works only in 2D for now, besides there are significant 

differences in the style representation capabilities for rendering geographic features in 

each of these systems. Because of all the factors just mentioned, we have decided to 

compare VIPE v2 with one other existing application, namely Terraview v3.1.4 [INPE-

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 13-22.

18



  

DPI 2007] and two previous versions of VIPE (v0 and v1) because all of them are built 

on top of Terralib. 

 The test set used was a Terralib database build from data provided by IBGE (the 

Brazilian Institute for Geography and Statistics) and consist of the following themes (all 

of them covering all the territory of Brazil): municipal district boundaries(5,621 

polygons), permanent rivers (179,701 polylines), highways (30,969 polylines with), 

cities and capitals (5,771 points). The total amount of coordinates of all these themes is 

2,903,498. The machine in which the tests were executed was a Pentium Dual Core 3.00 

GHz, 1GB RAM with a nVIDIA GeForce 7300 SE/7200 GS graphics card. 

 The Terraview and VIPE v0 systems are very similar with respect to the 

rendering process. Neither implements any sort of caching mechanism. Every time they 

need to render a map, they just generate a SQL query to the Terralib database to fetch 

all geometries that intersect the visualization window (i.e. the area being rendered) and 

render the map in a loop consisting of three steps: fetch a geometry from the record set 

returned from the database, do all the processing needed and finally render the 

geometry. The loop goes on until there are no more geometries intersecting the 

visualization area. It becomes clear that it is not possible to compare database loading 

performance or rendering performance individually because these operations are 

interleaved in these systems. Therefore, the comparison was made by the whole 

operation (loading and rendering). 

 The VIPE v1 system implements a cache mechanism and it stores raw database 

data in the Terralib format. All the processing is done at rendering time. In order to test 

the rendering performance with and without the data in the cache, two time measures 

were taken, one for rendering right after connecting to the database (without any data in 

the cache) and one right after this first (with all the data in the cache). Special care was 

taken to configure the cache so that the entire map would fit in memory. 

 All tests were run multiple times and the average time was recorded. This way 

was preferred to testing with a profiling tool because we wanted results as close to the 

user experience as possible. It was interesting to compare different versions of the same 

system to have a better idea of how the evolutions on the architecture influenced the 

user experience. 

Table 1. Experimental Results Comparison. 

Average Time for Map Rendering System 

Uncached data Cached data 

Terraview 37.38s - 

VIPE v0 53.21s - 

VIPE v1 60.20s 8.14s 

VIPE v2 114.40s 0.10s 
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 We observed in Table 1 that both VIPE v1 and VIPE v2 performed better when 

the data was in the cache. This confirms the utility of caching in reducing the time for 

map rendering.  

  We can also see that with cached data, VIPE v2 was much more efficient than 

VIPE v1. This occurred because VIPE v2 caches preprocessed data in a format very 

close to the one requested by the graphics toolkit. This test shows us that this sort of 

preprocessing can bring extreme performance improvement in rendering time, especially 

in a toolkit that explores well the GPU features such as OpenGL.  

 The performance achieved by VIPE v2 was enough to implement continuous 

interaction for a reasonably large data set at an acceptable frame rate. It is a consensus 

in the computer graphics area that the minimum frame rate for real time scientific 

visualization is about six frames per second, which allows a maximum rendering time of 

approximately 0.16 seconds. 

 It is worth mentioning that, during the test with uncached data, VIPE v2 rendered 

all data loaded so far about 1,000 times while the others only needed to render once. 

This is necessary because VIPE v2 allows continuous interaction. That certainly 

contributed for it taking more time to finish loading all the data than the others. A 

positive side of it is that, while it was loading the data, the user navigation was not 

blocked. 

 Finally, the systems without caching mechanisms (Terraview and VIPE v0) seem 

to load data more quickly than the others. This accounts probably to the fact that their 

rendering processes do not have the preprocessing and caching steps (illustraded in 

Figure 1). Both VIPE v1 and VIPE v2 need to organize data in memory to take 

advantage of the spatial dimension of data and therefore, some amount of extra 

processing is needed. In the case of VIPE v2, the data has to be grouped into blocks by 

spatial proximity and also, a spatial index structure for the data in memory has to be 

maintained. Besides that, in this test, it rendered all its cached data about 1,000 times.  

 Since VIPE v2 rendering time improved approximately by a factor of 80 

compared to the VIPE v1 system (by comparing their average times with cached data), 

the conclusion we take is that, in GIS, it is worth paying attention to the GPU 

capabilities and make an effort to provide data in an efficient format to it. 

4. Conclusion and Future Work 

In this paper we proposed an architecture implemented in TDK that preprocesses data 

and stores data in a memory cache to reduce the time for rendering maps and to make 

the GIS applications more user-responsive. This strategy allows the user to navigate 

through geospatial data in a smooth and continuous way. 

 We also presented experimental results we have obtained that confirm that this 

strategy makes a big difference in rendering performance in GIS applications. 

 This project opens a lot of space for future work. The main lines would be: raster 

support, optimization, applying these caching techniques to servers and taking 

advantage of OpenGL and the GPU for 3D rendering and navigation. 
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 Although raster data (i.e. data represented by a rectangular grid, such as images) 

is not supported in this first version of the cache, it would certainly be a very useful 

feature to add in the nearby future. Raster support would probably require multi-

resolution, which means that it would be necessary to manage multiple versions of the 

same data, one for each different resolution. 

 With regards to optimization, it would be interesting to study different formats to 

store spatial data in the database. For instance, the objects could be stored already in 

blocks, each block in a record of a table. New algorithms for theme blockage and spatial 

indexing could also be tried. Finally, there is a lot of space for research and 

improvement in cache management policies and heuristics. One good thing would be to 

make these policies and heuristics flexibility points so that each application could 

override the default and write some better suited for its specific use. 

 One more improvement could be a prefetcher component, who would try to 

predict what data would be requested to the cache in the near future and load it in 

advance. It could consider for instance all data around the area currently being 

visualized.  

 Since the main purpose of all this system is to render maps quickly using cache 

and GPU, it seems that it would fit perfectly in GIS servers that render lots of maps. By 

using proper cache management heuristics a server would quite likely improve its 

performance by making full use of all its resources. 

 Another challenge, this time much more difficult, would be to present the data 

from the Terralib database in a 3D navigator. Although the task may be done in a simple 

way just by laying the 2D geometries on a sphere surface, it would be far more 

interesting to create some sort of translators from a 2D object to 3D and place them in a 

real 3D environment with terrain modeling, sky, oceans and everything else to make it 

look nicer. 
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