
Polygon Clipping and Polygon Reconstruction

Leonardo Guerreiro Azevedo
1
, Ralf Hartmut Güting

2

1
 Computer Science Department, Graduate School of Engineering, Federal University of

Rio de Janeiro, PO Box 68511, ZIP code: 21945-970, Rio de Janeiro, RJ, Brazil

2
LG Datenbanksysteme für neue Anwendungen, FB Informatik, Fernuniversität Hagen, D-

58084 Hagen, Germany

leogazevedo@gmail.com, rhg@fernuni-hagen.de

Abstract. Polygon clipping is an important operation that computers execute all

the time. An algorithm that clips a polygon is rather complex. Each edge of the

polygon must be tested against each edge of the clipping window, usually a

rectangle. As a result, new edges may be added, and existing edges may be

discarded, retained, or divided. Multiple polygons may result from clipping a

single polygon. After clipping, we may have a set of segments, which must be

handled to generate the clipped polygon. This work proposes two new algorithms:

clipping polygon against a rectangle window, and polygon reconstruction from a

set of segments. The algorithms were implemented in Secondo, a platform for

implementing and experimenting with various kinds of data models.

1. Introduction

Polygon clipping is one of those humble tasks computers do all the time. It's a basic

operation in creating graphic output of all kinds. Polygon clipping is defined by Liang and

Barsky (1983) as the process of removing those parts of a polygon that lie outside a

clipping window. A polygon clipping algorithm receives a polygon and a clipping window

as input. The algorithm must evaluate each edge of the polygon against each edge of the

clipping window, usually a rectangle. As a result, new edges may be added, and existing

edges may be discarded, retained, or divided. Multiple polygons may result from clipping a

single polygon. Two examples of a polygon clipping are presented in Figure 1.

Figure 1 – Examples of polygon clipping by a rectangle window: (a) clipping a
polygon that does not have hole; (b) clipping a polygon that has a hole.

There are several well-known polygon clipping algorithms, each having its

strengths and weaknesses. The oldest one (from 1974) is called the Sutherland-Hodgman

algorithm, as presented by Newman and Sproull (1979). In its basic form, it is relatively

(a)

clipping
clipping

(b)

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 159-170.

159

simple. It is also very efficient in two important cases, one being when the polygon is

completely inside the boundaries and the other when it's completely outside.

The Liang-Barsky algorithm (1983) is a good deal more complicated, but in certain

cases fewer intersections need to be calculated than for Sutherland-Hodgman. Therefore, it

may be somewhat faster when many polygon lines intersect with the clipping boundaries.

The Weiler and Atherton (1977) algorithm is even more complicated. It allows clipping of

a subject polygon by an arbitrarily shaped clip polygon. It is generally applicable only in

2D. Even more ways to clip a polygon exist. None of them is totally perfect. Often, it is

possible to feed a weird polygon to an algorithm and retrieve an incorrect result. One of the

vertices will disappear, or a ghost vertex will be created. Therefore, the hunt for the perfect

clipping algorithm is still open.

Usually polygon’s points are stored as an ordered list of points. This structure is

employed by many applications, and it is simple to read the polygon and draw it on a

Computer Graphics Interface. However, there are some cases where it is not possible to

store segments as a simple connected list of points. For instance, when the polygon has

holes, it is required an extra information to define which points belong to the external cycle

and which ones belong to the internal cycle (or which ones belong to the hole). There are

many approaches in the literature to store polygons. For example, Scholl and Voisard

(1989) defined general polygons, and Voisard (1992) extended this to general types for

points and lines, while Gargano et al. (1991) gave only a single type for all kinds of

geometric objects; a value is essentiall y a set of sets of pixels. Güting and Scheneider

(1995) proposed the introduction into the DBMS the concept of a realm, a finite, user-

defined structure that is used as a basis for one or more system data types. Realms are

somewhat similar to enumeration types in programming languages. A realm used as a basis

for spatial data types is essentially a finite set of points and non-intersecting line segments.

All points, lines, and polygons associated with objects (spatial attribute values) can be

defined in terms of points and line segments present in the realm. In fact, spatial attribute

values are created only by selecting some realm objects. The polygon structure employed in

this work was proposed by Güting et al. (1995) and Güting and Schneider (1995), it is

presented in section 2.1 (Definition 4).

Polygon reconstruction is the process of reconstructing a polygon from a set of

segments those are not in any specific order. For instance, the segments may be stored in a

way that a segment that follows another segment does not has a common point. One

example of application where this algorithm may be used is polygon clipping. After

clipping, the output segments may not be ordered, and the reconstruction algorithm could

be used to compute the polygon.

In this work, we propose two new algorithms: an algorithm for polygon clipping by

a rectangle window; and an algorithm for polygon reconstruction from a set of segments.

The algorithms do not assume any specific orientation of polygon’s segments, they do not

rely on the computation of parity or wrap numbers of a reference point. Besides, each

segment can be processed independent from the others, since all information needed to

evaluate one segment is stored within it. The algorithms handle polygons that have multiple

boundaries (a polygon that is composed by more than one part) as well as polygons with

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 159-170.

160

holes. The algorithms were implemented in Secondo system (Dieker and Güting, 2000;

Güting et al., 2005), and according to the data structure described in the ROSE algebra

(Güting, 1993; Güting et al, 1995; Güting and Schneider, 1995).

This work is divided in sections, as follows: Section 1 is this introduction; Section 2

presents important definitions for our proposals; Section 3 presents the polygon clipping

algorithm; Section 4 presents the polygon reconstruction algorithm; Section 5 presents the

implementations we have done in Secondo; finally, in Section 6, we present our

conclusions.

2. Preliminary Definitions

In order to present the details of our algorithms proposals it is needed first to define some

concepts.

Definition 1) Cycle Direction

The cycle direction defines where is located the enclosed part of a polygon related to its

segments. A cycle having the enclosed part on the left is called counterclockwise. On the

other hand, when the enclosed part is on the right the cycle is clockwise.

Definition 2) (x,y)-lexicographic Order of two Points

Let p1=(x1,y1) and p2=(x2,y2) be two points in 2-d, the (x,y)-lexicographic order is defined

as p1 < p2 ⇔ x1 < x2 ∨ (x1 = x2 ∧ y1 < y2) (Güting et al, 1995).

Definition 3) Halfsegment

A crucial idea for the representation of the relatively complex polygons values is to regard

them as ordered sequences of halfsegments (Güting et al., 1995; Güting and Schneider,

1995). Let S ={(p, q) | p, q ∈ X × Y, p < q } denote the set of line segments in the X × Y

plane, where p and q are end points. The equality of two segments s1 = (p1, q1) and s2 = (p2,

q2) is defined as s1 = s2⇔ (p1 = p2 ∧ q1 = q2) ∨ (p1 = q2 ∧ p2 = q1). Without loss of

generality, we normalize S by the assumption that ∀ s ∈ S : s = (p, q)⇒p < q which enables

us to speak of a left and a right end point of a segment. Let further H = {(s, d) | s ∈ S, d

∈ {left, right}} be the set of halfsegments. A halfsegment h = (s, d) consists of an segment

s and a flag d emphasizing one of the segment’s end points which is called the dominating

point of h. If d = left then the left (smaller) end point of s is the dominating point of h, and h

is called left halfsegment. Otherwise, the right end point of s is the dominating point of h,

and h is called right halfsegment. Hence, each segment s is mapped to two halfsegments (s,

left) and (s, right), as presented in Figure 2.

Figure 2 – The mapping of a segment in two halfsegments (s, left) and (s,right)

s (s, left) (s, right)

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 159-170.

161

Let dp be the function which yields the dominating point of a halfsegment. For two

distinct halfsegments h1 and h2 with a common end point p, let α be the enclosed angle such

that 0 < α ≤ 180°. Let a predicate rot be defined as follows: rot(h1, h2) is true iff h1 can be

rotated around p through α to overlap h2 in counter-clockwise direction. We can now define

a complete order on halfsegments which is basically the (x, y)-lexicographic order by

dominating points. For two halfsegments h1 = (s1, d1) and h2 = (s2, d2) it is:

h1 < h2⇔dp(h1) < dp(h2) ∨ (dp(h1) = dp(h2) ∧ ((d1 = right ∧ d2 = left) ∨ (d1 = d2 ∧ rot(h1, h2)))) (1)

Definition 4) Polygon

The polygon structure employed in this work was proposed by Güting et al. (1995) and

Güting and Schneider (1995). In order to define a polygon, first it is need to define the

concepts of cycle, hole and face. A cycle and a hole are sets of connected halfsegments. A

face is a pair (c, H) where c is a cycle and H = {h1,…, hm}, where each hi is a hole (H can

possibly be empty). Figure 3 presents an example of a polygon composed by three faces (f ,

f’, and f’’). The face f is composed by the cycle c and the hole h. The face f’ is composed by

the cycle c’ and the holes h1’ and h2’. Finally, the face f’’ is composed by the cycle c’’ and

it has no hole.

Figure 3 – Example of a polygon

In practice, a polygon is represented essentially as an ordered list (array) of

halfsegments. The order used is the one suitable to support plane-sweep algorithms,

basically lexicographic order on dominating points, presented in Definition 3. Each

halfsegment has a set of attributes storing the cycle (or hole) and the face that it belongs.

Besides, each halfsegment has an attribute named edge number that specifies the position of

the halfsegment in the cycle that it belongs.

Definition 5) InsideAbove Flag of a Halfsegment

a) InsideAbove = true b) InsideAbove = false

Figure 4 – Examples of InsideAbove value.

The InsideAbove flag of a segment is true when the area inside the polygon lies above the

segment; or, if the segment is a vertical line, it means that the area inside the polygon is on

the left of its segment. Figure 4 presents examples of InsideAbove values.

h
c

c'
h1'

h2'
f

f'

f'’

c'’

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 159-170.

162

Definition 6) PartnerNumber of a Halfsegment

As presented in Definition 4, a polygon is represented essentially as an ordered list (array)

of halfsegments. The PartnerNumber attribute of a halfsegment stores the position of its

partner in that array. In other words, the PartnerNumber attribute of a right dominating

halfsegment is the position of its corresponding left dominating halfsegment in the array of

halfsegments of the polygon, and vice-versa.

Definition 7) Turning Point

The turning point term has been introduced by Liang and Barsky (1983). A turning point is

a point at the intersection of two clipping polygon edges that must be added to the clipped

polygon in order to keep the connectivity of the original polygon. Figure 5.a presents an

example of clipping a polygon by a window. In order to keep the connectivity of the

original polygon it is needed to consider the edges corresponding to the turning points

highlighted in Figure 5.b. In our work we extended the definition of turning point. We add

a flag to the turning point, named Direction that stores the direction of the polygon’s area

on the edge that the turning point lies (Left, Right, Up, or Down), as presented in Figure 5.c.

The resulting clipped polygon is presented in Figure 5.d.

Figure 5 – Example of turning point.

Definition 8) Coverage Number of a Halfsegment

Figure 6 – Example of halfsegments including the coverage numbers of the vertical strips

(Güting and Ding, 2004).

The coverage number of a halfsegment was defined by Güting and Ding (2004). Coverage

number represents the number of segments that cross each vertical stripe of the plane

between two x-coordinates. Figure 6 presents the coverage numbers for a set of

halfsegments. In this example, two halfsegments cross the stripe between x3 and x4

coordinates. Güting and Ding (2004) present a simple algorithm to compute the coverage

number of halfsegments in a single scan through an array of halfsegments.

Turning points
(a) (b) (d)

Turning points

Turning point

Turning points (c)

Turning points

Turning point

x1 x2 x3 x4 x5 x6 x7 x8 x9

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 159-170.

163

3 Polygon Clipping

The polygon clipping algorithm has as input a set of halfsegments of a polygon, and

produces a set of halfsegments corresponding to the portion of the polygon’s halfsegments

that are inside the window. In addition, new halfsegments corresponding to the turning

points (Definition 7) are also returned. In other words, new halfsegments may be added,

and existing halfsegments may be discarded, retained, or divided. Multiple polygons may

also result from clipping a single polygon. It is important to emphasize that the polygon

clipping algorithm, with few changes, can be used to return the portion of the polygon that

is outside the window, instead of the portion that is inside the window. We have

implemented both algorithms in Secondo; however, because of the space for this paper, we

will present only the polygon clipping algorithm that returns the portion of the polygon

inside the window.

In our proposal we use Sutherland-Cohen line clipping algorithm (Newman and

Sproull, 1979) to clip the halfsegments against the window. We choose that algorithm

because it is probably the most efficient method for trivial acceptance and rejection cases,

which are both the most frequently encountered cases in window clipping. This algorithm

can be implemented using either integer or floating point arithmetic; thus covering a wider

set of applications (Maillot, 1992).

Figure 7 – Algorithm for clipping polygon’s segments by a window.

It is important to emphasize that the clipping of one halfsegment is completely

independent of the clipping of any other halfsegment. Thus, it is possible to employ a

parallel implementation. Besides, it is not needed to clip both left and right halfsegments.

We can clip one type of halfsegment, and discard the other one. The only prerequisite is

that the halfsegments must have the InsideAbove flag set. This flag is used to handle turning

points. The fact that a fast algorithm for trivial rejection and trivial acceptance cases is used

has oriented the method to spend most of the computing time evaluating the cases when a

segment of the polygon boundaries is not completely rejected and not trivially accepted.

algorithm ClippingPolygonSegments
INPUT : HSA=<h1,h2,...hn> (Halfsegment Array)

 w = Rectangle
OUTPUT: cHSA = clipped halfsegments and the halfsegments

 resulting from the evaluation of turning points

cHSA = Ø;

turningPointSets = Ø;

FOR i=1 TO n DO

 IF (hi has left dominating point) THEN

 IF (SutherlandCohenLineClipping(hi, w, clippedhs, intersectionPoint,

 isIntersectionPoint)) THEN
 IF (isIntersectionPoint) THEN
 EvaluateTurningPoint(w, intersectionPoint, turningPointSets, hi);

 ELSE
 cHSA.Add(clippedhs);
 EvaluateTurningPoint(w, clippedH.leftPoint, turningPointSets, hi);

 EvaluateTurningPoint(w, clippedH.rightPoint, turningPointSets, hi);

 END-IF;
 END-IF;

END-IF;
END-FOR;
cHSA.Add(getTurningPointHalfSegments(turningPointSets));

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 159-170.

164

The algorithm for clipping the polygon’s halfsegments by a window is presented in Figure

7. The SutherlandCohenLineClipping algorithm is used to compute the clipping. It has as

input a halfsegment (hi) and the window (w). The output may be a halfsegment (clippedhs)

or a point (intersectionPoint is the point resulting from the intersection and

isIntersectionPoint stores this information). If the intersection is a point, it is needed to

evaluate this point as a turning points. In the case of a halfsegment intersection, the clipped

halfsegment is added to the list (array) of the output halfsegments, and the evaluation of

turning points is executed over the end points of the clipped halfsegment. Of course, if the

halfsegment is completely inside the window and has no intersection point with the window

(trivial acceptance), its end points do not need to be evaluated as turning points. This test is

accomplished by the EvaluateTurningPoint sub-algorithm. This algorithm is presented in

Sub-Section 3.1. The last step of the algorithm to clip halfsegments of a polygon is

responsible for creating new halfsegments from the points that were considered as turning

points. This algorithm is described in Sub-Section 3.2.

Figure 8 – Algorithm to evaluate turning points.

3.1 Evaluating Turning Points

The turning point evaluation algorithm uses the InsideAbove flag (Definition 5) to define

how a point must be handled for creating new edges. Only the points that lie on window’s

algorithm EvaluateTurningPoint
INPUT : w = a rectangle described by the coordinates (x

min
, y

min
) and (x

max
, y

max
)

 p = Point
 turningPointSets = for each window egde there is a set recording the
 turning point of the edge
 h = halfsegment that the point p belongs to
OUTPUT: If the point is evaluated as a turning point it is added to the Turning
 Point Set of the edge
 tp = p;

IF (p.x = w.x
min
) THEN //left edge

 IF (h.insideAbove) THEN
 tp.direction = UP;
 ELSE
 Tp. direction = DOWN;
 END-IF;
 turningPointSets[LEFT].add(tp);
ELSE //right edge
 IF (h.insideAbove) THEN
 tp. direction = UP;
 ELSE
 tp. direction = DOWN;
 END-IF;
 turningPointSets[RIGHT].add(tp);
END-IF;
IF (p.y = w.y

min
) THEN //bottom edge

 IF (h.leftPoint > w.y
min
) THEN

 tp.direction = GetDirection(p, h.leftPoint, x
min
, y

min
, h.insideAbove);

 ELSE
 tp.direction = GetDirection(p, h.rightPoint, x

min
, y

min
, h.insideAbove);

 END-IF;
 turningPointSets[BOTTOM].add(tp);
ELSE
 IF (p.y = w.y

max
) THEN //top edge

 IF (h.leftPoint > w.y
min
) THEN

 tp.direction = GetDirection(p, h.leftPoint, x
min
, y

min
, h.insideAbove);

 ELSE
 tp.direction = GetDirection(p, h.rightPoint, x

min
, y

min
, h.insideAbove);

 END-IF;
 turningPointSets[BOTTOM].add(tp);
 END-IF;
END-IF;

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 159-170.

165

edges are considered as turning points. Figure 8 presents the algorithm used to evaluate

turning points.

According to the turning point evaluation algorithm (Figure 8), it is easy to define

the direction of the turning points that lie on the vertical window’s edges (left and right

edges). That is because when the InsideAbove flag of the halfsegment that the turning point

belongs is true, then the polygon is above the turning point, and the direction is UP.

Otherwise, if the InsideAbove flag has value equal to false, the polygon is under the

halfsegment, and the direction of the turning point is DOWN. On the other hand, the same

reasoning does not apply when handling turning points that lie on the horizontal edges

(bottom and top edges). The InsideAbove flag’s value is not enough to define the turning

point direction. An additional test must be executed. This test has just to determine whether

the area of the polygon is to the right or to the left of the turning point. Figure 9 presents

the algorithm that returns the direction of turning points that lie on top/bottom window’s

edges.

Figure 9 – Algorithm to compute the direction of turning points that lie on the
top/bottom window’s edges.

3.2 Creating New Segments from Turning Points

The algorithm that creates new segments from turning points basically sort the turning

points accordingly with the x and y-axis and point’s direction. Afterwards, it connects

properly the turning points to produce the new segments. The algorithm that creates new

halfsegments from turning points is presented in Figure 10.

algorithm GetDirection
INPUT: tp = turning point

 p = point of the same half segment that the turning point tp belongs
 and is above tp

 (x, y) = the left coordinate of the vertex of the window edge
 insideAbove = insideAbove flag’s value

IF (insideAbove) THEN
 IF (tp.x > p.x) THEN
 return RIGHT;
 ELSE
 return LEFT;
 END-IF;
ELSE
 IF (tp.x > p.x) THEN
 return LEFT;
 ELSE
 return RIGHT;
 END-IF;
END-IF;

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 159-170.

166

Figure 10 – Algorithm to create new halfsegments from turning points.

4 Polygon Reconstruction Algorithm

The polygon reconstruction algorithm has as input a set of halfsegments. The halfsegments

do not have any information about which polygon’s part they belong to (face, cycle or

cycle’s edge). The algorithm cross the halfsegments, and adjusts properly the face number,

cycle number, and edge number (which we named as polygon attributes of a halfsegment),

according to the definition of polygon presented in Definition 4. This algorithm can be used

to reconstruct any kind of polygon from its halfsegments. For example, it can be used to

reconstruct a polygon from a set of halfsegments resulting from clipping a polygon against

another polygon. The algorithm is presented in Figure 11. Two sub-algorithms are called by

the reconstruction polygon algorithm. They are ComputeCycle and GetFaceNumber. The

algorithm ComputeCycle sets the face number, cycle number and edge number of

halfsegments that belong to a particular cycle. The algorithm to get face numbers

algorithm CreateNewSegments
INPUT: edge = indicates which edge is been handled(LEFT, RIGHT, TOP or
 BOTTOM)
 bPoint,ePoint = end points of the edge

 turningPointSet = a set of the turning points of the edge
 cHSA = set of half segments in which the new half segments will be added

OUTPUT: cHSA with the new half segments

 IF edge == TOP or edge == LEFT THEN

 InsideAbove = false;

 ELSE /*RIGHT or BOTTOM edges*/

 InsideAbove = true;

 END-IF;

 begin = 0;

 end = turningPointSet.size();

 tp = turningPointSet[begin];

 IF (tp.Direction== LEFT or tp.Direction == DOWN) and not tp.Rejected THEN

 cHSA.addHalfSegments(tp,bPoint,InsideAbove);

 DiscardTurningPoints(turningPointSet, tp, ASCENDIN_GORDER, begin);

 END-IF;

 tp = turningPointSet[end];

 IF (tp.Direction== RIGHT or tp.Direction == UP) and not tp.Rejected

 and there is no rejected turning point equals to tp THEN

 cHSA.addHalfSegments(tp,ePoint,InsideAbove);

 DiscardTurningPoints(turningPointSet, DESCENDING_ORDER, end);

 END-IF;

 WHILE (begin<end) DO

tp1 = GetNotRejectedTurningPoint(turningPointSet, ASCENDING_ORDER, begin);

IF tp1 == NULL THEN

 return;

END-IF;

tp2 = GetNotRejectedTurningPoint(turningPointSet, DESCENDING_ORDER, end);

IF tp2 == NULL THEN

 return;

END-IF;

cHSA.addHalfSegments(tp1,tp2,InsideAbove);

END-WHILE;

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 159-170.

167

(GetFaceNumber) returns the face number that a halfsegment belongs, or it returns -1,

indicating that the halfsegment does not belong to any face that was processed yet.

Figure 11 – Algorithm for polygon reconstruction

5 Implementations in Secondo

Secondo (Diker and Güting, 2000; Güting et al., 2005) is a new generic environment

supporting the implementation of database systems for a wide range of data models and

query languages. It is developed as a research prototype at the Fernuniversität in Hagen.

The implementation of each algebra in Secondo is based on the concept of second-order

signature (Güting, 1993) with the first signature describing type constructors and the

second signature describing operations on these type constructors. An algebra can be

plugged into Secondo with the central part of the Secondo code unchanged. After

recompiling Secondo, we can use the newly added algebra.

algorithm PolygonReconstruction
INPUT: HSA=<h1,h2,...hn> (Halfsegment Array)

OUTPUT: HSA = each halfsegment has the face, cycle, and edge numbers set

VARIABLES: face = array that stores in position i the last cycle number of the
 face i
 hsSet = array that stores in the position i if the half segment h

i

 had already the face number, the cycle number and the edge
 number set. This array is initialized with values false.
 IF HSA is not sorted in halfsegment order THEN
 Sort HSA in halfsegment order;
END-IF;
IF the halfsegments of HSA do not have the partner number set THEN
 Set partner number of the halfsegments of HSA;
END-IF;
face[0] = 0; /*0 is assigned to the first cycle of the first face */
lastFaceNumber = 0;
isFirstHS = true;

 FOR i=1 TO n DO

 IF hi has left dominating point and not hsSet[i] THEN

 IF isFirstHS THEN
 isFirstHS = false;
 hi.faceNumber = 0;

 hi.cycleNumber = 0;

 ELSE
 existingFaceNumber = GetFaceNumber(HSA, hi, hsSet, i);

 IF existingFaceNumber is equal to -1 THEN
 lastFaceNumber++;
 hi.faceNumber = lastFaceNumber;

 hi.cycleNumber = 0;
 /*to store the first cycle number of the face lastFace*/
 face[faceNumber-1]=0;
 ELSE
 hi.faceNumber = existingFaceNumber;

 face[faceNumber]++;
 hi.cycleNumber = face[faceNumber];

 END-IF;
 END-IF;
 hi.edgeNumber = 0;

 ComputeCycle(HSA, hi, hsSet);

 END-IF;
 END-FOR;

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 159-170.

168

In Secondo, the operators windowclippingin and windowclippingout were

implemented in SpatialAlgebra (Figure 12). The operators can handle line and polygon

(which are named as region), returning the portion inside or outside a rectangle window,

respectively. If it receives as input a line and a rectangle window, it returns a clipped line.

If it receives as input a region and a rectangle window, a clipped region is returned. The

polygon reconstrucion algorithm was implemented as methods in the Region class of

Spatial Algebra, and it is used by the clipping algorithms to compute the clipped polygons.

Name: windowclippingin

Signature: (line x rect) -> line, (region x rect) --> region

Syntax: windowclippingin(_, _)

Meaning: computes the part of the object that is inside the window.

Example: query Flaechen feed extend[InWindow: windowclippingin(

 .geoData, bbox(thecenter))] project[InWindow]

 filter[not(isempty(.InWindow))] consume

Name: windowclippingout

Signature: (line x rect) -> line, (region x rect) --> region

Syntax: windowclippingout(_, _)

Meaning: computes the part of the object that is outside the window.

Example: query windowclippingout(trajectory(train7), bbox(thecenter))

Figure 12 - Clipping operators implemented in Spatial Algebra in Secondo

6 Conclusion

Polygon clipping is an important operation that computers execute all the time. Often, it is

possible to feed a weird polygon to an algorithm and retrieve an incorrect result. One of the

vertices may disappear, or a ghost vertex may be created. There are many clipping polygon

proposals in the literature. However, none of them is totally perfect. Therefore, the hunt for

the perfect clipping algorithm is still open. In this work, we proposed two new algorithms:

polygon clipping by a rectangle window; and polygon reconstruction.

Polygon reconstruction is a consequence of polygon clipping. In other words,

clipping a polygon produces a set of unordered segments. These segments must be handled

in order to adjust segments attributes to produce the polygon. So, we proposed a polygon

reconstruction algorithm that may be used in any case where it is needed to compute a

polygon from an unordered set of segments. For instance, compute a polygon from a set of

segments produced by clipping a polygon by a rectangle window or clipping a polygon by

another polygon.

In the case of the polygon clipping algorithm, we proposed and implemented two

possibilities, an algorithm to return the portion of the polygon that are inside a rectangle

window, and an algorithm to return the portion of the polygon that are outside the window.

The algorithms were implemented in Secondo system (Diker and Güting, 2000; Güting et

al., 2005), a platform for implementing and experimenting with various kinds of data

models. Hence we employed the data structures described in the ROSE algebra (Güting,

1993; Güting et al, 1995; Güting and Schneider, 1995). Althoug our algorithm

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 159-170.

169

implementations in Secondo has a good performance, we do not execute an experimental

evaluation against other similar algorithms, which we plan to do as future work.

7 References

Dieker, S. and Güting, R. H. (2000) “Plug and Play with Query Algebras: SECONDO A

Generic DBMS Development Environment”, In: Proceedings of the International

Database Engineering and Applications Symposyum (IDEAS), Japan, September.

Gargano, M., Nardelli, E., and Talamo, M. (1991) “Abstract data types for the logical

modeling of complex data”, Information Systems, 16(5):565-584.

Güting, R. H. (1993) “Second-order signature: A tool for specifying data models, query

processing, and optimization”, In: ACM SIGMOD Record, vol. 22 , issue 2 (June), pp.

277 - 286.

Güting, R.H. and Schneider, M. (1995) “Realm-Based Spatial Data Types: The ROSE

Algebra”, VLDB Journal 4, 100-143.

Güting, R.H., and Ding, Z. (2004) “A Simple But Effective Improvement to the Plumbline

Algorithm”, Information Processing Letters 91 (2004), 251-257.

Güting, R.H., Almeida, V., Ansorge, D., Behr, T., Ding, Z., Höse, T., Hoffmann, F.,

Spiekermann, M. (2005) “SECONDO: An Extensible DBMS Platform for Research

Prototyping and Teaching”, In: 21st Intl. Conf. on Data Engineering (ICDE, Tokyo,

Japan), 2005, 1115-1116.

Güting, R.H., de Ridder, Th., Schneider, M. (1995) “Implementation of the ROSE Algebra:

Efficient Algorithms for Realm-Based Spatial Data Types”, In: Proceedings of the 4th

International Symposium on Large Spatial Databases, Portland, August.

Liang, Y. and Barsky, B. (1983) “An analysis and algorithm for polygon clipping”,

Commun. ACM 26, 11 (Nov), 868-877.

Mayllot, P.-G. (1992) “A new, fast method for 2D polygon clipping: analysis and software

implementation”, In: ACM Transactions on Graphics (TOG), v.11,issue 3, p.276-290,

July.

Newman, W. M., and Sproull, R. F. (1979) “Principles of Intemctiue Computer Graphics”,

McGraw-Hill Book Company.

Scholl, M. and Voisard, A. (1989) “Thematic map modeling”, In: Proceedings of the First

International Symposium on Large Spatial Databases, Santa Barbara, CA, 1989.

Voisard, A. (1992) “Bases de donn6es g6ographiques: du module de donn6es fi l'interface

utilisateur”. Ph.D. Thesis, University of Paris-Sud (Centre d'Orsay).

Weiler, K. and Atherton, P. (1977) “Hidden surface removal using polygon area sorting”,

In: Proceedings of the 4th annual conference on Computer graphics and interactive

techniques, San Jose, California, pp. 214 - 222.

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 159-170.

170

