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Abstract. In this paper we are interested in storing and perform OLAP queries
about various aggregate trajectory properties. We consider a data stream en-
vironment where a set of mobile objects send the data about its location in a
irregular and unbounded way, the data volume is stored in a centralized and
traditional DW with pre-computed aggregations values (preserving the trajec-
tories privacy). We present an application developed to receive the stream data
set, to store and compute the pre-aggregation values and to present final results
in order to reveal the knowledge about the trajectories.

1. Introduction
The data warehouse traditional model can be resumed as a subject-oriented data collec-
tion integrated from various operational databases. On a data warehouse model, the data
are summarized and aggregated in a multidimensional way in order to facilitate access
and data analysis. A Data warehouse provides an integrated environment by extracting,
filtering, and integrating relevant information from various data sources. A Data Stream
environment presents some characteristics that may improve the difficulty to build and
maintain a data warehouse. The data arriving on an unpredictable and continuous rate,
the larger data volume and the resource constraints (memory, processing) are some of
these main characteristics. The data warehouse traditional model must be adapted in or-
der to work in agreement with these constraints.

The development of new technologies for mobile devices and low-cost sensors re-
sults in the possibility of storing larger data volumes about trajectories of moving objects.
These data volumes could be stored on a multidimensional model in order to allow an
accuracy analysis, it can be defined as a trajectory data warehouse. The goal is to store,
manage and analyze the trajectories data in a multidimensional way. The trajectory can
be represented by position (X and Y) and time data. A set of observations represents
data about several moving objects positions. The trajectory data warehouse has two main
problems: the loading phase and the computing of measures. The trajectory data of mov-
ing objects arrive in an unbounded and unpredictable way, it is a characteristic that must
be considered in the building of a multidimensional data warehouse model. The loading
phase has to receive and process the data volume considering the available resources and
the irregular rate of arriving the data. We consider a data warehouse model where the
identifier of the trajectories is abstracted in favour of aggregate information concerning
global properties of a set of moving objects. The aggregated information stored in each
cell of the DW model can be used to reveal knowledge of the objects. It can be done
by the usage of the OLAP operators, these results can be used as input for subsequent
analyses.
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In this paper we present an application developed to receive the stream data set,
to store and compute the pre-aggregation values and to present final results in order to
reveal the knowledge about the trajectories. This application works in a data stream en-
vironment, it can receive the data stream volumes (loading phase), compute and store
the aggregation values (computing measures phase) in a trajectory data warehouse. The
application was built considering the model proposed in [Braz et al. 2007], we have used
a traditional DW system in order to store the Trajectory DW. In the Section 2 we present a
briefly review about Trajectory DW model, the main problems and the DW model used in
order to store the trajectories are also presented. The application is detailed in the Section
3. Finally, in the Section 4 we draw some conclusions and possible future research topics.

2. The Trajectory DW Model
There are some proposals of spatial data warehouses
[Han et al. 1998],[Rivest et al. 2001],[Marchant et al. 2004],[Shekhar et al. 2001],
but none of these proposals work with objects moving in a continuous way in time.
However, in the building of a warehouse for trajectories, it is a crucial issue. The
movement of a spatio-temporal object o - i.e., it trajectory - can be represented by a
finite set of observations,i.e. a finite subset of points taken from the actual continuous
trajectory. This finite set is called a sampling.

Figure 1. Trajec-
tory with a sam-
pling

Figure 2. Linear
interpolation

Figure 3. Interpo-
lated trajectory
with spatial and
temporal points

The Figure 1 represents a trajectory of a moving object in a two dimensional space.
Each point of the trajectory is represented by a tuple (id, x, y, t) corresponding to an object
id in a location (x, y) at time t. There are some situations where we have to reconstruct
the trajectory of the moving object from its sampling, e.g., when one is interested in
computing the cumulative number of trajectories in a give area. In [Braz et al. 2007] the
proposal is to use linear local interpolation in order to do it, assuming the movement of
the objects between the observed points happens with constant speed, in a straight way. A
Trajectory Data Warehouse (TDW) has to capable to store a stream of samplings, process
the data volume, compute and store the measures in order to provide an environment to
analyze the information about the objects. The aggregations measures are crucial in order
to do it. However, in a data stream environment, where the data arrive in an irregular and
unpredictable way it is specially difficulty. In the loading phase the available resources
are a very important constraint, it is necessary to develop some mechanism in order to
limit the consumption of the resources and to improve the performance of the process.
Besides, there is another important phase: computing measures, several measures can be
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computed in agreement with different complexity spaces. Therefore, the TDW must be
modeled considering all these issues. In this application we have used the model proposed
in [Braz et al. 2007].

2.1. Loading Problem

The loading begins at the base cells of the base cuboid, with suitable sub-aggregate mea-
sures, from which starting to compute super-aggregated functions. Considering the data
stream characteristic, we have to limit the amount of buffer memory needed to store in-
formation about active trajectories. In agreement with [Braz et al. 2007] we consider a
trajectory ended when, for a long time interval, no further observation has been received.
Given the observations for a trajectory shown in the Figure 1, a possible reconstructed
trajectory using linear interpolation is shown by the Figure 2, where we also illustrate
the discretized 2D space. With the linear interpolation is possible to infer additional
spatio-temporal locations of intermediate points, these points occur between two known
trajectory observations. Updating the data warehouse on the basis of each single observa-
tion, the measures (M1, . . . ,Mk), possibly corresponding to the four observations of our
example, the Table 1 shows the base cells.

Table 1. Cells representation - for each observation
Time label X Y T M1 . . . Mk

10 [30,60) [30,60) [0,30) . . . . . . . . .
65 [60,90) [30,60) [60,90) . . . . . . . . .
75 [90,120) [90,120) [60,90) . . . . . . . . .
120 [120,150) [90,120) [60,120) . . . . . . . . .

Table 2. Sequence of segments composing the interpolated trajectory, and the
base cells that completely include each segment.

(ti, ti+1) X Y T M1 . . . Mk

(10,30) [30,60) [30,60) [0,30) . . . . . . . . .
(30,32) [30,60) [30,60) [30,60) . . . . . . . . .
(32,60) [90,120) [30,60) [30,60) . . . . . . . . .
(60,65) [90,120) [30,60) [60,90) . . . . . . . . .
(65,67) [90,120) [30,60) [60,90) . . . . . . . . .
(67,70) [90,120) [90,120) [60,90) . . . . . . . . .
(70,73) [120,150) [90,120) [60,90) . . . . . . . . .
(73,75) [120,150) [120,150) [60,90) . . . . . . . . .
(75,90) [120,150) [120,150) [60,90) . . . . . . . . .
(90,99) [120,150) [120,150) [90,120) . . . . . . . . .
(99,120) [150,180) [120,150) [90,120) . . . . . . . . .

Before the interpolation some base cells could be traversed by the trajectories but,
since no observation falls in them, they not appear in the fact table, the solution proposed
in [Braz et al. 2007] is to consider the additional interpolated points for each cell traversed
by a trajectory. The interpolation is computed considering the intersections between the
trajectory and the border of the spatio-temporal cells. The Figure 3 shows a trajectory
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considering the additional interpolated points. The interpolated points, associated with
temporal labels 30, 60, and 90, have been added to match the granularity of the temporal
dimension. In fact, they correspond to cross points of a temporal border of some 3D cell.
The points labeled with 32, 67, 70, 73, and 99, have been instead introduced to match the
spatial dimensions.

After the including of these additional interpolated points, we have further 3D base
cells in which we can now store significant measures associated with the trajectory of the
given object. The new points subdivide the interpolated trajectory into small segments,
each one completely included in some 3D base cell. Therefore we can now update a cell
measure on the basis of a single trajectory segment. The Table 2 shows the sequence of
edges composing the interpolated trajectory of Figure 3, and the base cell which the edge
belongs to.

2.2. Aggregation Problem

A typical measure in a trajectory data warehouse can represent any interesting prop-
erty about the trajectories in a spatio-temporal interval. In [Gray et al. 1997] the authors
present a classification of aggregate functions based on the space complexity for comput-
ing a super-aggregate starting from a set of sub-aggregates previously computed:

• Distributive: The super-aggregates can be computed from the sub-aggregates.
• Algebraic: The super-aggregates can be computed from the sub-aggregates to-

gether with a finite set of auxiliary measures .
• Holistic: The super-aggregates cannot be computed from the sub-aggregates, not

even using any finite number of auxiliary measures.

Table 3. Numeric measures
m1 numobs Number of observations in the cell
m2 trajinit Number of trajectories starting in the cell
m3 presence Number of trajectories in the cell
m4 distance Total distance covered by trajectories in the cell
m5 speed Average speed of trajectories in the cell
m6 vmax Maximum speed of trajectories in the cell

The Table 3 shows the measures that are considered in the application. The com-
putation of the super-aggregates for the measures m1, m2, m4 and m6 uses distributive
aggregate functions. After the loading of the base cells with the exact measures is possi-
ble to accumulate the measures by usage the function sum (m1, m2 and m4) and max (m6).
However, the super-aggregate for the measure m5 is algebraic, it is necessary to compute
an auxiliary measure in order to compute the aggregate function. A pair 〈distance, time〉
must be considered, where distance is the measure m4 and time is the total time spent by
trajectories in the cell. For a cell C arising as the union of adjacent cells, the cumula-
tive function performs a component-wise addition, producing a pair 〈distancef , timef〉,
therefore the average speed in C is computed by distancef/timef . The aggregate func-
tion for m3 is holistic, then is necessary to compute the measure in an approximated
way. In this application we have used the approach presented in [Braz et al. 2007], the
approach will be presented in the following.
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The Presence function represents the count of the distinct trajectories crossing a
given cell. Since this function has to deal with the issues related to counting distinct tra-
jectories, it is a sort of COUNT DISTINCT() aggregate, and thus a holistic one. We
exploit alternative and non-holistic aggregate functions to compute Presence values that
approximate to the exact ones. These alternative functions only need a few/constant mem-
ory size for maintaining the information – i.e., the M -tuple – to be associated with each
base cell of our data warehouse, from which we can start to compute a super-aggregate.
The two approximate functions we will consider are the following:

1. PresenceDistributive: We assume that the only measure associated with each base
cell is the exact (or approximate) count of all the distinct trajectories crossing the
cell. Therefore, the super-aggregate corresponding to a roll-up operation is sim-
ply obtained by summing up all the measures associated with cell. This aggregate
function may produce very inexact approximation of the true Presence. Because
we may count multiple times the same trajectory. We do not have enough infor-
mation in the base cell that permit us to perform a count distinct when rolling-up.

2. PresenceAlgebraic: Each base cell stores an M -tuple of measures. One of these is
the exact (or approximate) count of all the distinct trajectories touching the cell.
The other measures are used when we compute the super-aggregate, in order to
correct the errors introduces by function PresenceDistributive due to the duplicated
count of trajectory presences.
More formally, let Cx,y,t be a generic base cell of our cuboid, where x, y, and
t identify intervals of the form [l, u), in which we have subdivided the spatial
and temporal dimensions. The associated measures are thus Cx,y,t.presence,
Cx,y,t.crossX , Cx,y,t.crossY , and Cx,y,t.crossT .
Cx,y,t.presence is the count of all the distinct trajectories crossing the cell.
Cx,y,t.crossX is the number of distinct trajectories crossing the spatial border be-
tween Cx,y,t and Cx+1,y,t.
Cx,y,t.crossY is the number of distinct trajectories crossing the spatial border be-
tween Cx,y,t and Cx,y+1,t.
Finally, Cx,y,t.crossT is the number of distinct trajectories crossing the temporal
border between Cx,y,t and Cx,y,t+1.
In order to compute the super-aggregate corresponding to two adjacent cells with
respect to a given dimension, namely Cx′,y′,t′ = Cx,y,t ∪ Cx+1,y,t, we can compute
it as follows:

PresenceAlgebraic(Cx,y,t ∪ Cx+1,y,t) = (1)

= Cx′,y′,t′ .presence =

= Cx,y,t.presence + Cx+1,y,t.presence − Cx,y,t.crossX

Moreover, if we need to update the other measures associated with the Cx′,y′,t′ for
subsequent aggregations, we have:

Cx′,y′,t′ .crossX = Cx+1,y,t.crossX

Cx′,y′,t′ .crossY = Cx,y,t.crossY + Cx+1,y,t.crossY
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Cx′,y′,t′ .crossT = Cx,y,t.crossT + Cx+1,y,t.crossT

Then, the idea is to compute a holistic measure by the usage of the distributive and
algebraic measures. Therefore, the final result of the measure is an approximated value,
computed in agreement with the limited resources presented in a data stream environment.

3. The Application
We have developed our application using the synthetic datasets generated by the traffic
simulator described in [Brinkhoff 2000]. These data are stored in the Trajectory Data
Warehouse (TDW) model presented in the Section 2. The measures stored in the TDW
can be used to discover interesting phenomena of the trajectories. The application tries to
solve the both problems: loading and aggregation, which were presented in the Section
2.1 and 2.2.

Figure 4. Results Interface

The Figure 4 shows the interface where is possible to visualize the values of the
measures computed considering a cell selected by the user. The result presents the evolu-
tion of the values of measures in a range of time, in the same visualization is possible to
define different values of roll-up operations. The roll-up operation can be defined by the
usage of the slider controls over the map, a more detailed explanation will be presented
in the next sections.

The TDW was implemented in a traditional data warehouse tool, we have used
the MS SQL SERVER 2005. The TDW was modeled in agreement with the star model
[Kimball 1996], with a fact table and three dimension tables (X and Y spatial dimensions
and T temporal dimension). The structure of these tables can be found in the Tables 4,
5 and 5. The Figure 5 shows a schema of the our application: a bottom level where is
the TDW and the buffer table; and a first level where works the loading and aggregation
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Figure 5. Application Schema

components. The arrows represent the data communication among the components, these
components will be described in following sections. The application was built with the
Visual Basic language, the application allows the user to access the DTW. A lot of settings
can be done: the definition of the level of the granularity of the trajectory data warehouse,
to control the loading of the TDW and computation of the measures and aggregations are
some of the possibilities of the usage.

Table 4. Fact Table
tid time foreign key
xid X spatial foreign key
yid Y spatial foreign key

numobs Number of observations in the cell
trajinit Number of trajectories starting in the cell
vmax Maximum speed of trajectories in the cell

distance Total distance covered by trajectories in the cell
time Total time spend by the trajectories in the cell

presence Number of trajectories in the cell - distributive
xborder Number of trajectories crossing the x cell border
yborder Number of trajectories crossing the y cell border
tborder Number of trajectories crossing the t cell border
speed Average speed of trajectories in the cell

Each tuple stored in the fact table represents a summarization of the measures that
are delimited by the borders of the cell. The base cell are delimited by the tid, xid and
yid values. The measures presented in the Table 4 are detailed in the Section 2.2. The
measures presence, xborder, yborder and tborder are necessary in order to compute the
holistic presence measure. These measures are specially important when is necessary to
compute the roll-up operations, this procedure will be explained in the Section 3.2.
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Table 5. X or Y Dimension Table
xid primary key
xl1 first level of hierarchy
xl2 second level of hierarchy

Table 6. T Dimension Table
tid primary key
tl1 first level of hierarchy
tl2 second level of hierarchy

3.1. Loader Component
The loader component also is responsible by the settings of the environment in order to
receive the data volume. This component loads the data volume into a buffer table (see
Table 7). We are considering that this process happens in an unpredictable and unbounded
way, therefore we have to store packages of data into a buffer table. This procedure
permits to release space in the buffer table, it can be done by the exclusion of the tuples
of the trajectories ended.

Table 7. Buffer Table
oid Object Identifier

xvalue X spatial value
yvalue Y spatial value
tvalue T time value

dift Time variation between two consecutive positions
difx X spatial variation between two consecutive positions
dify Y spatial variation between two consecutive positions
dist Distance covered between two consecutive positions
vel Speed between two consecutive positions

idrow Identifier of the row
timestamp Timestamp of the observation

Through the loader component is possible to define the details of the environment
and to compute the interpolation procedure. In order to compute the interpolation and to
load the TDW is necessary to define two very important parameters:

• Granularity level
• Dimension hierarchical level

The definition of the granularity level is necessary in order to define the regular
grid which divides the spatio-temporal environment. This procedure is done before the
loading the TDW, because in the TDW schema we have computed the measures for each
cell. Therefore, the definition of the cells is the first step in the loading process. After the
definition of the granularity level is possible to define the hierarchy level of the dimension
tables, this procedure also can be done by the loader component.

The Figure 6 shows a visualization of the interface available in order to define
those settings. These procedures are executed just one time, before the beginning of the
loading the data warehouse. After the definition of the settings explained above, the in-
terface permits to start the process of the receiving the data stream values and loading
the TDW. The Algorithm 1 presents the basic procedures in order to complete the loader
process, where Ccur represents the current base cell, Cprev the previous base cell stored
in the buffer related to the same trajectory, and IP represents the set of base cells com-
puted by the interpolation process. Using the setting values already defined, the loader
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Figure 6. Loading Settings

Algorithm 1 Loading
Input: {Stream SO of observations - id, x, y, t}
Output: {Fact Table FT}
FT ←− ∅
buffer ←− ∅
repeat

obs ←− next(SO)
Ccur ←− findCell(obs.x, obs.y, obs.t)
if obs.id 6∈ buffer then

insertbuffer(obs.id)
end if
Cprev ←− findCell(obs.x, obs.y, obs.t)
IP ←− interp(Ccur, Cprev)
ct ←− 1
repeat

if IP [ct] 6∈ FT then
insert(IP [ct], FT )

else
update(IP [ct], FT )

end if
ct ←− ct + 1

until ct < IP.numpoint
until
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component gets the active values in the buffer table and performs the procedures in order
to load the TDW. In the Section 2.1 we have described the concept of interpolation used
in order to load the TDW. The buffer table is used in order to implement that procedure.
For each active row of the buffer table the application has to find the related cell in the
TDW. If exists a row in the fact table for that cell, the values of distributive measures (e.g
numobs, trajinit) can be updated, else a new row will be inserted in the fact table. It is the
procedure when is not necessary to compute the interpolation. However, there are some
measures which is necessary to compute the interpolation. In this case the procedure must
use the identifier of the active trajectories, their last processed point, the cell such point
belongs to, and the speed in the segment ending at such a point. Using that set of values is
possible to determine the additional points in order to represent the intersections among
the trajectory and the borders of the cells. The additional points can be computed con-
sidering the constant speed of the trajectory and the spatio-temporal granularity. In the
Algorithm 1, the functions interp is responsible to compute the additional points of the
interpolation process. For each new point computed by the interpolation process happens
the task of searching the related cell in the TDW. When there is the base cell in the fact
table the related measures must be updated. Otherwise, the procedure is to insert a tuple
with the new values of the measures.

3.2. Aggregation Component

The aggregation problem was explained in the Section 2.2. The distributive and algebraic
measures can be solved without problem, but the situation is totaly different when is
necessary to compute aggregation measures. In that case there is not a precisely result,
just an approximation value can be computed.

In our application the pre-aggregated values are stored in the TDW. These pre-
aggregated values are computed in the loading phase. However, when is necessary to
compute some query or to perform a roll-up operation, the application uses the aggrega-
tion component. The Figure 4 shows the results of a query defined by the boundaries of
the cell selected on the map. The results are represented by the charts (right side) where
is possible to verify the evolution of the measures for each value of time dimension.

The user can choose the query base cell either by the usage of the combo-boxes
or by clicking on the map. The map is divided into a regular grid, this division is done
in agreement with the granularity defined by the user. In some cases just a simple query
in the data warehouse can solve the query, for example when the query is limited in a
only one base cell, it is possible because the tuples in the TDW stores the pre-aggregated
values. However, when is necessary to compute a roll-up operation a simple search in the
fact table is not sufficient. In these cases the solution can not be found by the usage of
the relational operators (Select, Update...), then the application must use a lot of stored
procedures developed in order to solve these situations. The computation of the holistic
measures also is done by the usage of the stored procedures. For example, to compute the
holistic presence measure we need the distributive measures presence and the other ones
algebraic measures: xborder, yborder and tborder. It is a complex task, because is neces-
sary to determine the direction of the roll-up operation. If the roll-up happens just in the
X-dimension the only ones measures used will be the distributive presence and the other
one algebraic measure: xborder, the same procedure happens for the another dimensions.
There is another one more complex query: the roll-up in X, Y and T dimensions, again this
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situation is solved by the usage of the stored procedures. All the stored procedures are
invocable by the loading component and executed in the TDW, the results of the queries
are presented in the Results area in the query form of the application (see Figure 4).

4. Conclusions and Future Work
In this paper we have presented an application in order to implement a TDW considering
the constraints to load the data warehouse and compute the aggregation values. The ap-
plication is a first step in order to try solving the problems of loading and aggregation in
a TDW environment. The data cube model adopted is very simple, it is just a contribu-
tion in order to improve the discussion about the problems to implement a TDW model.
However, this model can be extended to more general situations.

The current stage of the application can solve some problems of a trajectory data
warehouse environment. However, the dimensions that we have used are very simple,
a possible future work could be to sophisticate the hierarchy of the dimensions. The
loading phase is an opened problem, we have limited the loading phase considering a
linear interpolation, but is possible to find some topological situations (e.g roads, bridges)
where is very difficult to do this interpolation because of the some constraints in the
movement of the object.

In this work we have used the roll-up operation, however could be interesting to
offer mechanisms in order to compute other operators such as drill-down, pivot, slice and
dice. Therefore, the development of a query language using OLAP operators also is a
possible point to research.

Another interesting area of additional research is to develop another more com-
plex measures in order to provide values to discover patterns or trend of the trajectories.
To compute values to support the data mining tasks is a very interesting point of future
research.
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Braz, F., Orlando, S., Orsini, R., Raffaetà, A., Roncato, A., and Silvestri, C. (2007).

Approximate aggregations in trajectory data warehouse. In Proc. of ICDE Workshop
STDM, pages 536–545.

Brinkhoff, T. (2000). Generating network-based moving objects. In SSDBM ’00: Pro-
ceedings of the 12th international Conference on Scientific and Statistical Database
Management, page 253, Washington,DC,USA. IEEE Computer Society.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow,
F., and Pirahesh, H. (1997). Data cube: A relational aggregation operator generalizing
group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29–54.

Han, J., Stefanovic, N., and Kopersky, K. (1998). Selective materialization: An efficient
method for spatial data cube construction. PAKDD’98, pages 144–158.

Kimball, R. (1996). Data Warehouse Toolkit. John Wiley.

Marchant, P., Briseboi, A., Bedard, Y., and Edwards, G. (2004). Implementation and
evaluation of a hypercube-based method for spatiotemporal exploration and analysis.
ISPRS Journal of Photogrammetry and Remote Sensing, 59:6–20.

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 61-72.

71



Rivest, S., Bedard, Y., and Marchand., P. (2001). Towards better support for spatial
decision making: Defining the characteristics of spatial on-line analytical process-
ing(solap). Geomatica, 55(4):539–555.

Shekhar, S., Lu, C., Tan, X., Chawla, S., and Vatsavai, R. (2001). Map Cube: Avi-
sualization Tool for Spatial Data Warehouse, chapter Geographic Data Mining and
Knowledge Discovery. Taylor and Francis.

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 61-72.

72




